Contact Us Search Paper

Measurement of the Intra-ventricular Mechanical Dyssynchrony in Cardiac Magnetic Resonance Images

Zhenzhou Wang

Corresponding Author:

Zhenzhou Wang


College of electrical and electronic engineering, Shandong University of Technology, Zibo City, Shandong Province, and China
Email: [email protected]


Measurement of the mechanical dyssynchrony of the ventricle is important for the cardiac resynchronization therapy (CRT) and the evaluation of patients with heart failures. So far, feature-tracking cardiovascular magnetic resonance (FT-CMR) has become the most popular method for measuring the mechanical dyssynchrony. FT-CMR calculates the strain values based on the pre-defined segments of the ventricle and thus it might miss some important regional information. In this paper, we propose a new approach to measure the intra-ventricular mechanical dyssynchrony based on the uniformly sampled points from all the regions of the ventricle. Accordingly, the proposed approach will not miss any regional information of the ventricle.  In addition, the proposed approach is fully automatic and not depedent on the training sets. It calculates the mechnical dyssynchrony rapidly and determines whether the tested case is normal or patient immdiately. The proposed approach was validated with 40 tested cases (20 normal cases and 20 patient cases). Experimental results showed that the fully automatic intra-ventricular mechanical dyssynchrony measurement approach achieved 100% diagnosis accuracy for the left ventricle (LV) and achieved 95% diagnoisis accuracy for the right ventricle (RV).


Dyssynchrony, measurement, Image processing, Cross correlation, Strain, Feature-tracking cardiovascular magnetic resonance.

Downloads: 132 Views: 474
Cite This Paper:

Zhenzhou Wang (2020). Measurement of the Intra-ventricular Mechanical Dyssynchrony in Cardiac Magnetic Resonance Images. Journal of Artificial Intelligence and Systems, 2, 98–117.


