Contact Us Search Paper

Automatic Segmentation of Macular Holes in Optical Coherence Tomography Images: A review

Odilon Linhares C. Mendes1, Abrahão R. Lucena2, Daniel R. Lucena2, Tarique S. Cavalcante1, Auzuir R. de Alexandria1,*

Corresponding Author:

Auzuir R. de Alexandria

Affiliation(s):

1. Instituto Federal do Ceará - IFCE, Campus Fortaleza, Av. Treze de Maio, 2081, Benfica, 60040-215 Fortaleza, Ceará, Brazil
Email: [email protected]; [email protected]; [email protected]
2. Escola Cearense de Oftalmologia, Avenida Oliveira Paiva, 1599, Cidade dos Funcionários, Fortaleza, Ceará, Brazil
Email: [email protected]; [email protected]
*Corresponding Author: Auzuir R. de Alexandria, Email: [email protected]

Abstract:

Macular holes are a blinding condition that occur due to overuse of the fovea, in which a hole alters the natural retinal structure. Optical Coherence Tomography (OCT) is a way of mapping and shaping retinal sections without physical contact and has become a powerful tool for diagnosing pathologies. This paper deals with a review of automated segmentation of macular holes in OCT images, detailing its varied possibilities. It may be considered something new, no reviews were made about the topic. The purpose of this review is to show the latest trends, through the approaches in preprocessing and segmentation. Recent studies were used to validate the research, 2011 onwards, from the Science Direct, IEEE, PubMed and Google scholar bases. The objectives, methodology, tools, database, advantages, disadvantages, validation metrics and results of the selected material are analyzed and mentioned. Based on this, techniques and their results are compared. From this, future outlook scenarios of automated segmentation of macular holes in OCT images are mentioned.

Keywords:

Macular holes, Optical Coherence Tomography (OCT), Segmentation, Preprocessing, Pathology

Downloads: 494 Views: 4813
Cite This Paper:

Mendes, O. L. C., Lucena, A. R., Lucena, D. R., Cavalcante, T. S. and Alexandria, A. R. (2019). Automatic Segmentation of Macular Holes in Optical Coherence Tomography Images: A review. Journal of Artificial Intelligence and Systems, 1, 163–185. https://doi.org/10.33969/AIS.2019.11010.

References:

[1] Hassan, Bilal, Gulistan Raja, Taimur Hassan, and M. Usman Akram. "Structure tensor based automated detection of macular edema and central serous retinopathy using optical coherence tomography images." JOSA A 33, no. 4 (2016): 455-463.
[2] Slokom, N., H. Trabelsi, and I. Zghal. "Segmentation of cyctoids macular edema in optical cohenrence tomography." In 2016 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), pp. 303-306. 2016.
[3] Hood, Donald C., Susan C. Anderson, Michael Wall, and Randy H. Kardon. "Structure versus function in glaucoma: an application of a linear model." Investigative ophthalmology & visual science 48, no. 8 (2007): 3662-3668.
[4] Van Dijk, Hille W., Frank D. Verbraak, Pauline HB Kok, Mona K. Garvin, Milan Sonka, Kyungmoo Lee, J. Hans DeVries et al. "Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes." Investigative ophthalmology & visual science 51, no. 7 (2010): 3660-3665.
[5] Zhang, Li, Weifang Zhu, Fei Shi, Haoyu Chen, and Xinjian Chen. "Automated segmentation of intraretinal cystoid macular edema for retinal 3D OCT images with macular hole." In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 1494-1497. IEEE, 2015.
[6] Faghihi, Hooshang, Fariba Ghassemi, Khalil Ghasemi Falavarjani, Ghasem Saeedi Anari, Mona Safizadeh, and Kourosh Shahraki. "Spontaneous closure of traumatic macular holes." Canadian Journal of Ophthalmology/Journal Canadien d'Ophtalmologie 49, no. 4 (2014): 395-398.
[7] Thapa, Suman S., Raba Thapa, Indira Paudyal, Shankar Khanal, Jaskirat Aujla, Govinda Paudyal, and Ger van Rens. "Prevalence and pattern of vitreo-retinal diseases in Nepal: the Bhaktapur glaucoma study." BMC ophthalmology 13, no. 1 (2013): 9.
[8] Luckie, Alan, and Wilson Heriot. "Macular holes: pathogenesis, natural history and surgical outcomes." Australian and New Zealand journal of ophthalmology 23, no. 2 (1995): 93-100.
