Contact Us Search Paper

Robotic Inspection Monitoring System for Pipelines

Muhammad Ahmad Baballe1, *

Corresponding Author:

Muhammad Ahmad Baballe

Affiliation(s):

1 Department of Computer Engineering Technology, School of Technology, Kano State Polytechnic, Kano, Nigeria

* Corresponding Author: [email protected], https://orcid.org/0000-0001-9441-7023


Abstract:

The most popular method for transporting fluids and gases is through pipelines nowadays. Regular inspection is necessary for the pipelines to work correctly. Humans must not enter potentially dangerous environments to inspect these pipelines. As a result of this, pipeline robots came into existence. These pipe inspection robots help in pipeline inspection, protecting numerous people from harm since human beings cannot enter the pipes and inspect them in case there is any such or kind of damage that requires repair. Despite numerous improvements, pipeline robots still have several limitations. The introduction of this in pipe inspection robots helps to solve many problems, such as leakage of the gas or fluid pipelines, rustiness, and also if the pipe is broken from any part.

Keywords:

Inspection robot, Leakage, Pipeline, Broken

Downloads: 66 Views: 569
Cite This Paper:

Muhammad Ahmad Baballe (2022). Robotic Inspection Monitoring System for Pipelines. Journal of Artificial Intelligence and Systems, 4, 50–64. https://doi.org/10.33969/AIS.2022040104.

References:

[1] M. A. Adegboye, W. K. Fung, and A. Karnik, “Recent advances in pipeline monitoring and oil leakage detection technologies: Principles and approaches,” Sensors (Switzerland), vol. 19, no. 11, 2019, doi: 10.3390/s19112548. 

[2] A. A. Carvalho, J. M. A. Rebello, M. P. V. Souza, L. V. S. Sagrilo, and S. D. Soares, “Reliability of non-destructive test techniques in the inspection of pipelines used in the oil industry,” International Journal of Pressure Vessels and Piping, vol. 85, no. 11. 2008. doi: 10.1016/j.ijpvp.2008.05.001. 

[3] A. Kakogawa and S. Ma, “Robotic Search and Rescue through In-Pipe Movement,” in Unmanned Robotic Systems and Applications, 2020. doi: 10.5772/intechopen.88414. 

[4] J. Zhou, T. Deng, J. Peng, G. Liang, X. Zhou, and J. Gong, “Experimental study on pressure pulses in long-distance gas pipeline during the pigging process,” Sci. Prog., vol. 103, no. 1, 2020, doi: 10.1177/0036850419884452. 

[5] H. Zhang, J. Dong, C. Cui, and S. Liu, “Stress and strain analysis of spherical sealing cups of fluid-driven pipeline robot in dented oil and gas pipeline,” Eng. Fail. Anal., vol. 108, p. 104294, 2020, doi: 10.1016/j.engfailanal.2019.104294. 

[6] C. Liu, Y. Wei, Y. Cao, S. Zhang, and Y. Sun, “Traveling ability of pipeline inspection gauge (PIG) in elbow under different friction coefficients by 3D FEM,” J. Nat. Gas Sci. Eng., vol. 75, no. December 2019, p. 103134, 2020, doi: 10.1016/j.jngse.2019.103134. 

[7] J. Jiang, H. Zhang, B. Ji, F. Yi, F. Yan, and X. Liu, “Numerical investigation on sealing performance of drainage pipeline inspection gauge crossing pipeline elbows,” Energy Sci. Eng., vol. 9, no. 10, 2021, doi: 10.1002/ese3.955. 

[8] J. Dong, S. Liu, H. Zhang, and H. Xiao, “Experiment and simulation of a controllable multi-airbag sealing disc of pipeline inspection gauges (PIGs),” Int. J. Press. Vessel. Pip., vol. 192, 2021, doi: 10.1016/j.ijpvp.2021.104422. 

[9] Z. Chen, “Deformation and stress analysis of cup on pipeline inspection gauge based on reverse measurement,” Energy Sci. Eng., no. January, pp. 2509–2526, 2022, doi: 10.1002/ese3.1241. 

