Contact Us Search Paper

Short time prediction of cloud server round-trip time using a hybrid neuro-fuzzy network

Robertas Damaševičius1, *, Tatjana Sidekerskienė2

Corresponding Author:

Robertas Damaševičius


1 Department of Software Engineering, Kaunas University of Technology, Kaunas, Lithuania. Email: [email protected]
2 Department of Applied Mathematics, Kaunas University of Technology, Kaunas, Lithuania. Email: [email protected]
*Corresponding Author: Robertas Damaševičius, Email: [email protected]


The paper presents a cloud server roundtrip time prediction approach for cloud datacenters using neuro-fuzzy network with eight probability distribution functions (Normal, Rayleigh, Weibull, Gamma, Birnbaum-Saunders, Extreme Value, and Generalized Pareto) used for fuzzification and defuzzification. We predict the Round-Trip Time (RTT), i.e., the time for a network packet to travel from a client to a server and back. The proposed approach can achieve significant reduction in the short-time RTT prediction error, achieving an accuracy of 79.36%. The approach could be useful for increasing the efficiency of client-cloud systems, for example, when taking effective decisions for computational offloading, and contribute to the development of smart cloud computing.


Neuro-fuzzy network, probability distributions; round trip time; Quality of Service (QoS); smart cloud computing.

Downloads: 101 Views: 443
Cite This Paper:

Robertas Dama?evi?ius, Tatjana Sidekerskien? (2020). Short time prediction of cloud server round-trip time using a hybrid neuro-fuzzy network. Journal of Artificial Intelligence and Systems, 2, 133–148.