[9] Klein, Ronald, Barbara EK Klein, and Kathryn LP Linton. "Prevalence of age-related maculopathy: the Beaver Dam Eye Study." Ophthalmology 99, no. 6 (1992): 933-943.
[10] Velez-Montoya, Raul, Scott CN Oliver, Jeffrey L. Olson, Stuart L. Fine, Hugo Quiroz-Mercado, and Naresh Mandava. "Current knowledge and trends in age-related macular degeneration: genetics, epidemiology, and prevention." Retina 34, no. 3 (2014): 423-441.
[11] Nasrulloh, Amar V., Chris G. Willcocks, Philip TG Jackson, Caspar Geenen, Maged S. Habib, David HW Steel, and Boguslaw Obara. "Multi-Scale Segmentation and Surface Fitting for Measuring 3-D Macular Holes." IEEE transactions on medical imaging 37, no. 2 (2017): 580-589.
[12] Chhablani, Jay, Mitali Khodani, Abdullah Hussein, Sailaja Bondalapati, Harsha B. Rao, Raja Narayanan, and Aditya Sudhalkar. "Role of macular hole angle in macular hole closure." British Journal of Ophthalmology 99, no. 12 (2015): 1634-1638.
[13] Madi, Haifa A., Ibrahim Masri, and David H. Steel. "Optimal management of idiopathic macular holes." Clinical ophthalmology (Auckland, NZ) 10 (2016): 97.
[14] Steel, D. H. W., C. Parkes, V. T. Papastavrou, P. J. Avery, I. A. El-Ghrably, M. S. Habib, M. T. Sandinha et al. "Predicting macular hole closure with ocriplasmin based on spectral domain optical coherence tomography." Eye 30, no. 5 (2016): 740.
[15] Philippakis, E., M. Legrand, M. El Sanharawi, A. Erginay, A. Couturier, and R. Tadayoni. "Measurement of full-thickness macular hole size using en face optical coherence tomography." Eye 32, no. 3 (2018): 590.
[16] Fabritius, Tapio, Shuichi Makita, Masahiro Miura, Risto Myllylä, and Yoshiaki Yasuno. "Automated segmentation of the macula by optical coherence tomography." Optics express 17, no. 18 (2009): 15659-15669.
[17] de Moura, Joaquim, Jorge Novo, Susana Penas, Marcos Ortega, Jorge Silva, and Ana Maria Mendonça. "Automatic Characterization of the Serous Retinal Detachment Associated with the Subretinal Fluid Presence in Optical Coherence Tomography Images." Procedia Computer Science 126 (2018): 244-253.
[18] Altaweel, Michael, and Michael Ip. "Macular hole: improved understanding of pathogenesis, staging, and management based on optical coherence tomography." In Seminars in ophthalmology, vol. 18, no. 2, pp. 58-66. Taylor & Francis, 2003.
[19] Liu, Yu-Ying, Mei Chen, Hiroshi Ishikawa, Gadi Wollstein, Joel S. Schuman, and James M. Rehg. "Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding." Medical image analysis 15, no. 5 (2011): 748-759.
[20] Ip MS, Baker BJ, Duker JS et al (2002) Anatomical outcomes of surgery for idiopathic macular hole as determined by optical coherence tomography. Arch Ophthalmol 120:29–35.
[21] Tadayoni R, Svorenova I, Erginay A, Gaudric A, Massin P. Decreased retinal sensitivity after internal limiting membrane peeling for macular hole surgery. Br J Ophthalmol 2012; 96(12): 1513–1516.
[22] Haller JA, Stalmans P, Benz MS, Gandorfer A, Pakola SJ, Girach A et al. Efficacy of intravitreal ocriplasmin for treatment of vitreomacular adhesion: subgroup analyses from two randomized trials. Ophthalmology 2015; 122(1): 117–122.
[23] Freeman, William R., Stanley P. Azen, Jung W. Kim, Wael El-Haig, Daniel R. Mishell, and Ian Bailey. "Vitrectomy for the treatment of full-thickness stage 3 or 4 macular holes: results of a multicentered randomized clinical trial." Archives of Ophthalmology 115, no. 1 (1997): 11-21.
[24] Park, Donald W., Jack O. Sipperley, Scott R. Sneed, Pravin U. Dugel, and Jaclin Jacobsen. "Macular hole surgery with internal-limiting membrane peeling and intravitreous air." Ophthalmology 106, no. 7 (1999): 1392-1398.