[10] H. Zhang, M. Q. Gao, B. Tang, C. Cui, and X. F. Xu, “Dynamic characteristics of the pipeline inspection gauge under girth weld excitation in submarine pipeline,” Pet. Sci., vol. 19, no. 2, 2022, doi: 10.1016/j.petsci.2021.09.044. 

[11] T. Ren, Y. Zhang, Y. Li, Y. Chen, and Q. Liu, “Driving mechanisms, motion, and mechanics of screw drive in-pipe robots: A review,” Appl. Sci., vol. 9, no. 12, 2019, doi: 10.3390/app9122514. 

[12] H. Tourajizadeh, V. Boomeri, M. Rezaei, and A. Sedigh, “Dynamic Optimization of a Steerable Screw In-pipe Inspection Robot Using HJB and Turbine Installation,” Robotica, vol. 38, no. 11, 2020, doi: 10.1017/S0263574719001784. 

[13] T. Li, K. Liu, H. Liu, X. Cui, B. Li, and Y. Wang, “Rapid design of a screw drive in-pipe robot based on parameterized simulation technology,” Simulation, vol. 95, no. 7, 2019, doi: 10.1177/0037549718799881. 

[14] H. Tourajizadeh, M. Rezaei, and A. H. Sedigh, “Optimal Control of Screw In-pipe Inspection Robot with Controllable Pitch Rate,” J. Intell. Robot. Syst. Theory Appl., vol. 90, no. 3–4, 2018, doi: 10.1007/s10846-017-0658-7. 

[15] P. Li, M. Tang, C. Lyu, M. Fang, X. Duan, and Y. Liu, “Design and analysis of a novel active screw-drive pipe robot,” Adv. Mech. Eng., vol. 10, no. 10, 2018, doi: 10.1177/1687814018801384. 

[16] Q. Tu, Q. Liu, T. Ren, and Y. Li, “Obstacle crossing and traction performance of active and passive screw pipeline robots,” J. Mech. Sci. Technol., vol. 33, no. 5, 2019, doi: 10.1007/s12206-019-0440-9. 

[17] H. Tourajizadeh and M. Rezaei, “Design and control of a steerable screw in-pipe inspection robot,” In 2016 4th International Conference on Robotics and Mechatronics (ICROM), pp. 98-104. IEEE, 2016. doi: 10.1109/ICRoM.2016.7886824. 

[18] T. Yamamoto, S. Sakama, and A. Kamimura, “Pneumatic Duplex Chambered Inchworm Mechanism for Narrow Pipes Driven by only Two Air Supply Lines,” IEEE Robot. Autom. Lett., vol. 5, no. 4, pp. 5034–5042, 2020, doi: 10.1109/LRA.2020.3003859. 

[19] K. Kusunose et al., “Development of inchworm type pipe inspection robot using extension type flexible pneumatic actuators,” Int. J. Automot. Mech. Eng., vol. 17, no. 2, pp. 8019–8028, 2020, doi: 10.15282/ijame.17.2.2020.20.0601. 

[20] K. Hayashi et al., “Improvement of pipe holding mechanism and inchworm type flexible pipe inspection robot,” Int. J. Mech. Eng. Robot. Res., vol. 9, no. 6, 2020, doi: 10.18178/ijmerr.9.6.894-899. 

[21] D. Fang, J. Shang, Z. Luo, P. Lv, and G. Wu, “Development of a novel self-locking mechanism for continuous propulsion inchworm in-pipe robot,” Adv. Mech. Eng., vol. 10, no. 1, 2018, doi: 10.1177/1687814017749402. 

[22] M. B. Khan et al., “ICrawl: An Inchworm-Inspired Crawling Robot,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3035871. 

[23] M. Aliff et al., “Development of Pipe Inspection Robot using Soft Actuators, Microcontroller and LabVIEW,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 3, pp. 349–354, 2022, doi: 10.14569/IJACSA.2022.0130343. 

[24] J. Yang, Y. Xue, J. Shang, and Z. Luo, “Research on a new bilateral self-locking mechanism for an inchworm micro in-pipe robot with large traction,” Int. J. Adv. Robot. Syst., vol. 11, 2014, doi: 10.5772/59309. 