[1] J.J. Cao,N.  Ngai,  L. Duncanson, J. Cheng, K. Gliganic, Q. Chen. “A comparison of both DENSE and feature tracking techniques with tagging for the cardiovascular magnetic resonance assessment of myocardial strain.” J Cardiovasc Magn Reson., 20(1):26, 2018.
[2] Scatteia, A. Baritussio, D. C. Bucciarelli. “Strain imaging using cardiac magnetic resonance.” Heart Fail Rev., 22(4):465-476, 2017.
[3] P. Claus, A.M.S. Omar, G. Pedrizzetti, P.P. Sengupta, E. Nagel. “Tissue Tracking Technology for Assessing Cardiac Mechanics: Principles, Normal Values, and Clinical Applications.” JACC Cardiovasc Imaging., 8(12):1444-1460, 2015.
[4] M. Aurich, M. Keller, S. Greiner, H. Steen, S. F. Aus dem, J. Riffel, H. A. Katus, S. J. Buss, D. Mereles. “Left ventricular mechanics assessed by two-dimensional echocardiography and cardiac magnetic resonance imaging: comparison of high-resolution speckle tracking and feature tracking.” Eur Heart J Cardiovasc Imaging., 17(12):1370-1378, 2016.
[5] T. Lapinskas, J. Grune, S. M. Zamani, S. Jeuthe, D. Messroghli, R. Gebker, H. Meyborg, U. Kintscher, R. Zaliunas, B. Pieske, P. Stawowy and S. Kelle, “Cardiovascular magnetic resonance feature tracking in small animals – a preliminary study on reproducibility and sample size calculation.” BMC Med Imaging., 17: 51, 2017.
[6] R.J. Taylor, W.E. Moody, F. Umar, N.C. Edwards, T.J. Taylor, B. Stegemann, J.N. Townend, K.N. Hor, R.P. Steeds, W. Mazur, F. Leyva, “Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: normal values.” Eur Heart J Cardiovasc Imaging., 16(8):871-81, 2015.
[7] K. Takigiku, M. Takeuchi, C. Izumi, S. Yuda, K. Sakata, N. Ohte, K. Tanabe, S. Nakatani, “Normal range of left ventricular 2-dimensional strain: Japanese Ultrasound Speckle Tracking of the Left Ventricle (JUSTICE) study.” Circ J.  76(11): 2623–2632, 2012.
[8] A. Schuster, V. C. Stahnke, C. Unterberg-Buchwald, J.T. Kowallick, P. Lamata, M. Steinmetz, S. Kutty, M. Fasshauer, W. Staab, J.M. Sohns, B. Bigalke, C. Ritter, G. Hasenfuß,  P. Beerbaum,  and J. Lotz, “Cardiovascular magnetic resonance feature-tracking assessment of myocardial mechanics: Intervendor agreement and considerations regarding reproducibility.”  Clin Radiol., 70(9): 989–998, 2015.
[9] G. Prati, G. Vitrella, G. Allocca, D. Muser, S.C. Buttignoni, G. Piccoli, G. Morocutti, P. Delise,B. Pinamonti, A. Proclemer, G. Sinagra, G. Nucifora. “Right Ventricular Strain and Dyssynchrony Assessment in Arrhythmogenic Right Ventricular Cardiomyopathy: Cardiac Magnetic Resonance Feature-Tracking Study.” Circ Cardiovasc Imaging., 8(11):e003647, 2015
[10] V. T. Truong,  C. Y. Li,  R. L. Brown,  R. A. Moore,  V. F. Garcia,  E. J. Crotty,  M. D. Taylor,  T. M. N. Ngo,  W. Mazur, “Occult RV systolic dysfunction detected by CMR derived RV circumferential strain in patients with pectus excavatum.” PLoS One, 12(12): e0189128, 2017.
[11] M. Bourfiss, D.M. Vigneault, G. M. Aliyari, B. Murray, C.A. James, C. Tichnell, H. F. A. Mohamed, S.L. Zimmerman, I. R. Kamel, H. Calkins, H. Tandri, B. K. Velthuis, D. A. Bluemke, R. A. S. J. M. Te, “Feature tracking CMR reveals abnormal strain in preclinical arrhythmogenic right ventricular dysplasia/ cardiomyopathy: a multisoftware feasibility and clinical implementation study.” J Cardiovasc Magn Reson., 19(1):66, 2017.
[12] S. F. nagueh, “Mechanical dyssynchrony in congestive heart failure: diagnostic and therapeutic implications.” J Am Coll Cardiol., 51(1):18-22, 2008.
[13] B.K. Fornwalt, W.W. Sprague, P. Bedell, J.D. Suever, B. Gerritse, J.D. Merlino, D.A. Fyfe, A.R. Leon and J.N. Oshinski,"Agreement is poor among current criteria used to define response to cardiac resynchronization therapy," Circulation. Vol. 121, pp.1985-1991, 2010
[14] B.K. Fornwalt, J.G. Delfino, W.W. Sprague and J.N. Oshinski,"It’s time for a pradigm shift in the quantitative evaluation of left ventricular dyssynchrony," JASE. pp.672-676, 2009
[15] N. M. Hawkins, M.C. Petrie, M.R. Macdonald, K.J. Hogg and H. J. V. Mcmurray,"Selecting patients for cardiac resynchronization therapy: electrical or mechanical dyssynchrony," European Heart Journal. Vol. 27, pp.1270-1281, 2006
[16] Z.Z. Wang, " Robust and automatic diagnosis of the intraventricular mechanical dyssynchrony for the left ventricle in cardiac magnetic resonance images," Int J CARS., 12(9):1471-1480,2017.
[17] Z.Z. Wang, “Automatic and Optimal Segmentation of the Left Ventricle in Cardiac Magnetic Resonance Images Independent of the Training Sets,” IET image processing, Vol. 13, Issue, 10, pp. 1725-1735, 2019.
[18] Z.Z. Wang, "An efficient and robust method for automatically identifying the left ventricular boundary in cine magnetic resonance images," IEEE Trans. ASE. Vol. 13, No. 2, pp. 536-542, 2016
[19] Ming L, Shizhou D, Zhifan G, Cheng F, et al .Unified model for interpreting multi-view echocardiographic sequences without temporal information. Applied Soft Computing Journal, 88:106049, 2020.
[20] Zhifan G, Geye Z, Shizhou Dong, Shanhui S, et al. Salient Object Detection in the Distributed Cloud-Edge Intelligent Network. IEEE Network, 1-9, 2020
[21] Dingwen Z, Deyu M, Chao L, Jiang L. Co-saliency detection via a self-paced multiple-instance learning framework. 2015 IEEE International Conference on Computer Vision, 2015.
[22] Dingwen Z, Junwei H, Chao L, et al. Detection of Co-salient Objects by Looking Deep and Wide. International journal of computer vision, 120:215–232, 2016.
[23] Marcus A.G. Santos, Roberto Munoz, Rodrigo Olivares, et al. Online heart monitoring systems on the internet of health things environments: A survey, a reference model and an outlook. Information Fusion, 53:222-239, 2020.
[24] Victor Hugo C. de Albuquerque, Douglas de A. Rodrigues, et al. Fast fully automatic heart fat segmentation in computed tomography datasets. Computerized Medical Imaging and Graphics, 80:101674, 2020.
[25] Leandro B. Marinho, Navar de M.M. Nascimento, João Wellington M. Souza, et al. A novel electrocardiogram feature extraction approach for cardiac arrhythmia classification. Future Generation Computer Systems, 91:564-577, 2019.
[26] Ahmed Faeq Hussein, ArunKumar N, Gustavo Ramirez-Gonzalez, et al. A Medical Records Managing and Securing Blockchain Based System Supported by a Genetic Algorithm and Discrete Wavelet Transform. Cognitive Systems Research, 52:1-11, 2018.
[27] Jermana L. Moraes, Matheus X. Rocha, Glauber G. Vasconcelos, et al. Advances in Photoplethysmography Signal Analysis for Biomedical Applications. Sensors, 18(6):1894, 2018.
[28] Jude D. Hemanth, Utku Kose, Omer Deperlioglu, Victor Hugo C and de Albuquerque. An augmented reality-supported mobile application for diagnosis of heart diseases. The Journal of Supercomputing, 76:1242-1267, 2020
[29] Ahmed Faeq Hussein, Arun Kumar N, Marlon Burbano-Fernandez, Gustavo Ramirez-Gonzalez, et al. An Automated Remote Cloud-Based Heart Rate Variability Monitoring System. IEEE Access, 1:99, 2018.
[30] Auzuir Ripardo, De Alexandria, A. R. Cortez, P. C. Bessa, et al. pSnakes:a new radial active contour model and its application in the segmentation of the left ventricle from echocardiographic images. Computer Methods and Programs in Biomedicine,
[31] Yankun C, Zhi L, Pengfei Z, Yushuo Z, et al. Deep Learning Methods for Cardiovascular Image. Journal of Artificial Intelligence and Systems, 1:96-109, 2019.
[32] Aldisio G. Medeiros, Francisco H. S. Silva, Elene F. Ohata, et al. An Automatic Left Ventricle Segmentation on Echocardiogram Exams via Morphological Geodesic Active Contour with Adaptive External Energy. Journal of Artificial Intelligence and Systems, 1: 77-95, 2019.