Xu Zhao1,*
Xu Zhao
1School of Systems Information Science, Future University Hakodate, 116-2 Kamedanakano-cho, Hakodate, Hokkaido, 041-8655, Japan
Millimeter-wave (mmWave) communication, leveraging its advantages of large bandwidth and high data rate, has become a key technology for the fifth-generation (5G) wireless networks. However, its highly directional beam transmission characteristics also bring unprecedented physical layer security challenges, especially impersonation attacks. Physical layer authentication (PLA), as an emerging security paradigm, verifies the transmitter identity by exploiting unique physical features of channels or device, providing an effective approach to enhance the security of mmWave systems. This paper summarizes the research status of PLA schemes in mmWave scenarios, systematically classifies existing authentication schemes into three categories: channel feature-based authentication, device impairment-based authentication, and hybrid multi-feature authentication. It introduces the latest works in each category and finally discusses the challenges and future research directions.
Physical Layer Authentication, Millimeter-Wave (mmWave), Wireless Networks
Xu Zhao (2025). A Survey of Physical Layer Authentication for Millimeter-Wave MIMO Systems. Journal of Networking and Network Applications, Volume 5, Issue 3, pp. 137–147. https://doi.org/10.33969/J-NaNA.2025.050304.
[1] Lalit Chettri and Rabindranath Bera. A comprehensive survey on Internet of Things (IoT) toward 5G wireless systems. IEEE Internet Things J., 7(1):16–32, Feb. 2020.
[2] David L´opez-P´erez, Antonio De Domenico, Nicola Piovesan, Geng Xinli, Harvey Bao, Song Qitao, and M´erouane Debbah. A survey on 5G radio access network energy efficiency: Massive MIMO, lean carrier design, sleep modes, and machine learning. IEEE Commun. Surveys Tuts., 24(1):653–697, 2022.
[3] Yunzheng Tao, Long Liu, Shang Liu, and Zhi Zhang. A survey: Several technologies of non-orthogonal transmission for 5G. China Commun., 12(10):1–15, 2015.
[4] Afif Osseiran, Federico Boccardi, Volker Braun, Katsutoshi Kusume, Patrick Marsch, Michal Maternia, Olav Queseth, Malte Schellmann, Hans Schotten, Hidekazu Taoka, et al. Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Commun. Mag., 52(5):26–35, May 2014.
[5] Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna Seneviratne, Jun Li, Dusit Niyato, Octavia Dobre, and H Vincent Poor. 6G Internet of Things: A comprehensive survey. IEEE Internet Things J., 9(1):359–383, Jan. 2022.
[6] Shilpa Talwar, Nageen Himayat, Hosein Nikopour, Feng Xue, Geng Wu, and Vida Ilderem. 6G: Connectivity in the era of distributed intelligence. IEEE Commun. Mag., 59(11):45–50, Nov. 2021.
[7] Yao-Chun Shen, Xing-Yu Yang, and Zi-Jian Zhang. Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications. Chin. Phys. B, 29(7):078705, 2020.
[8] Anum Ali, Nuria Gonzalez-Prelcic, Robert W Heath, and Amitava Ghosh. Leveraging sensing at the infrastructure for mmwave communi-cation. IEEE Commun. Mag., 58(7):84–89, Jul. 2020.
[9] Xiaohu You, Cheng-Xiang Wang, Jie Huang, Xiqi Gao, Zaichen Zhang, Mao Wang, Yongming Huang, Chuan Zhang, Yanxiang Jiang, Jiaheng Wang, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci., 64(1):110301, 2021.
[10] Rabia Khan, Pardeep Kumar, Dushantha Nalin K Jayakody, and Madhu-sanka Liyanage. A survey on security and privacy of 5G technologies: Potential solutions, recent advancements, and future directions. IEEE Commun. Surveys Tuts., 22(1):196–248, 2020.
[11] Akashah Arshad, Zurina Mohd Hanapi, Shamala Subramaniam, and Rohaya Latip. A survey of Sybil attack countermeasures in IoT-based wireless sensor networks. PeerJ Comput. Sci., 7:e673, 2021.