[25] G. Feng, W. Li, Z. Li, and Z. He, “Development of a wheeled and wall-pressing type in-pipe robot for water pipelines cleaning and its traveling capability,” Mechanika, vol. 26, no. 2, pp. 134–145, 2020, doi: 10.5755/j01.mech.26.2.18783. 

[26] L. Brown, J. Carrasco, S. Watson, and B. Lennox, “Elbow Detection in Pipes for Autonomous Navigation of Inspection Robots,” J. Intell. Robot. Syst. Theory Appl., vol. 95, no. 2, 2019, doi: 10.1007/s10846- 018-0904-7. 

[27] L. Brown, J. Carrasco, and S. Watson, “Autonomous elbow controller for differential drive in-pipe robots,” Robotics, vol. 10, no. 1, 2021, doi: 10.3390/robotics10010028. 

[28] M. A. A. Wahed and M. R. Arshad, “Wall-press type pipe inspection robot,” In 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS), pp. 185-190. IEEE, 2017, doi: 10.1109/I2CACIS.2017.8239055. 

[29] H. Jang, T. Y. Kim, Y. C. Lee, Y. H. Song, and H. R. Choi, “Autonomous Navigation of In-Pipe Inspection Robot Using Contact Sensor Modules,” IEEE/ASME Trans. Mechatronics, pp. 1–10, 2022, doi: 10.1109/TMECH.2022.3162192. 

[30] S. Savin, S. Jatsun, and L. Vorochaeva, “State observer design for a walking in-pipe robot,” MATEC Web Conf., vol. 161, no. April, 2018, doi: 10.1051/matecconf/201816103012. 

[31] S. Savin, “RRT-based Motion Planning for In-pipe Walking Robots,” In 2018 Dynamics of Systems, Mechanisms and Machines (Dynamics), pp. 1-6. IEEE, 2018, doi: 10.1109/Dynamics.2018.8601473. 

[32] G. H. Jackson-Mills et al., “Non-assembly Walking Mechanism for Robotic In-Pipe Inspection,” in Lecture Notes in Networks and Systems, 2022, vol. 324 LNNS. doi: 10.1007/978-3-030-86294-7_11. 

[33] S. Savin and L. Vorochaeva, “Footstep planning for a six-legged in pipe robot moving in spatially curved pipes,” In 2017 International Siberian Conference on Control and Communications (SIBCON), pp. 1-6. IEEE, 2017, doi: 10.1109/SIBCON.2017.7998581. 

[34] A. Zagler and F. Pfeiffer, “‘MORITZ’ a pipe crawler for tube junctions,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 3, pp. 2954– 2959, 2003, doi: 10.1109/robot.2003.1242044. 

[35] W. Zhao, L. Zhang, and J. Kim, “Design and analysis of independently adjustable large in-pipe robot for long-distance pipeline,” Appl. Sci., vol. 10, no. 10, 2020, doi: 10.3390/app10103637. 

[36] Z. Wu, Y. Wu, S. He, and X. Xiao, “Hierarchical fuzzy control based on spatial posture for a support-tracked type in-pipe robot,” Trans. Can. Soc. Mech. Eng., vol. 44, no. 1, 2020, doi: 10.1139/tcsme-2018- 0052. 

[37] M. Ciszewski, T. Buratowski, and M. Giergiel, “Modeling, Simulation and Control of a Pipe Inspection Mobile Robot with an Active Adaptation System,” in IFAC-PapersOnLine, 2018, vol. 51, no. 22. doi: 10.1016/j.ifacol.2018.11.530. 

[38] A. S. Z. Abidin et al., “Development of In-Pipe Robot D300: Cornering Mechanism,” in MATEC Web of Conferences, 2017, vol. 87. doi: 10.1051/matecconf/20178702029. 

[39] V. Consumi, J. Merlin, L. Lindenroth, D. Stoyanov, and A. Stilli, “A Novel Soft Shape-shifting Robot with Track-based Locomotion for In-pipe Inspection,” 2022, doi: https://arxiv.org/abs/2202.10840.

