Contact Us Search Paper

A Novel Cooperative NOMA Coding for Uplink MTC Networks

Payam Padidar1, Pin-Han Ho1,*, Limei Peng2, Anwar Haque3, and Kshirasagar Naik1

Corresponding Author:

Pin-Han Ho

Affiliation(s):

1Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada

2Department of Computer Science, Kyungpook National University, Korea

3Department of Computer Science, Western University UWO, Canada

*Corresponding author

Abstract:

In this paper we consider machine-type communications (MTC) in 5G cellular networks for internet-of-thing (IoT) applications, where a large number of MTC devices simultaneously communicate with a base station (BS) over an uplink channel. To overcome the resource-constrained nature of the MTC nodes, we introduce a novel cooperative non-orthogonal multiple access (NOMA) coding scheme for supporting multi-user uplink transmissions with low complexity and signaling overhead, where the assumption of no feedback link hence no channel state information (CSI) available at the transmitting MTC nodes is taken. To gain deep understanding of its performance, we derive close-form analytical expressions on outage probability and diversity-multiplexing tradeoff (DMT) curve in the asymptotic regime of high signal-to-noise ratio (SNR), and optimize the end-to-end performance in terms of the exponential decay rate of expected distortion (ED). The asymptotic analytical result can be translated into a significant SNR gains of practical implementations with general SNR values, which is further confirmed via extensive simulation.

Keywords:

Cooperative networks, diversity multiplexing trade off, expected distortion, internet of things, machine type communications, non-orthogonal multiple access code

Downloads: 50 Views: 190
Cite This Paper:

Payam Padidar, Pin-Han Ho, Limei Peng, Anwar Haque, and Kshirasagar Naik (2023). A Novel Cooperative NOMA Coding for Uplink MTC Networks. Journal of Networking and Network Applications, Volume 3, Issue 3, pp. 119–128. https://doi.org/10.33969/J-NaNA.2023.030303.

References:

[1] G. A. Akpakwu, B. J. Silva, G. P. Hancke, A. M. Abu-Mahfouz, “A Survey on 5G Networks for the Internet of Things: Communication Technologies and Challenges,” IEEE Access, vol. 6, no. 12, pp. 3619-3647, Dec. 2017.

[2] A. Ijaz, L. Zhang, M. Grau, A. Mohamed, S. Vural, A. U. Quddus,

M. A. Imran, C. H. Foh, R. Tafazolli, “Enabling Massive IoT in 5G and Beyond Systems: PHY Radio Frame Design Considerations,” IEEE Access, vol. 4, no. 6, pp. 3322-3339, Jun. 2016.

[3] C. Bockelmann, N. K. Pratas, G. Wunder, S. Saur, M. Navarro, D. Greg,“Towards Massive Connectivity Support for Scalable mMTC Com-munications in 5G Networks,” IEEE Access, vol. 6, no. 5, pp. 28969-28992, May 2018.

[4] M. B. Shahab, R. Abbas, M. Shirvanimoghaddam, S. J. Johnson, “Grant-free Non-orthogonal Multiple Access for IoT: A Survey,” in IEEE Commun. Surveys Tuts., May 2020.

[5] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501-1505, Dec. 2014.

[6]Y. Polyanskiy, “A perspective on massive random-access,” Proc. IEEE Int. Symp. Inf. Theory, Aachen, 2017, pp. 2523-2527.

[7]D. L. Donoho, A. Maleki, A. Montanari, “Message-passing algorithms for compressed sensing,” Proc. National Academy Sciences, vol. 106, no. 45, pp. 18914-18919, Nov. 2009.

[8] L. Liu, E. G. Larsson, W. Yu, P. Popovski, C. Stefanovic, E. de Carvalho, “Sparse Signal Processing for Grant-Free Massive Connectivity: A Fu-ture Paradigm for Random Access Protocols in the Internet of Things,” IEEE Signal Process. Mag., vol. 35, no. 5, pp. 88-99, Sep. 2018.

