
Robot Path Planning based on an Improved Q-
learning Method

Hu Xiaomei, Xu Jun
Shanghai Key Laboratory of Intelligent Manufacturing and

Robotics, School of Mechatronic Engineering and
Automation, Shanghai University, Shanghai 200072, China

Chai Jianfei*
Information Technology office, School of Mechatronic

Engineering and Automation, Shanghai University,
Shanghai 200444, China

E-mail:554763131@qq.com

Abstract—Path planning is one of the most basic and
pivotal aspects in research of robots, which is to solve the
walking problem of robots. As a widely used reinforcement
learning method, Q-learning is employed when the robot has
no prior knowledge of how its actions affect its environment.
For Q-learning method, there is a problem of exploration-
utilization in robot path planning. Therefore, robot path
planning based on an improved Q-learning method is proposed.
According to the environment in which the robot is located, a
Markov decision model is established to design the reward-
punishment mechanism and action strategy of the robot in the
path planning. During the robot training process, a heuristic
search function is defined and added to the value iteration
algorithm in order to reduce the invalid path exploration in the
environment. The experimental results show that the proposed
method not only reduces the length of path and improves the
efficiency of path planning, but also accelerates the speed of
robot learning. This indicates the effectiveness of the proposed
method.

Keywords—Reinforcement learning, Q-learning, path
planning, heuristic search

I. INTRODUCTION
Robot path planning is defined as a problem of finding a

proper collision-free path for one or more robots from a start
point to a goal point with regard to different evaluation
criteria [1,2]. The number of feasible paths for a mobile
robot to go from a start point to the goal point is often very
large. Therefore, the path planning problem is one of the
most challenging tasks in mobile robotics [1,3,4,5].

Reinforcement Learning (RL) is one of machine learning
methods and the robot can seek an effective strategy to solve
a continuous decision task based on RL [7]. Q-learning, a
stochastic dynamic programming algorithm in RL, which is
based on the theory of Markov Decision Process (MDP),
does not require the interactive model of a machine-
environment [8,9]. However, for traditional Q-learning, this
is a blind searching for a target in a simple unknown region
full of obstacles. Therefore, traditional Q-learning methods
may not be suitable for a complicated environment. An
improved method based on Q-learning is proposed in order
to overcome the shortcoming of blind searching in this paper.

II. AN IMPROVED Q-LEARNING ALGORITHM

A. Algorithm principle
The Markov Decision Process (MDP) refers to a decision

maker who makes decisions sequentially in a random
dynamic system. That is, according to the state observed at
each moment, the decision maker takes an action selected
from the available actions to make a decision. Therefore, the
entire path planning problem can be abstracted as an MDP,
related parameters are defined.

1) Action set 𝐴𝐴 = {𝑎𝑎𝑖𝑖}, 𝑖𝑖 ∈ {𝑢𝑢𝑢𝑢,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡} . A
robot can randomly generate an action 𝑎𝑎𝑖𝑖;

2) State set 𝑆𝑆 = {𝑠𝑠𝑖𝑖} = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}, 𝑖𝑖 = 1,2, ….

𝑆𝑆 records the positions of the robot during the movement.
𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆 represents the position of the robot in the 𝑖𝑖𝑡𝑡ℎ state.
𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 represent respectively the coordinates of 𝑠𝑠𝑖𝑖. The initial
position of the robot is the start state. Once the robot moves
to the goal state, an episode ends and the robot will reselect
the end position for the next training.

𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡) represents that the robot takes the action 𝑎𝑎𝑖𝑖 at the
time 𝑡𝑡. 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡) represents the robot’s state 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆 at the time 𝑡𝑡.

3) Reward function 𝑟𝑟: By taking an action based on a
state in each episode, the robot will get an instant reward.
For example, 𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)

𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)
= 𝐸𝐸[𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1)

𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡+1)
|𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)] where

𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

 represents that the robot obtains the desired reward 𝑟𝑟
based on the state 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡) and the action 𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡). According to
the state 𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡) and 𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡) , the reward function is set as
Equation (1).

𝑟𝑟 = �
1, 𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡) = 𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)
−1, 𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡) = 𝑅𝑅𝑠𝑠𝑜𝑜(𝑡𝑡)
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒

 (1)

Where, 𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡) represents the current state, 𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)
represents the goal state of a robot at the time 𝑡𝑡 and 𝑅𝑅𝑠𝑠𝑜𝑜(𝑡𝑡)
represents the robot moves to the obstacles at the time 𝑡𝑡 in
the environment.