[40] A. Hadi, A. Hassani, K. Alipour, R. Askari Moghadam, and P. Pourakbarian Niaz, “Developing an adaptable pipe inspection robot using shape memory alloy actuators,” J. Intell. Mater. Syst. Struct., vol. 31, no. 4, pp. 632–647, 2020, doi: 10.1177/1045389X19898255. 

[41] H. Li, R. Li, J. Zhang, and P. Zhang, “Development of a pipeline inspection robot for the standard oil pipeline of china national petroleum corporation,” Appl. Sci., vol. 10, no. 8, 2020, doi: 10.3390/APP10082853. 

[42] S. Kazeminasab and M. Kathrine Banks, “A Localization and Navigation Method for an In-pipe Robot in Water Distribution System through Wireless Control towards Long-Distance Inspection,” IEEE Access, , 9, pp.117496-117511, 2021, doi: 10.1109/ACCESS.2021.3106880. 

[43] R. S. Elankavi, D. Dinakaran, R. M. K. Chetty, M. M. Ramya, A. Selvakumar, and A. Doss, “Kinematic Modeling and Analysis of Wheeled In-Pipe Inspection Mobile Robot,” In: Hussain C.M., Di Sia P. (eds) Handbook of Smart Materials, Technologies, and Devices. Springer, Cham, p p. 1–15, 2021, doi: 10.1007/978-3-030-58675- 1_168-1. 

[44] A. Kakogawa, Y. Komurasaki, and S. Ma, “Shadow-based operation assistant for a pipeline-inspection robot using a variance value of the image histogram,” J. Robot. Mechatronics, vol. 31, no. 6, 2019, doi: 10.20965/jrm.2019.p0772. 

[45] W. Zhao et al., “A coordinated wheeled gas pipeline robot chain system based on visible light relay communication and illuminance assessment,” Sensors (Switzerland), vol. 19, no. 10, 2019, doi: 10.3390/s19102322. 

[46] T.-J. Yeh and T.-H. Weng, “Analysis and Control of an In-Pipe Wheeled Robot With Spiral Moving Capability,” J. Auton. Veh. Syst., vol. 1, no. 1, 2021, doi: 10.1115/1.4048376. 

[47] F. Yan, H. Gao, L. Zhang, and Y. Han, “Design and motion analysis of multi-motion mode pipeline robot,” J. Phys. Conf. Ser., vol. 2246, no. 1, 2022, doi: 10.1088/1742-6596/2246/1/012029. 

[48] A. A. Bandala et al., “Control and Mechanical Design of a Multi diameter Tri-Legged In- Pipe Traversing Robot,” In 2019 IEEE/SICE International Symposium on System Integration (SII), pp. 740-745. IEEE, 2019, doi: 10.1109/SII.2019.8700363. 

[49] H. Sawabe, M. Nakajima, M. Tanaka, K. Tanaka, and F. Matsuno, “Control of an articulated wheeled mobile robot in pipes,” Adv. Robot., vol. 33, no. 20, 2019, doi: 10.1080/01691864.2019.1666737. 

[50] D. Zheng, H. Tan, and F. Zhou, “A design of endoscopic imaging system for hyper long pipeline based on wheeled pipe robot,” AIP Conf. Proc., vol. 1820, pp. 1–10, 2017, doi: 10.1063/1.4977316. 

[51] E. Islas‐garcía, M. Ceccarelli, R. Tapia‐herrera, and C. R. Torres‐ sanmiguel, “Pipeline inspection tests using a biomimetic robot,” Biomimetics, vol. 6, no. 1, pp. 1–16, 2021, doi: 10.3390/biomimetics6010017. 

[52] M. Roussialian, H. Al Zanbarakji, A. Khawand, A. Rahal, and M. Owayjan, “Design and Development of a Pipeline Inspection Robot,” Mech. Mach. Sci., vol. 58, pp. 43–52, 2019, doi: 10.1007/978-3-319- 89911-4_4. 