[9] C. Bockelmann, H. F. Schepker, A. Dekorsy, “Compressive Sensing based Multi-User Detection for Machine-to-Machine Communication,” Trans. Emerging Telecommun. Technol.: Special Issue Machine-to-Machine: An emerging commun. paradigm, vol. 24, no. 4, pp. 389-400 Jun. 2013.

[10] G. Lim, H. Ji, B. Shim, “Hybrid Active User Detection for Massive Machine-type Communications in IoT,” Int. Conf. Inf. & Commun. Technol. Convergence, Oct. 2018, pp. 1049-1052.

[11] Y. Du et al., “Efficient Multi-User Detection for Uplink Grant-Free NOMA: Prior-Information Aided Adaptive Compressive Sensing Per-spective,” IEEE J. Sel. Areas Commun., vol. 35, no. 12, pp. 2812-2828, Dec. 2017.

[12] S. Han, X. Xu, X. Tao, P. Zhang, “Joint Power and Sub-Channel Allocation for Secure Transmission in NOMA-Based mMTC Networks,” IEEE Syst. J., vol. 13, no. 3, pp. 2476-2487, Sep. 2019.

[13] Y. Sun, D. W. K. Ng, Z. Ding, R. Schober, “Optimal Joint Power and Subcarrier Allocation for Full-Duplex Multicarrier Non-Orthogonal Multiple Access Systems,” IEEE Trans. Commun., vol. 65, no. 3, pp. 1077-1091, March 2017.

[14] A. E. Mostafa, Y. Zhou, V. W. S. Wong, “Connection Density Maximiza-tion of Narrowband IoT Systems With NOMA,” IEEE trans. Wireless Commun., vol. 18, no. 10, pp. 4708-4722, Oct. 2019.

[15] G. Miao, N. Himayat, G. Y. Li, S. Talwar, “Distributed Interference-Aware Energy-Efficient Power Optimization,” IEEE trans. Wireless Commun., vol. 10, no. 4, pp. 1323-1333, Apr. 2011.

[16] W. Kim, G. Lim, Y. Ahn, B. Shim, “Active User Detection of Machine-Type Communications via Dimension Spreading Neural Network,” IEEE Int. Conf. Commun., Shanghai, China, 2019, pp. 1-6.

[17] M. Liu, T. Song, G. Gui, “Deep Cognitive Perspective: Resource Allocation for NOMA-Based Heterogeneous IoT With Imperfect SIC,” IEEE Internet Things J., vol. 6, no. 2, pp. 2885-2894, Apr. 2019.

[18] S. K. Sharma, X. Wang, ”Toward Massive Machine Type Communica-tions in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions,” IEEE Commun. Surveys Tuts., vol. 22, no. 1, pp. 426-471, May 2020.

[19] S. Han et al., “Energy Efficient Secure Computation Offloading in NOMA-Based mMTC Networks for IoT,” IEEE Internet Things J., vol. 6, no. 3, pp. 5674-5690, June 2019.

[20] L. P. Qian, A. Feng, Y. Huang, Y. Wu, B. Ji, Z. Shi, “Optimal SIC Ordering and Computation Resource Allocation in MEC-Aware NOMA NB-IoT Networks,” IEEE Internet Things J., vol. 6, no. 2, pp. 2806-2816, Apr. 2019.

[21] J. Tang et al., “Energy Efficiency Optimization for NOMA With SWIPT,” IEEE J. Sel. Topics Signal Process., vol. 13, no. 3, pp. 452-466, Jun. 2019.

[22] J. Wang, X. Kang, S. Sun, Y. Liang, “Throughput Maximization for Peer-Assisted Wireless Powered IoT NOMA Networks,” IEEE trans. Wireless Commun. May 2020.

[23] Q. Wu, W. Chen, D. W. K. Ng, R. Schober, “Spectral and Energy-Efficient Wireless Powered IoT Networks: NOMA or TDMA?,” IEEE Trans. Veh. Technol., vol. 67, no. 7, pp. 6663-6667, Jul. 2018.