4) Value function 𝑉𝑉𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)�: At a certain time 𝑡𝑡 , the
robot observes the state of the environment 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡), and then
choose an action 𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡) . After executing the action, the

robot receives a reward 𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

, which evaluates how great
that action is. Then, the state of the robot will change into
𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡 + 1) and the robot will choose the next action
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡 + 1) according to related knowledge. The goal of Q-

2019 International Computer Science and Applications Conference (ICSAC 2019)

Published by IEC © 2019 the Authors and IEC 99

learning is to learn a mapping from states to actions. That is,
the robot is to learn a policy 𝜋𝜋 . The value function
represents a prediction of future returns. In accordance with
a certain strategy in the current state, the robot can obtain
the expected value of cumulative returns. This value is used
as an indicator to evaluate a state. The expression is shown
in Equation (2).

𝑉𝑉𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)� = 𝐸𝐸𝜋𝜋 �𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡+1)

+ 𝛾𝛾𝑉𝑉𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡 + 1)��𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝜋𝜋�
(2)

Where, 0 ≤ 𝛾𝛾 ≤ 1 is discount factor that keeps a trade-
off between the importance of immediate and long-term
rewards. According to Equation (2), value function can be
expressed as Equation (3).

𝑉𝑉𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)� = ∑ 𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)�[𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

+𝑎𝑎𝑖𝑖∈𝐴𝐴

𝛾𝛾 ∑ 𝑝𝑝𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)](3)

In Equation (3),

𝑝𝑝𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

= 𝑃𝑃𝑃𝑃[𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡 + 1)|𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)] (4)

Where, 𝑝𝑝𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

 represents the probability that the
robot takes an action 𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡) and shifts to state 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡 + 1).
𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� is the probability that the robot selects
action 𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡) according to state 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡) under policy π .
Therefore, the optimal state-value function can be expressed
as Equation (5).

𝑉𝑉𝜋𝜋∗ �𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)�

= 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖∈𝐴𝐴 𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

+ 𝛾𝛾 ∑ 𝑝𝑝𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1) 𝑉𝑉𝜋𝜋∗(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡 +
1)) (5)

Each iteration process in the strategy iteration algorithm
is usually composed of two parts: strategy evaluation and
strategy improvement. In the strategy evaluation, the value
function 𝑉𝑉𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)� is calculated according to the current
strategy. In the strategy improvement, the value function
𝑉𝑉𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)� is maximized to 𝑉𝑉𝜋𝜋∗(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)) and the strategy is
improved. The strategy iteration algorithm repeats each
iteration process until the optimal strategy 𝜋𝜋∗ is converged.
According to Equation (4), the optimal strategy 𝜋𝜋∗ can be
expressed as Equation (6).

𝜋𝜋∗ = 𝑎𝑎𝑎𝑎𝑎𝑎max𝜋𝜋 𝑉𝑉𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)� ,∀𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡) ∈ 𝑅𝑅𝑆𝑆(𝑡𝑡) (6)

5) Q value function 𝑄𝑄𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� : The value
iterative algorithm continuously iterates the Q value, and
finally all the Q values converge to an optimal value.
𝑄𝑄𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� can be regarded as a Q function when an
action 𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡) has been executed under the state 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡), and
the optimal Q value could be obtained. For Q-learning
which learns the value function over state-action pairs, Q

value function can be expressed as Equation (7).

𝑄𝑄𝜋𝜋∗ �𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� = 𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

+ 𝛾𝛾 ∑ 𝑝𝑝𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1) 𝜋𝜋∗
(7)

Where, 𝑄𝑄𝜋𝜋∗�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� stands for the value of taking
action 𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡) in state 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡) under policy 𝜋𝜋∗. The recursive
definition of Q-function provides the basis for the Q-
learning algorithm. The one-step update formula of Q-
learning is Equation (8).

𝑄𝑄𝜋𝜋 �𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� = (1 − 𝛼𝛼)𝑄𝑄𝜋𝜋 �𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� +

𝛼𝛼𝛼𝛼𝜋𝜋∗ �𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� (8)

Where, 0 ≤ 𝛼𝛼 < 1 is the learning rate that defines the
importance of recently obtained information compared to
old information in updating Q value. Therefore, Q value
function is a predictive function that estimates the expected
return from the current state-action pair.