[1] S. S. Gill, R. Buyya (2017). A Taxonomy and Future Directions for Sustainable Cloud Computing: 360 Degree View. CoRR abs/1712.02899
[2] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic (2009). Cloud computing and emerging IT platforms: Vision, hype and reality for delivering computing as the 5th Utility. Future Generation Computer Systems, 25, 599-616.
[3] Jiang J., Yang G. (2010) Examining Cloud Computing from the Perspective of Grid and Computer-Supported Cooperative Work. In: Antonopoulos N., Gillam L. (eds) Cloud Computing. Computer Communications and Networks. Springer, London.
[4] Chen, X., Zhou, Z., Wu, W., Wu, D., Zhang, J. (2018). Socially-motivated cooperative mobile edge computing. IEEE Network, doi:10.1109/MNET.2018.1700354
[5] Fugini, M. G., & Cellary, W. (2017). Enabling technologies: Infrastructure for collabo-rative enterprises: 2017 IEEE 26th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises, WETICE 2017, xi-xiv. doi:10.1109/WETICE.2017.39
[6] Mollahoseini Ardakani, M. R., Hashemi, S. M., & Razzazi, M. (2018). A cloud-based solution/reference architecture for establishing collaborative networked organizations. Journal of Intelligent Manufacturing, 1-17. doi:10.1007/s10845-017-1387-2
[7] Jonathan, O., Misra, S., Ibanga, E., Maskeliunas, R., Damasevicius, R., & Ahuja, R. (2019). Design and implementation of a mobile webcast application with google analytics and cloud messaging functionality. Journal of Physics: Conference Series, , 1235(1) doi:10.1088/1742-6596/1235/1/012023
[8] Odun-Ayo, I., Geteloma, V., Misra, S., Ahuja, R., & Damasevicius, R. (2020). Systematic mapping study of utility-driven platforms for clouds. Proceedings of ICETIT 2019 pp 762-774. doi:10.1007/978-3-030-30577-2_68
[9] Toosi, A. N., Calheiros, R. N., & Buyya, R. (2014). Interconnected cloud computing environments: Challenges, taxonomy, and survey. ACM Computing Surveys, 47(1) doi:10.1145/2593512
[10] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, M. Morrow (2009). Blueprint for the intercloud - protocols and formats for cloud computing interoperability. In 4th International Conference on Internet and Web Applications and Services, 328–336.
[11] Mathlouthi, W., & Saoud, N. B. B. (2017). Flexible composition of system of systems on cloud federation. IEEE 5th International Conference on Future Internet of Things and Cloud, FiCloud 2017, 358-365. doi:10.1109/FiCloud.2017.18
[12] Buyya, R., Ranjan, R., & Calheiros, R. N. (2010). InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services. In Algorithms and Architectures for Parallel Processing (pp. 13–31). Springer Berlin Heidelberg. Doi:10.1007/978-3-642-13119-6_2
[13] Getov V., Srinivasan S. (2011). From Invisible Grids to Smart Cloud Computing. In: Euro-Par 2010 Parallel Processing Workshops. Lecture Notes in Computer Science, vol 6586, pp. 263-270. Springer, Berlin, Heidelberg.
[14] Müller, G., Sonehara, N., Echizen, I., & Wohlgemuth, S. (2011). Sustainable cloud computing. Business and Information Systems Engineering, 3(3), 129-131. doi:10.1007/s12599-011-0159-3
[15] J. Kumar, and A. K. Singh, (2018). Workload prediction in cloud using artificial neural network and adaptive differential evolution. Future Generation Computer Systems, vol. 81, pp. 41–52.
[16] Cetinski, K., & Juric, M. B. (2015). AME-WPC: Advanced model for efficient workload prediction in the cloud. Journal of Network and Computer Applications, 55, 191–201. doi:10.1016/j.jnca.2015.06.001
[17] Z. Huang, J. Peng, H. Lian, J. Guo, and W. Qiu (2017) Deep Recurrent Model for Server Load and Performance Prediction in Data Center. Complexity, vol. 2017, Article ID 8584252, 10 p. doi:10.1155/2017/8584252.
[18] Y. Lu, J. Panneerselvam, L. Liu, and Y. Wu (2016). RVLBPNN: A Workload Forecasting Model for Smart Cloud Computing. Scientific Programming, vol. 2016, Article ID 5635673, 9 p. doi:10.1155/2016/5635673.
[19] Ci, Y., Xiu, G., & Wu, L. (2019). A short-term traffic flow prediction method based on long short-term memory network. In Green Intelligent Transportation Systems, Lecture Notes in Electrical Engineering 503, doi:10.1007/978-981-13-0302-9_59
[20] Shen, G., Chen, C., Pan, Q., Shen, S., & Liu, Z. (2018). Research on traffic speed prediction by temporal clustering analysis and convolutional neural network with deformable kernels. IEEE Access, 6, 51756-51765. doi:10.1109/ACCESS.2018.2868735
[21] Xu, L., Du, X., & Wang, B. (2018). Short-term traffic flow prediction model of wavelet neural network based on mind evolutionary algorithm. International Journal of Pattern Recognition and Artificial Intelligence, 32(12) doi:10.1142/S0218001418500416
[22] Tuli, H., & Kumar, S. (2018). Packet delay prediction in MANET using artificial neural network. In: Lobiyal D., Mansotra V., Singh U. (eds) Next-Generation Networks. Advances in Intelligent Systems and Computing, vol 638, pp 369-375. Springer, Singapore. doi:10.1007/978-981-10-6005-2_39
[23] Aibin, M. (2018). Traffic prediction based on machine learning for elastic optical networks. Optical Switching and Networking, 30, 33-39.
[24] Yasuda, S., & Yoshida, H. (2018). Prediction of round trip delay for wireless networks by a two-state model. IEEE Wireless Communications and Networking Conference, WCNC, 1-6. doi:10.1109/WCNC.2018.8377039
[25] Selvachandran, G., Quek, S. G., Lan, L. T. H., Son, L. H., Long Giang, N., Ding, W., Albuquerque, V. H. C. (2019). A New Design of Mamdani Complex Fuzzy Inference System for Multi-attribute Decision Making Problems. IEEE Transactions on Fuzzy Systems, 1–1. doi:10.1109/tfuzz.2019.2961350
[26] De Souza, R. W. R., De Oliveira, J. V. C., Passos, L. A., Ding, W., Papa, J. P., & Albuquerque, V. (2019). A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic. IEEE Transactions on Fuzzy Systems, 1–1. doi:10.1109/tfuzz.2019.2949771
[27] Moreira, M. W. L., Rodrigues, J. J. P. C., Al-Muhtadi, J., Korotaev, V. V., & de Albuquerque, V. H. C. (2018). Neuro-fuzzy model for HELLP syndrome prediction in mobile cloud computing environments. Concurrency and Computation: Practice and Experience, e4651. doi:10.1002/cpe.4651
[28] Xu, M., Wang, Q., & Lin, Q. (2018). Hybrid holiday traffic predictions in cellular networks. IEEE/IFIP Network Operations and Management Symposium: Cognitive Management in a Cyber World, NOMS 2018, 1-6. doi:10.1109/NOMS.2018.8406291
[29] Witkowski, M., Brenner, P., Jansen, R., Go, D. B., & Ward, E. (2010). Enabling sustainable clouds via environmentally opportunistic computing. 2nd IEEE International Conference on Cloud Computing Technology and Science, CloudCom 2010, 587-592. doi:10.1109/CloudCom.2010.111
[30] Li, W., You, X., Jiang, Y., Yang, J., & Hu, L. (2019). Opportunistic computing offloading in edge clouds. Journal of Parallel and Distributed Computing, 123, 69-76. doi:10.1016/j.jpdc.2018.09.006
[31] Georgy, M. E., Chang, L.-M., & Zhang, L. (2005). Prediction of Engineering Performance: A Neurofuzzy Approach. Journal of Construction Engineering and Management, 131(5), 548–557.
[32] Zadeh, L.A.: Fuzzy sets. Inform. Control. 8 (1965) 338-353.
[33] D. Molodstov, Soft set theory-first results, Computers Math. Applic. 37 (4/5), (1999), 19-31.
[34] Danevičius, E.; Maskeliūnas, R.; Damaševičius, R.; Połap, D.; Woźniak, M. (2018) A Soft Body Physics Simulator with Computational Offloading to the Cloud. Information, 9, 318. Doi: 10.3390/info9120318
[35] A. S. Khatouni, F. Soro and D. Giordano, "A Machine Learning Application for Latency Prediction in Operational 4G Networks," 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Arlington, VA, USA, 2019, pp. 71-74.
[36] Dong, A., Du, Z., & Yan, Z. (2019). Round trip time prediction using recurrent neural networks with minimal gated unit. IEEE Communications Letters, 23(4), 584-587. doi:10.1109/LCOMM.2019.2899603
[37] S. A. Mohammed, S. Shirmohammadi and S. Altamimi, "Artificial Intelligence-Based Distributed Network Latency Measurement," 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand, 2019, pp. 1-6.
[38] R. Tripathi and K. Rajawat, "Dynamic Network Latency Prediction with Adaptive Matrix Completion," 2018 International Conference on Signal Processing and Communications (SPCOM), Bangalore, India, 2018, pp. 407-411. doi: 10.1109/SPCOM.2018.8724422
[39] Iqbal, M. F., Zahid, M., Habib, D., & John, L. K. (2019). Efficient Prediction of Network Traffic for Real-Time Applications. Journal of Computer Networks and Communications, 2019, 1–11. Doi: 10.1155/2019/4067135