[25] Haritoglou, Christos, Carolin A. Gass, Markus Schaumberger, Oliver Ehrt, Arnd Gandorfer, and Anselm Kampik. "Macular changes after peeling of the internal limiting membrane in macular hole surgery." American journal of ophthalmology 132, no. 3 (2001): 363-368.
[26] Keller, Brenton, David Cunefare, Dilraj S. Grewal, Tamer H. Mahmoud, Joseph A. Izatt, and Sina Farsiu. "Length-adaptive graph search for automatic segmentation of pathological features in optical coherence tomography images." Journal of biomedical optics 21, no. 7 (2016): 076015.
[27] Xu, David, Alex Yuan, Peter K. Kaiser, Sunil K. Srivastava, Rishi P. Singh, Jonathan E. Sears, Daniel F. Martin, and Justis P. Ehlers. "A novel segmentation algorithm for volumetric analysis of macular hole boundaries identified with optical coherence tomography." Investigative ophthalmology & visual science 54, no. 1 (2013): 163-169.
[28] Sui, Xiaodan, Yuanjie Zheng, Benzheng Wei, Hongsheng Bi, Jianfeng Wu, Xuemei Pan, Yilong Yin, and Shaoting Zhang. "Choroid segmentation from optical coherence tomography with graph-edge weights learned from deep convolutional neural networks." Neurocomputing 237 (2017): 332-341.
[29] Gong, Guanghua, Hongming Zhang, and Minyu Yao. "Speckle noise reduction algorithm with total variation regularization in optical coherence tomography." Optics express 23, no. 19 (2015): 24699-24712.
[30] Tang, Chang, Xiao Zheng, and Lijuan Cao. "OCT despeckling via weighted nuclear norm constrained non-local low-rank representation." Laser Physics Letters 14, no. 10 (2017): 106001.
[31] Huang, David, Eric A. Swanson, Charles P. Lin, Joel S. Schuman, William G. Stinson, Warren Chang, Michael R. Hee, Thomas Flotte, Kenton Gregory, and Carmen A. Puliafito. "Optical coherence tomography." science 254, no. 5035 (1991): 1178-1181.
[32] Coscas, Gabriel, José Cunha-Vaz, and Gisèle Soubrane. "Macular edema: definition and basic concepts." In Macular Edema, vol. 47, pp. 1-9. Karger Publishers, 2010.
[33] Tranos, Paris G., Sanjeewa S. Wickremasinghe, Nikos T. Stangos, Fotis Topouzis, Ioannis Tsinopoulos, and Carlos E. Pavesio. "Macular edema." Survey of ophthalmology 49, no. 5 (2004): 470-490.
[34] Schuman, Joel S., Tamar Pedut-Kloizman, Ellen Hertzmark, Michael R. Hee, Jason R. Wilkins, Jeffery G. Coker, Carmen A. Puliafito, James G. Fujimoto, and Eric A. Swanson. "Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography." Ophthalmology 103, no. 11 (1996): 1889-1898.
[35] Schuman, Joel S. Optical coherence tomography of ocular diseases. Edited by Carmen A. Puliafito, James G. Fujimoto, and Jay S. Duker. New Jersey:: Slack, 2004.
[36] Drexler, Wolfgang, Harald Sattmann, Boris Hermann, Tony H. Ko, Michael Stur, Angelika Unterhuber, Christoph Scholda et al. "Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography." Archives of ophthalmology 121, no. 5 (2003): 695-706.
[37] Ricco, Susanna, Mei Chen, Hiroshi Ishikawa, Gadi Wollstein, and Joel Schuman. "Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration." In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 100-107. Springer, Berlin, Heidelberg, 2009.
[38] Xu, Juan, Hiroshi Ishikawa, Gadi Wollstein, and Joel S. Schuman. "3D OCT eye movement correction based on particle filtering." In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 53-56. IEEE, 2010.
[39] Hu, Junjie, Yuanyuan Chen, and Zhang Yi. "Automated segmentation of macular edema in OCT using deep neural networks." Medical image analysis 55 (2019): 216-227.
[40] Schmitt, Joseph M., S. H. Xiang, and Kin Man Yung. "Speckle in optical coherence tomography." Journal of biomedical optics 4, no. 1 (1999): 95-106.
[41] Grzywacz, Norberto Mauricio, Joaquín De Juan, Claudia Ferrone, Daniela Giannini, David Huang, Giorgio Koch, Valentina Russo, Ou Tan, and Carlo Bruni. "Statistics of optical coherence tomography data from human retina." IEEE transactions on medical imaging 29, no. 6 (2010): 1224-1237.