[24] M. F. Kader and S. Y. Shin, “Coordinated direct and relay transmission using uplink NOMA,” IEEE Wireless Commun. Lett., vol. 7, no. 8, pp.

400- 403, Jun. 2018.

[25] H. Liu, N. I. Miridakis, T. A. Tsiftsis, K. J. Kim, K. S. Kwak, “Coordinated uplink transmission for cooperative NOMA systems”, Proc. IEEE Global Commun. Conf. (Globecom), pp. 1-6, Dec. 2018.

[26] S. Abdel-Razeq, S. Zhou, R. Bansal, M. Zhao, “Uplink NOMA trans-missions in a cooperative relay network based on statistical channel state information,”IET Commun., vol. 13, no. 4, pp. 371-378, Mar. 2019.

[27] W. Mei and R. Zhang, “Uplink cooperative NOMA for cellular-connected UAV,” IEEE J. Sel. Topics Signal Process., vol. 13, no. 3, pp. 644-656, Jun. 2019

[28] Y. Zhang, Z. Yang, Y. Feng, and S. Yan, “Performance analysis of a novel uplink cooperative NOMA system with full-duplex relaying,” IET Communications, vol. 12, no. 19, pp. 2408-2417, 2018.

[29] W. Shin, H. Yang, M. Vaezi, J. Lee, H. V. Poor, “Relay-aided NOMA in uplink cellular networks”, IEEE Signal Process. Lett., vol. 24, no. 12, pp. 1842-1846, Dec. 2017.

[30] R. Abbas, M. Shirvanimoghaddam, Y. Li, B. Vucetic, “A Novel Analyti-cal Framework for Massive Grant-Free NOMA,” IEEE Trans. Commun., vol. 67, no. 3, pp. 2436-2449, March 2019.

[31] H. Chen, L. Liu, N. Mastronarde, L. Ma, Y. Yi, “Cooperative Retrans-mission for Massive MTC under Spatiotemporally Correlated Interfer-ence,” IEEE Global Commun. Conf., Washington, DC, 2016, pp. 1-6.

[32] N. Ahmad Khan Beigi, M. R. Soleymani, “Ultra-Reliable Energy-Efficient Cooperative Scheme in Asynchronous NOMA With Correlated Sources,” IEEE Internet Things J., vol. 6, no. 5, pp. 7849-7863, Oct. 2019.

[33] P. Nouri, H. Alves, R. D. Souza, M. Latva-Aho, “Ultra-reliable short message cooperative relaying protocols under Nakagami-m fading”, Int. Symp. Wireless Commun. Sys., pp. 287-292, Aug. 2017.

[34] K. Azarian, H. El Gamal, and P. Schniter, “On the Achievable Diversity-Multiplexing Tradeoff in Half-Duplex Cooperative Channels,” IEEE Trans. on Inf. Theory vol. 51, no. 12, pp. 4152-4172, Dec 2005.

[35] L. Zheng, D.N.C. Tse. “Diversity and Multiplexing: A Fundamental Tradeoff in Multiple-Antenna Channels.” IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1073-1096, May 2003.

[36] B. Rimoldi, “Successive Refinement of Information: Characterization of the Achievable Rates.” IEEE Trans. Inf. Theory, vol. 40, no. 1, pp.

253- 259, Jan. 1994.

[37] J. N. Laneman, E. Martinian, G.W. Wornell, and J.G. Apostolopoulos, “Source-Channel Diversity for Parallel Channels,” IEEE Trans. Inf. Theory, vol. 51, no. 10, pp. 3518-3539, October 2005.

[38] D. Gunduz, and E. Erkip, “Joint Source–Channel Codes for MIMO Block-Fading Channels,” IEEE Trans. on Info. Theory vol. 54, no. 1, pp. 116-134, Jan 2008.

[39] S. Boyd, and L. Vandenberghe, Convex Optimization, Cambridge: Cam-bridge University Press, 2004.