[53] R. S. Elankavi, “Developments in Inpipe Inspectionrobot: a Review,” J. Mech. Contin. Math. Sci., vol. 15, no. 5, 2020, doi: 10.26782/jmcms.2020.05.00022. 

[54] Y. Kwon and B. Yi, “Design and Motion Planning of a Two-Module,” IEEE Trans. Robot., vol. 28, no. 3, pp. 681–696, 2012, doi: 10.1109/TRO.2012.2183049. 

[55] J. H. Kim, G. Sharma, and S. S. Iyengar, “FAMPER: A fully autonomous mobile robot for pipeline exploration,” Proc. IEEE Int. Conf. Ind. Technol., pp. 517–523, 2010, doi: 10.1109/ICIT.2010.5472748. 

[56] Y. S. Kwon, B. Lee, I. C. Whang, W. K. Kim, and B. J. Yi, “A flat pipeline inspection robot with two wheel chains,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 5141–5146, 2011, doi: 10.1109/ICRA.2011.5979712. 

[57] M. S. Mohd Aras et al., Design and development of remotely operated pipeline inspection robot, In Proceedings of the 11th National Technical Seminar on Unmanned System Technology 2019, pp. 15- 23, 2021, doi: 10.1007/978-981-15-5281-6_2. 

[58] Y. Zhang and G. Yan, “In-pipe inspection robot with active pipe diameter adaptability and automatic tractive force adjusting,” Mech. Mach. Theory, vol. 42, no. 12, pp. 1618–1631, 2007, doi: 10.1016/j.mechmachtheory.2006.12.004. 

[59] L. Xu, L. Zhang, J. Zhao, and K. Kim, “Cornering algorithm for a crawler in-pipe inspection robot,” Symmetry (Basel)., vol. 12, no. 12, 2020, doi: 10.3390/sym12122016. 

[60] E. N. P. M. K. N. Karuppasamy, “Defect identification in pipe lines using,” Int. J. Mech. Eng. Robot. Res., vol. 1, no. 2, pp. 19–31, 2012. 

[61] W. C. Chang, Y. C. Huang, and P. Y. Chang, “Development of a 3D pipe robot for smart sensing and inspection using 3D printing technology,” Smart Sci., vol. 5, no. 3, 2017, doi: 10.1080/23080477.2017.1338428. 

[62] R. S. Elankavi, D. Dinakaran, A. S. Arockia Doss, R. M. Kuppan Chetty, M. M. Ramya, “Design and Motion Planning of a Wheeled Type Pipeline Inspection Robot”, Journal of Robotics and Control (JRC) Vol. 3, No. 4, pp. 415-430, July 2022. 

[63] M. A. Baballe, U. Y. Magashi, B. I. Garko, A. A. Umar, Y. R. Magaji, M. Surajo, “Automatic Gas Leakage Monitoring System Using Mq-5 Sensor”, Review of Computer Engineering Research, Vol. 8, No. 2, pp. 64-75, DOI: 10.18488/journal.76.2021.82.64.75, 2021. 

[64] M. A. Baballe, M. I. Bello, A. S. Mahmoud, “Comparative Study of Gas Alarm Detection System”, Journal of Telecommunication Control and Intelligent System (JTCIS), Vol. 1, No. 2, pp. 65-72, 2021. 

[65] M. A. Baballe, M. I. Bello, “Gas Leakage Detection System with Alarming System”, Review of Computer Engineering Research, Vol. 9, No. 1, pp. 30-43, DOI: 10.18488/76.v9i1.2984, 2022. 

[66] M. B. Ahmad, A. S. Muhammad, “A general review on advancement in the robotic system”, Artificial & Computational Intelligence, vol. 1, no. 2, pp. 1-7, http://acors.org/ijacoi/VOL1_ISSUE2_04.pdf, Mar 2020.  

[67] M. Çavaş, M. B. Ahmad, “A Review on Spider Robotic System”, International Journal of New Computer Architectures and their Applications (IJNCAA) vol. 9, no. 1, pp. 19-24, The Society of Digital Information and Wireless Communications, 2019. 

[68] https://www.pipedetect.com/the-principle-and-advantages-of-using-robots-for-ndt-pipeline-inspection.html.