[12] Weidong Fang, Wuxiong Zhang, Wei Chen, Tao Pan, Yepeng Ni, and Yinxuan Yang. Trust-based attack and defense in wireless sensor net-works: A survey. Wireless Commun. Mobile Comput., 2020(1):2643546, 2020.
[13] Amol Vasudeva and Manu Sood. Survey on Sybil attack defense mechanisms in wireless ad hoc networks. J. Netw. Comput. Appl., 120:78–118, 2018.
[14] Ren´e Mayrhofer and Stephan Sigg. Adversary models for mobile device authentication. ACM Comput. Surv., 54(9):1–35, 2021.
[15] Qiang Xu, Rong Zheng, Walid Saad, and Zhu Han. Device fingerprinting in wireless networks: Challenges and opportunities. IEEE Commun. Surveys Tuts., 18(1):94–104, 2016.
[16] Aakanksha Tewari and Brij B Gupta. A lightweight mutual authentica-tion protocol based on elliptic curve cryptography for IoT devices. Int.
J. Adv. Intell. Paradigms, 9(2-3):111–121, 2017.
[17] Ning Xie, Zhuoyuan Li, and Haijun Tan. A survey of physical-layer authentication in wireless communications. IEEE Commun. Surveys Tuts., 23(1):282–310, 2021.
[18] Peng Cheng, Zhuo Chen, Frank de Hoog, and Chang Kyung Sung. Sparse blind carrier-frequency offset estimation for OFDMA uplink. IEEE Trans. Commun., 64(12):5254–5265, Dec. 2016.
[19] Omar H Salim, Ali A Nasir, Hani Mehrpouyan, and Wei Xiang. Multi-relay communications in the presence of phase noise and carrier frequency offsets. IEEE Trans. Commun., 65(1):79–94, Jan. 2017.
[20] Antonio A D’Amico, Leonardo Marchetti, Michele Morelli, and Marco Moretti. Frequency estimation in OFDM direct-conversion receivers using a repeated preamble. IEEE Trans. Commun., 64(3):1246–1258, Mar. 2016.
[21] Antonios Pitarokoilis, Emil Bj¨ornson, and Erik G Larsson. ML detection in phase noise impaired SIMO channels with uplink training. IEEE Trans. Commun., 64(1):223–235, Jan. 2016.
[22] Hani Mehrpouyan, Ali A Nasir, Steven D Blostein, Thomas Eriksson, George K Karagiannidis, and Tommy Svensson. Joint estimation of channel and oscillator phase noise in MIMO systems. IEEE Trans. Signal Process., 60(9):4790–4807, Sep. 2012.
[23] Mohsen Rezaee, Peter J Schreier, Maxime Guillaud, and Bruno Clerckx. A unified scheme to achieve the degrees-of-freedom region of the MIMO interference channel with delayed channel state information. IEEE Trans. Commun., 64(3):1068–1082, Mar. 2016.
[24] Hannan Lohrasbipeydeh, T Aaron Gulliver, and Hamidreza Amindavar. Unknown transmit power RSS-based source localization with sensor position uncertainty. IEEE Trans. Commun., 63(5):1784–1797, May 2015.
[25] Daniel B Faria and David R Cheriton. Detecting identity-based attacks in wireless networks using signalprints. In Proc. 5th ACM Workshop Wireless Secur. (WiSe), pages 43–52, Los Angeles, CA, USA, Sep. 2006.
[26] Jitendra K Tugnait and Hyosung Kim. A channel-based hypothesis testing approach to enhance user authentication in wireless networks. In Proc. 2nd Int. Conf. Commun. Syst. Netw. (COMSNETS), pages 1–9, Bangalore, India, Jan. 2010.
[27] Fiona Jiazi Liu, Xianbin Wang, and Helen Tang. Robust physical layer authentication using inherent properties of channel impulse response. In Proc. IEEE MILCOM, pages 538–542, Baltimore, MD, USA, Nov. 2011.
[28] Fiona Jiazi Liu, Xianbin Wang, and Serguei L Primak. A two-dimensional quantization algorithm for CIR-based physical layer authen-tication. In Proc. IEEE Int. Conf. Commun. (ICC), pages 4724–4728, Budapest, Hungary, Jun. 2013.