[42] Lindenmaier, Andras A., Leigh Conroy, Golnaz Farhat, Ralph S. DaCosta, Costel Flueraru, and I. Alex Vitkin. "Texture analysis of optical coherence tomography speckle for characterizing biological tissues in vivo." Optics letters 38, no. 8 (2013): 1280-1282.
[43] Duan, Jinming, Christopher Tench, Irene Gottlob, Frank Proudlock, and Li Bai. "Automated segmentation of retinal layers from optical coherence tomography images using geodesic distance." Pattern Recognition 72 (2017): 158-175.
[44] Chen, Huaiguang, Shujun Fu, Hong Wang, Yuliang Li, and Fengling Wang. "Speckle reduction based on fractional-order filtering and boosted singular value shrinkage for optical coherence tomography image." Biomedical Signal Processing and Control 52 (2019): 281-292.
[45] Lv, Hongli, Shujun Fu, Caiming Zhang, and Lin Zhai. "Speckle noise reduction for optical coherence tomography based on adaptive 2D dictionary." Laser Physics Letters 15, no. 5 (2018): 055401.
[46] Sadda SR, Wu Z, Walsh AC, et al. Errors in retinal thickness measurements obtained by optical coherence tomography. Ophthalmology 2006;113:285–93.
[47] Krebs I, Haas P, Zeiler F, et al. Optical coherence tomography: limits of the retinal-mapping program in age-related macular degeneration. Br J Ophthalmol 2008;92:933–5.
[48] Hughes, Michael, Marika Spring, and Adrian Podoleanu. "Speckle noise reduction in optical coherence tomography of paint layers." Applied optics 49, no. 1 (2010): 99-107.
[49] Desjardins, A. E., B. J. Vakoc, G. J. Tearney, and B. E. Bouma. "Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging." Optics Express 14, no. 11 (2006): 4736-4745.
[50] Iftimia, Nicusor, Brett E. Bouma, and Guillermo J. Tearney. "Speckle reduction in optical coherence tomography by" path length encoded" angular compounding." Journal of biomedical optics 8, no. 2 (2003): 260-263.
[51] Jørgensen, Thomas Martini, Jakob Thomadsen, Ulrik Christensen, Wael Soliman, and Birgit A. Sander. "Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration—method and clinical examples." Journal of biomedical optics 12, no. 4 (2007): 041208.
[52] Szkulmowski, Maciej, Iwona Gorczynska, Daniel Szlag, Marcin Sylwestrzak, Andrzej Kowalczyk, and Maciej Wojtkowski. "Efficient reduction of speckle noise in Optical Coherence Tomography." Optics express 20, no. 2 (2012): 1337-1359.
[53] Waldstein, Sebastian M., Bianca S. Gerendas, Alessio Montuoro, Christian Simader, and Ursula Schmidt-Erfurth. "Quantitative comparison of macular segmentation performance using identical retinal regions across multiple spectral-domain optical coherence tomography instruments." British Journal of Ophthalmology 99, no. 6 (2015): 794-800.
[54] Xu, Min, Chen Tang, Mingming Chen, Yue Qiu, and Zhenkun Lei. "Texture preservation and speckle reduction in optical coherence tomography using the shearlet-based total variation algorithm." Optics and Lasers in Engineering 122 (2019): 265-283.
[55] VSRI. Vision Science and Advanced Retinal Imaging Laboratory. University of California, Davis, 2019. URL \url{http://vsri.ucdavis.edu/research/retinal/oct.
[56] Takahashi, Atsushi, Taiji Nagaoka, and Akitoshi Yoshida. "Enhanced vitreous imaging optical coherence tomography in primary macular holes." International ophthalmology 36, no. 3 (2016): 355-363.
[57] Gupta, Vishali, Amod Gupta, and Mangat R. Dogra. Atlas of optical coherence tomography of macular diseases. CRC Press, 2004.
[58] Kong, Mingui, Da Ye Choi, Gyule Han, Yun-Mi Song, Sung Yong Park, Joohon Sung, Sungsoon Hwang, and Don-Il Ham. "Measurable Range of Subfoveal Choroidal Thickness With Conventional Spectral Domain Optical Coherence Tomography." Translational vision science & technology 7, no. 5 (2018): 16-16.
[59] Lu, Donghuan, Morgan Heisler, Sieun Lee, Gavin Ding, Marinko V. Sarunic, and Mirza Faisal Beg. "Retinal fluid segmentation and detection in optical coherence tomography images using fully convolutional neural network." arXiv preprint arXiv:1710.04778 (2017).