[29] Jiazi Liu and Xianbin Wang. Physical layer authentication enhancement using two-dimensional channel quantization. IEEE Trans. Wireless Commun., 15(6):4171–4182, Jun. 2016.
[30] Pinchang Zhang, Jinxiao Zhu, Yin Chen, and Xiaohong Jiang. End-to-end physical layer authentication for dual-hop wireless networks. IEEE Access, 7:38322–38336, 2019.
[31] Liang Xiao, Larry Greenstein, Narayan Mandayam, and Wade Trappe. Fingerprints in the ether: Using the physical layer for wireless authen-tication. In Proc. IEEE Int. Conf. Commun. (ICC), pages 4646–4651, Glasgow, UK, Jun. 2007.
[32] Liang Xiao, Larry J Greenstein, Narayan B Mandayam, and Wade Trappe. Using the physical layer for wireless authentication in time-variant channels. IEEE Trans. Wireless Commun., 7(7):2571–2579, Jul. 2008.
[33] Liang Xiao, Larry Greenstein, Narayan Mandayam, and Wade Trappe. MIMO-assisted channel-based authentication in wireless networks. In Proc. 42nd Annu. Conf. Inf. Sci. Syst. (CISS), pages 642–646, Princeton, NJ, USA, Mar. 2008.
[34] Paolo Baracca, Nicola Laurenti, and Stefano Tomasin. Physical layer authentication over MIMO fading wiretap channels. IEEE Trans. Wireless Commun., 11(7):2564–2573, Jul. 2012.
[35] Fangming He, Hong Man, Didem Kivanc, and Bruce McNair. EPSON: Enhanced physical security in OFDM networks. In Proc. IEEE Int. Conf. Commun. (ICC), pages 1–5, Dresden, Germany, Jun. 2009.
[36] Fangming He, Wei Wang, and Hong Man. REAM: Rake receiver enhanced authentication method. In Proc. IEEE MILCOM, pages 2205–2210, San Jose, CA, USA, Oct. 2010.
[37] Steven J Fortune, David M Gay, Brian W Kernighan, Orlando Landron, Reinaldo A Valenzuela, and Margaret H Wright. Wise design of indoor wireless systems: Practical computation and optimization. IEEE Comput. Sci. Eng., 2(1):58–68, 1995.
[38] Liang Xiao, Larry J Greenstein, Narayan B Mandayam, and Wade Trappe. Channel-based spoofing detection in frequency-selective Rayleigh channels. IEEE Trans. Wireless Commun., 8(12):5948–5956, Dec. 2009.
[39] Ning Wang, Ting Jiang, Shichao Lv, and Liang Xiao. Physical-layer authentication based on extreme learning machine. IEEE Commun. Lett., 21(7):1557–1560, Jul. 2017.
[40] Andreas Weinand, Michael Karrenbauer, Raja Sattiraju, and Hans Schotten. Application of machine learning for channel based message authentication in mission critical machine type communication. In Proc. 23rd Eur. Wireless Conf. (EW), pages 1–5, Dresden, Germany, May 2017.
[41] Fei Pan, Zhibo Pang, Hong Wen, Michele Luvisotto, Ming Xiao, Run-Fa Liao, and Jie Chen. Threshold-free physical layer authentication based on machine learning for industrial wireless CPS. IEEE Trans. Ind. Informat., 15(12):6481–6491, Dec. 2019.
[42] Qian Wang, Hang Li, Zhi Chen, Dou Zhao, Shuang Ye, and Jiansheng Cai. Supervised and semi-supervised deep neural networks for CSI-based authentication. arXiv preprint arXiv:1807.09469, 2018.
[43] Caidan Zhao, Minmin Huang, Lianfen Huang, Xiaojiang Du, and Mohsen Guizani. A robust authentication scheme based on physical-layer phase noise fingerprint for emerging wireless networks. Comput. Netw., 128:164–171, Dec. 2017.
[44] Ning Xie, Wei Xiong, Junjie Chen, Peichang Zhang, Lei Huang, and Jian Su. Multiple phase noises physical-layer authentication. IEEE Trans. Commun., 70(9):6196–6211, Sep. 2022.
[45] Weikun Hou, Xianbin Wang, and Jean-Yves Chouinard. Physical layer authentication in OFDM systems based on hypothesis testing of CFO estimates. In Proc. IEEE Int. Conf. Commun. (ICC), pages 3559–3563, Ottawa, ON, Canada, Jun. 2012.
[46] Weikun Hou, Xianbin Wang, Jean-Yves Chouinard, and Ahmed Refaey. Physical layer authentication for mobile systems with time-varying carrier frequency offsets. IEEE Trans. Commun., 62(5):1658–1667, May 2014.
[47] Sepideh Dolatshahi, Adam Polak, and Dennis L Goeckel. Identification of wireless users via power amplifier imperfections. In Proc. 44th Asilomar Conf. Signals, Syst. Comput., pages 1553–1557, Pacific Grove, CA, USA, Nov. 2010.
[48] Adam C Polak, Sepideh Dolatshahi, and Dennis L Goeckel. Identi-fying wireless users via transmitter imperfections. IEEE J. Sel. Areas Commun., 29(7):1469–1479, Aug. 2011.
[49] Adam C Polak and Dennis L Goeckel. Identification of wireless devices of users who actively fake their RF fingerprints with artificial data distortion. IEEE Trans. Wireless Commun., 14(11):5889–5899, Nov. 2015.
[50] Muhammad Mahboob Ur Rahman, Aneela Yasmeen, and James Gross. PHY layer authentication via drifting oscillators. In Proc. IEEE Global Commun. Conf. (GLOBECOM), pages 716–721, Austin, TX, USA, Dec. 2014.
[51] Libor Polˇc´ak, Jakub Jir´asek, and Petr Matouˇsek. Comment on ‘remote physical device fingerprinting’. IEEE Trans. Dependable Secure Com-put., 11(5):494–496, Sep. 2014.
[52] Suman Jana and Sneha Kumar Kasera. On fast and accurate detection of unauthorized wireless access points using clock skews. In Proc. 14th Annu. Int. Conf. Mobile Comput. Netw. (MobiCom), pages 104–115, San Francisco, CA, USA, Sep. 2008.
[53] Marius Cristea and Bogdan Groza. Fingerprinting smartphones remotely via ICMP timestamps. IEEE Commun. Lett., 17(6):1081–1083, Jun. 2013.
[54] Peng Hao, Xianbin Wang, and Aydin Behnad. Performance enhancement of I/Q imbalance based wireless device authentication through collabo-ration of multiple receivers. In Proc. IEEE Int. Conf. Commun. (ICC), pages 939–944, Sydney, NSW, Australia, Jun. 2014.
[55] Peng Hao, Xianbin Wang, and Aydin Behnad. Relay authentication by exploiting I/Q imbalance in amplify-and-forward system. In Proc. IEEE Global Commun. Conf. (GLOBECOM), pages 613–618, Austin, TX, USA, Dec. 2014.
[56] Kunal Sankhe, Mauro Belgiovine, Fan Zhou, Shamnaz Riyaz, Stratis Ioannidis, and Kaushik Chowdhury. ORACLE: Optimized radio classi-fication through convolutional neural networks. In Proc. IEEE INFO-COM, pages 370–378, Paris, France, Apr. 2019.
[57] I Chih-Lin, Corbett Rowell, Shuangfeng Han, Zhikun Xu, Gang Li, and Zhengang Pan. Toward green and soft: A 5G perspective. IEEE Commun. Mag., 52(2):66–73, Feb. 2014.
[58] Ibrahim A Hemadeh, Katla Satyanarayana, Mohammed El-Hajjar, and Lajos Hanzo. Millimeter-wave communications: Physical channel mod-els, design considerations, antenna constructions, and link-budget. IEEE Commun. Surveys Tuts., 20(2):870–913, 2018.
[59] Dalia Nandi and Animesh Maitra. Study of rain attenuation effects for 5G mm-wave cellular communication in tropical location. IET Microw., Antennas Propag., 12(9):1504–1507, 2018.
[60] Wenyan Ma, Chenhao Qi, Zaichen Zhang, and Julian Cheng. Sparse channel estimation and hybrid precoding using deep learning for mil-limeter wave massive MIMO. IEEE Trans. Commun., 68(5):2838–2849, May 2020.