[60] Joussen, Antonia M., Thomas W. Gardner, Bernd Kirchhof, and Stephen J. Ryan, eds. Retinal vascular disease. Vol. 75. Heidelberg: Springer, 2007.
[61] Potsaid, Benjamin, Iwona Gorczynska, Vivek J. Srinivasan, Yueli Chen, James Jiang, Alex Cable, and James G. Fujimoto. "Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second." Optics express 16, no. 19 (2008): 15149-15169.
[62] Wojtkowski, Maciej. "High-speed optical coherence tomography: basics and applications." Applied optics 49, no. 16 (2010): D30-D61.
[63] Zawadzki, Robert J., Barry Cense, Yan Zhang, Stacey S. Choi, Donald T. Miller, and John S. Werner. "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction." Optics Express 16, no. 11 (2008): 8126-8143.
[64] Salarian, Mahdi, Rashid Ansari, Justin Wanek, and Mahnaz Shahidi. "Acuurate segmentation of retina nerve fiber layer in OCT images." In 2015 IEEE International Conference on Electro/Information Technology (EIT), pp. 653-656. IEEE, 2015.
[65] Hu, Kai, Binwei Shen, Yuan Zhang, Chunhong Cao, Fen Xiao, and Xieping Gao. "Automatic segmentation of retinal layer boundaries in OCT images using multiscale convolutional neural network and graph search." Neurocomputing 365 (2019): 302-313.
[66] Girish, G. N., Abhishek R. Kothari, and Jeny Rajan. "Automated segmentation of intra-retinal cysts from optical coherence tomography scans using marker controlled watershed transform." In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1292-1295. IEEE, 2016.
[67] Wang, Chuang, Ya Xing Wang, and Yongmin Li. "Automatic choroidal layer segmentation using markov random field and level set method." IEEE journal of biomedical and health informatics 21, no. 6 (2017): 1694-1702.
[68] Fernández, Delia Cabrera, Harry M. Salinas, and Carmen A. Puliafito. "Automated detection of retinal layer structures on optical coherence tomography images." Optics Express 13, no. 25 (2005): 10200-10216.
[69] Vermeer, K. A., J. Van der Schoot, H. G. Lemij, and J. F. De Boer. "Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images." Biomedical optics express 2, no. 6 (2011): 1743-1756.
[70] George, Neetha, and C. V. Jiji. "Two stage contour evolution for automatic segmentation of choroid and cornea in OCT images." Biocybernetics and Biomedical Engineering (2019).
[71] Ho J, Sull AC, Vuong LN, et al. Assessment of artifacts and reproducibility across spectral- and time-domain optical coherence tomography devices. Ophthalmology 2009;116:1960–70.
[72] Mylonas G, Ahlers C, Malamos P, et al. Comparison of retinal thickness measurements and segmentation performance of four different spectral and time domain OCT devices in neovascular age-related macular degeneration. Br J Ophthalmol 2009;93:1453–60.
[73] Berg, M. "IT-supported skill-mix change and standardisation in integrated eyecare: lessons from two screening projects in The Netherlands." International journal of integrated care 7 (2007): e15-e15.
[74] Marrugo, Andrés G., María S. Millán, Gabriel Cristóbal, Salvador Gabarda, Michal Sorel, and Filip Sroubek. "Image analysis in modern ophthalmology: from acquisition to computer assisted diagnosis and telemedicine." In Optics, Photonics, and Digital Technologies for Multimedia Applications II, vol. 8436, p. 84360C. International Society for Optics and Photonics, 2012.
[75] Vercellin, Alice C. Verticchio, Firas Jassim, Linda Yi-Chieh Poon, Edem Tsikata, Boy Braaf, Sneha Shah, Geulah Ben-David et al. "Diagnostic capability of three-dimensional macular parameters for glaucoma using optical coherence tomography volume scans." Investigative ophthalmology & visual science 59, no. 12 (2018): 4998-5010.
[76] Montuoro, Alessio, Sebastian M. Waldstein, Bianca S. Gerendas, Ursula Schmidt-Erfurth, and Hrvoje Bogunović. "Joint retinal layer and fluid segmentation in OCT scans of eyes with severe macular edema using unsupervised representation and auto-context." Biomedical optics express 8, no. 3 (2017): 1874-1888.
[77] Petrick, Nicholas, Berkman Sahiner, Samuel G. Armato III, Alberto Bert, Loredana Correale, Silvia Delsanto, Matthew T. Freedman et al. "Evaluation of computer-aided detection and diagnosis systems a." Medical physics 40, no. 8 (2013): 087001.
[78] Ramzan, Aneeqa, Muhammad Usman Akram, Arslan Shaukat, Sajid Gul Khawaja, Ubaid Ullah Yasin, and Wasi Haider Butt. "Automated glaucoma detection using retinal layers segmentation and optic cup-to-disc ratio in optical coherence tomography images." IET Image Processing 13, no. 3 (2018): 409-420.
[79] Gerendas, Bianca S., Julia-Sophie Kroisamer, Wolf Buehl, Sandra M. Rezar-Dreindl, Katharina M. Eibenberger, Eleonore Pablik, Ursula Schmidt-Erfurth, and Stefan Sacu. "Correlation between morphological characteristics in spectral-domain-optical coherence tomography, different functional tests and a patient's subjective handicap in acute central serous chorioretinopathy." Acta ophthalmologica 96, no. 7 (2018): e776-e782.
[80] Huang, Laifeng, Xingxin He, Leyuan Fang, Hossein Rabbani, and Xiangdong Chen. "Automatic Classification of Retinal Optical Coherence Tomography Images With Layer Guided Convolutional Neural Network." IEEE Signal Processing Letters 26, no. 7 (2019): 1026-1030.
[81] Hassan, Bilal, and Taimur Hassan. "Fully automated detection, grading and 3D modeling of maculopathy from OCT volumes." In 2019 2nd International Conference on Communication, Computing and Digital systems (C-CODE), pp. 252-257. IEEE, 2019.
[82] Nath, Sravani S., B. K. Anoop, and Perumal Sankar. "Classification of Outer Retinal Layers Based on KNN-Classifier." In 2018 International Conference on Emerging Trends and Innovations In Engineering And Technological Research (ICETIETR), pp. 1-4. IEEE, 2018.
[83] Valente, Igor Rafael S., Paulo César Cortez, Edson Cavalcanti Neto, José Marques Soares, Victor Hugo C. de Albuquerque, and João Manuel RS Tavares. "Automatic 3D pulmonary nodule detection in CT images: a survey." Computer methods and programs in biomedicine 124 (2016): 91-107.
[84] Ayache, Nicholas. "Medical computer vision, virtual reality and robotics." Image and Vision Computing 13, no. 4 (1995): 295-313.
[85] Rosenfeld, Azriel. "Computer vision: basic principles." Proceedings of the IEEE 76, no. 8 (1988): 863-868.
[86] Mendes, Odilon Linhares Carvalho; Borille, Giovanna Miceli Ronzani. "Computer vision systems in unmanned aerial vehicle: a review." Journal of Mechatronics Engineering 2, no. 2 (2019): 11-22.
[87] Andreopoulos, Alexander, and John K. Tsotsos. "50 years of object recognition: Directions forward." Computer vision and image understanding 117, no. 8 (2013): 827-891.
[88] Alves de Souza, Thamiris, Caterine Silva de Oliveira, Cesar Sanin, and Edward Szczerbicki. "From knowledge based vision systems to cognitive vision systems: a review." Procedia Computer Science 126 (2018): 1855-1864.
[89] Bellotti, Roberto, Francesco De Carlo, Sonia Tangaro, Gianfranco Gargano, Giuseppe Maggipinto, Marcello Castellano, Raffaella Massafra et al. "A completely automated CAD system for mass detection in a large mammographic database." Medical physics 33, no. 8 (2006): 3066-3075.
[90] Duke, Duke dataset, 2013. URL \url{http://people.duke.edu/~sf59/RPEDC_Ophth_2013_dataset.htm.
[91] OCTRIMA-3D, OCT Retinal IMage Analysis 3D, 2015. URL \url{https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133908.
[92] Mendeley, Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification, 2018. URL \url{https://data.mendeley.com/datasets/rscbjbr9sj/2.
[93] Reza Rasti, Noor Eye Hospital in Tehran, 2018. URL \url{https://sites.google.com/site/hosseinrabbanikhorasgani/datasets-1.
[94] Reza Rasti, Hossein Rabbani, Alireza Mehri, Fedra Hajizadeh, "Macular OCT Classification using a Multi-Scale Convolutional Neural Network Ensemble”, IEEE Transactions on Medical Imaging, vol. 37, no. 4, pp. 1024-1034, April 2018.
[95] OCTID, Optical Coherence Tomography Image Database, 2018. URL \url{https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP/MBMQGD.
[96] Miri, Mohammad Saleh, Victor A. Robles, Michael D. Abràmoff, Young H. Kwon, and Mona K. Garvin. "Incorporation of gradient vector flow field in a multimodal graph-theoretic approach for segmenting the internal limiting membrane from glaucomatous optic nerve head-centered SD-OCT volumes." Computerized Medical Imaging and Graphics 55 (2017): 87-94.