[61] Baibhab Chatterjee, Debayan Das, Shovan Maity, and Shreyas Sen. RF-PUF: Enhancing IoT security through authentication of wireless nodes using in-situ machine learning. IEEE Internet Things J., 6(1):388–398, Feb. 2019.
[62] Jie Tang, Aidong Xu, Yixin Jiang, Yunan Zhang, Hong Wen, and Tengyue Zhang. Mmwave MIMO physical layer authentication by using channel sparsity. In Proc. IEEE Int. Conf. Artif. Intell. Inf. Syst. (ICAIIS), pages 221–224, Dalian, China, Mar. 2020.
[63] Liza Afeef, Haji M Furqan, and H¨useyin Arslan. Physical layer authentication scheme in beamspace MIMO systems. IEEE Commun. Lett., 26(7):1484–1488, Jul. 2022.
[64] Mu Niu, Pinchang Zhang, Ji He, Yuanyu Zhang, and Zhiquan Liu. PHY-layer authentication exploiting spatial channel and radiometric signatures for mmwave MIMO systems. IEEE Commun. Lett., 29(9):2108–2112, Sep. 2025.
[65] Yulin Teng, Pinchang Zhang, Xiao Chen, Xiaohong Jiang, and Fu Xiao. PHY-layer authentication exploiting channel sparsity in mmwave MIMO UAV-ground systems. IEEE Trans. Inf. Forensics Security, 19:4642–4657, 2024.
[66] Liza Afeef, Haji M Furqan, and H¨useyin Arslan. Robust tracking-based PHY-authentication in mmwave MIMO systems. IEEE Trans. Inf. Forensics Security, 2024. Early Access.
[67] Sarankumar Balakrishnan, Shreya Gupta, Arupjyoti Bhuyan, Pu Wang, Dimitrios Koutsonikolas, and Zhi Sun. Physical layer identification based on spatial-temporal beam features for millimeter-wave wireless networks. IEEE Trans. Inf. Forensics Security, 15:1831–1845, 2020.
[68] Pinchang Zhang, Keshuang Han, Yuanyu Zhang, Yulong Shen, Fu Xiao, and Xiaohong Jiang. Distributed physical layer authentication frame-work exploiting array pattern feature for mmwave MIMO systems. IEEE Trans. Mobile Comput., 24(7):6430–6445, Jul. 2025.
[69] Pinchang Zhang, Shuangrui Zhao, Weibei Fan, Yulong Shen, Xiaohong Jiang, and Fu Xiao. Reliable PLA with array error features and two-beam transmission in millimeter-wave communication systems. IEEE Trans. Inf. Forensics Security, 20:8760–8772, 2025.
[70] Yulin Teng, Runqing Wang, Ayinuer Nuertai, and Pinchang Zhang. En-hanced two-factor identity authentication for MmWave MIMO systems. IEEE Signal Process. Lett., 32:836–840, 2025.
[71] Yangyang Liu, Pinchang Zhang, Jun Liu, Yulong Shen, and Xiaohong Jiang. Exploiting fine-grained channel/hardware features for PHY-layer authentication in mmwave MIMO systems. IEEE Trans. Inf. Forensics Security, 18:4059–4074, 2023.
[72] Pinchang Zhang, Keshuang Han, Yuanyu Zhang, Yulong Shen, Fu Xiao, and Xiaohong Jiang. Physical layer authentication utilizing beam pattern features in millimeter-wave MIMO systems. IEEE Trans. Dependable Secure Comput., 21(1):1–15, 2024.
[73] Xinyi Li, Yan Zhang, Octavia A. Dobre, and H. Vincent Poor. Physical layer security for integrated sensing and communication: A survey. IEEE Open J. Commun. Soc., 2025.
[74] Xidong Mu and Yuanwei Liu. Semantic communication-assisted physi-cal layer security over fading wiretap channels. In Proc. IEEE Int. Conf. Commun. (ICC), pages 2101–2106. IEEE, 2024.
[75] Zewei Guo, Ranran Sun, Yulong Shen, and Xiaohong Jiang. Covert communication in satellite-terrestrial systems via beamforming and jamming. IEEE Trans. Veh. Technol., 2025.