[97] Hussain, Md Akter, Alauddin Bhuiyan, and Kotagiri Ramamohanarao. "Disc segmentation and BMO-MRW measurement from SD-OCT image using graph search and tracing of three bench mark reference layers of retina." In 2015 IEEE International Conference on Image Processing (ICIP), pp. 4087-4091. IEEE, 2015.
[98] El Tanboly, Ahmed, Marwa Ismail, A. Switala, M. Mahmoud, Ahmed Soliman, T. Neyer, A. Palacio et al. "A novel automatic segmentation of healthy and diseased retinal layers from OCT scans." In 2016 IEEE International Conference on Image Processing (ICIP), pp. 116-120. IEEE, 2016.
[99] Hussain, Md Akter, Alauddin Bhuiyan, Andrew Turpin, Chi D. Luu, R. Theodore Smith, Robyn H. Guymer, and Ramamohanrao Kotagiri. "Automatic identification of pathology-distorted retinal layer boundaries using SD-OCT imaging." IEEE Transactions on Biomedical Engineering 64, no. 7 (2016): 1638-1649.
[100] Chiu, Stephanie J., Joseph A. Izatt, Rachelle V. O'Connell, Katrina P. Winter, Cynthia A. Toth, and Sina Farsiu. "Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images." Investigative ophthalmology & visual science 53, no. 1 (2012): 53-61.
[101] Novosel, Jelena, Koenraad A. Vermeer, Jan H. de Jong, Ziyuan Wang, and Lucas J. van Vliet. "Joint segmentation of retinal layers and focal lesions in 3-D OCT data of topologically disrupted retinas." IEEE transactions on medical imaging 36, no. 6 (2017): 1276-1286.
[102] Naz, Samra, M. Usman Akram, and Shoab A. Khan. "Automated segmentation of retinal layers from OCT images using structure tensor and kernel regression+ GTDP approach." In 2017 1st International Conference on Next Generation Computing Applications (NextComp), pp. 98-102. IEEE, 2017.
[103] Xiang, Dehui, Geng Chen, Fei Shi, Weifang Zhu, Qinghuai Liu, Songtao Yuan, and Xinjian Chen. "Automatic retinal layer segmentation of OCT images with central serous retinopathy." IEEE journal of biomedical and health informatics 23, no. 1 (2018): 283-295.
[104] Hassan, Bilal, Ramsha Ahmed, and Bo Li. "Automated Foveal Detection in OCT Scans." In 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 419-422. IEEE, 2018.
[105] González-López, A., J. de Moura, J. Novo, M. Ortega, and M. G. Penedo. "Robust segmentation of retinal layers in optical coherence tomography images based on a multistage active contour model." Heliyon 5, no. 2 (2019): e01271.
[106] Stankiewicz, Agnieszka, Tomasz Marciniak, Adam Dabrowski, Marcin Stopa, Piotr Rakowicz, and Elzbieta Marciniak. "Novel full-automatic approach for segmentation of epiretinal membrane from 3D OCT images." In 2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), pp. 100-105. IEEE, 2017.
[107] Athira, S. C., Reena M. Roy, and R. P. Aneesh. "Computerized Detection of Macular Edema Using OCT Images Based on Fractal Texture Analysis." In 2018 International CET Conference on Control, Communication, and Computing (IC4), pp. 326-330. IEEE, 2018.
[108] Gopinath, Karthik, Samrudhdhi B. Rangrej, and Jayanthi Sivaswamy. "A deep learning framework for segmentation of retinal layers from OCT images." In 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), pp. 888-893. IEEE, 2017.
[109] Dodo, Bashir I., Yongmin Li, Allan Tucker, Djibril Kaba, and Xiaohui Liu. "Retinal OCT Segmentation Using Fuzzy Region Competition and Level Set Methods." In 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), pp. 93-98. IEEE, 2019.
[110] Duan, Jinming, Christopher Tench, Irene Gottlob, Frank Proudlock, and Li Bai. "Optical coherence tomography image segmentation." In 2015 IEEE International Conference on Image Processing (ICIP), pp. 4278-4282. IEEE, 2015.
[111] Lang, Andrew, Aaron Carass, Ava K. Bittner, Howard S. Ying, and Jerry L. Prince. "Improving graph-based OCT segmentation for severe pathology in Retinitis Pigmentosa patients." In Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 10137, p. 101371M. International Society for Optics and Photonics, 2017.
[112] Niu, Sijie, Qiang Chen, Luis de Sisternes, Daniel L. Rubin, Weiwei Zhang, and Qinghuai Liu. "Automated retinal layers segmentation in SD-OCT images using dual-gradient and spatial correlation smoothness constraint." Computers in biology and medicine 54 (2014): 116-128.
[113] Rossant, Florence, Isabelle Bloch, Itebeddine Ghorbel, and Michel Paques. "Parallel Double Snakes. Application to the segmentation of retinal layers in 2D-OCT for pathological subjects." Pattern Recognition 48, no. 12 (2015): 3857-3870.
[114] Tian, Jing, Boglárka Varga, Gábor Márk Somfai, Wen-Hsiang Lee, William E. Smiddy, and Delia Cabrera DeBuc. "Real-time automatic segmentation of optical coherence tomography volume data of the macular region." PloS one 10, no. 8 (2015): e0133908.
[115] Fang, Leyuan, Liumao Yang, Shutao Li, Hossein Rabbani, Zhimin Liu, Qinghua Peng, and Xiangdong Chen. "Automatic detection and recognition of multiple macular lesions in retinal optical coherence tomography images with multi-instance multilabel learning." Journal of biomedical optics 22, no. 6 (2017): 066014.
[116] Qian, Pengjiang, Kaifa Zhao, Yizhang Jiang, Kuan-Hao Su, Zhaohong Deng, Shitong Wang, and Raymond F. Muzic Jr. "Knowledge-leveraged transfer fuzzy C-Means for texture image segmentation with self-adaptive cluster prototype matching." Knowledge-based systems 130 (2017): 33-50.
[117] Roy, Abhijit Guha, Sailesh Conjeti, Sri Phani Krishna Karri, Debdoot Sheet, Amin Katouzian, Christian Wachinger, and Nassir Navab. "ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks." Biomedical optics express 8, no. 8 (2017): 3627-3642.
[118] Xu, Chenyang, and Jerry L. Prince. "Snakes, shapes, and gradient vector flow." IEEE Transactions on image processing 7, no. 3 (1998): 359-369.
[119] Oguz, Ipek, and Milan Sonka. "LOGISMOS-B: layered optimal graph image segmentation of multiple objects and surfaces for the brain." IEEE transactions on medical imaging 33, no. 6 (2014): 1220-1235.
[120] Lee, Cecilia S., Ariel J. Tyring, Nicolaas P. Deruyter, Yue Wu, Ariel Rokem, and Aaron Y. Lee. "Deep-learning based, automated segmentation of macular edema in optical coherence tomography." Biomedical optics express 8, no. 7 (2017): 3440-3448.
[121] Yu, Kai, Fei Shi, Enting Gao, Weifang Zhu, Haoyu Chen, and Xinjian Chen. "Shared-hole graph search with adaptive constraints for 3D optic nerve head optical coherence tomography image segmentation." Biomedical optics express 9, no. 3 (2018): 962-983.
[122] L. Breiman, “Random forests,” Mach. Learn. 45(1), 5–32 (2001).
[123] Varga, László, Attila Kovács, Tamás Grósz, Géza Thury, Flora Hadarits, Rózse Dégi, and József Dombi. "Automatic Segmentation of Hyperreflective Foci in OCT Images." Computer Methods and Programs in Biomedicine (2019).
[124] Faust, Oliver, Yuki Hagiwara, Tan Jen Hong, Oh Shu Lih, and U. Rajendra Acharya. "Deep learning for healthcare applications based on physiological signals: A review." Computer methods and programs in biomedicine 161 (2018): 1-13.
[125] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." In International Conference on Medical image computing and computer-assisted intervention, pp. 234-241. Springer, Cham, 2015.
[126] Sun, Yankui, Shan Li, and Zhongyang Sun. "Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning." Journal of biomedical optics 22, no. 1 (2017): 016012.
[127] Pilch, Matthäus, Knut Stieger, Yaroslava Wenner, Markus N. Preising, Christoph Friedburg, Erdmuthe Meyer zu Bexten, and Birgit Lorenz. "Automated segmentation of pathological cavities in optical coherence tomography scans." Investigative ophthalmology & visual science 54, no. 6 (2013): 4385-4393.
[128] Fang, L., Jin, Y., Huang, L., Guo, S., Zhao, G. and Chen, X., 2019. Iterative fusion convolutional neural networks for classification of optical coherence tomography images. Journal of Visual Communication and Image Representation, 59, pp.327-333.