6) Heuristic function 𝐻𝐻𝜋𝜋(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)):

Set 𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡) = (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐) , where 𝑥𝑥𝑐𝑐 , 𝑦𝑦𝑐𝑐 represent
respectively the coordinates of 𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡). 𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡) represents the
robot’s neighbor states at the time 𝑡𝑡, which are adjacent of
the current state.

𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡) = �𝑥𝑥𝑛𝑛𝑖𝑖 ,𝑦𝑦𝑛𝑛𝑖𝑖� , i = {up, down, left , right} (9)

Where, 𝑥𝑥𝑛𝑛𝑖𝑖 ,𝑦𝑦𝑛𝑛𝑖𝑖 represent respectively the coordinates of
𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡) . Set 𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡) = (𝑥𝑥𝑔𝑔,𝑦𝑦𝑔𝑔) , where 𝑥𝑥𝑔𝑔 , 𝑦𝑦𝑔𝑔 represent
respectively the coordinates of 𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡) . 𝐷𝐷 represent the
distance between two states, for example, 𝐷𝐷(𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡))
represents the distance between the current state 𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡) and
the goal state 𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡).

According to the comparison of 𝐷𝐷(𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)) and
𝐷𝐷(𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)), 𝑅𝑅𝑠𝑠𝑛𝑛𝑢𝑢𝑢𝑢(𝑡𝑡) and 𝑅𝑅𝑠𝑠𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) could be deleted
in next path searching episode. Therefore, for the purpose of
improving the learning efficiency, a suitable heuristic
function 𝐻𝐻𝜋𝜋(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)) is set as Equation (10).

𝐻𝐻𝜋𝜋(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)) = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝐷𝐷(𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)),
𝐷𝐷(𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡))) (10)

Where, 𝐷𝐷(𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)) = �(𝑥𝑥𝑔𝑔 − 𝑥𝑥𝑐𝑐)2 + (𝑦𝑦𝑔𝑔 − 𝑦𝑦𝑐𝑐)2,

 𝐷𝐷(𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)) = �(𝑥𝑥𝑔𝑔 − 𝑥𝑥𝑛𝑛𝑖𝑖)
2 + (𝑦𝑦𝑔𝑔 − 𝑦𝑦𝑛𝑛𝑖𝑖)

2.

The heuristic function 𝐻𝐻𝜋𝜋(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)) is applied to
𝑄𝑄𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� , Equation (8) could be rewritten by
Equation (11).

𝑄𝑄𝜋𝜋 �𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� = (1 − 𝛼𝛼)𝑄𝑄𝜋𝜋 �𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� +
𝛼𝛼𝐻𝐻𝜋𝜋(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)) (11)

100

Equation (11) not only considers the Q value under
random environment, but also accelerates the convergence
of Q value.

B. Algorithm description
In order to improve the efficiency of Q-learning, it is

worthy of exploring how to utilize reinforcement learning
without prior knowledge. A mechanism of search-space
reduction was proposed in section 3.1, in which a robot
could reduce the state space gradually. The nature of the
algorithm is giving up some states during the path searching.
In the proposed algorithm, Open_list is used to store the
current state and its neighbor states. Closed_list is used to
store the left states after each iteration. According to Q
value function 𝑄𝑄𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� , Q table stores Q value
after each episode. When fewer states are deposited in the
state space, the algorithm efficiency will be promoted.

A heuristically accelerated Q-learning algorithm solves
an MDP problem with explicit use of a heuristic function
𝐻𝐻𝜋𝜋(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)) for influencing the choice of actions by
the learning robot. The algorithm is described.

Initialize Open_list, Closed_list and Q table;

Repeat (for each episode):

a) Initialize the parameters 𝛾𝛾,𝛼𝛼;

b) Repeat (for each step of episode):

 Open_list← 𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡),𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡);

 Calculate 𝐷𝐷 �𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)� according to Equation
(10);

 If 𝐷𝐷 �𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)�=0:

 Break;

 Else:

 𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡) ← 𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡);

 For each 𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡):

 Calculate 𝐷𝐷(𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)) according to Equation
(10);

 If 𝐷𝐷(𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)) < 𝐷𝐷(𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)):

 Set 𝐻𝐻𝜋𝜋(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)) ← 𝐷𝐷(𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡));

 Delete 𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡), add 𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡);

 State 𝑆𝑆 ←Closed_list;

 Else:

 Set 𝐻𝐻𝜋𝜋(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)) ← 𝐷𝐷(𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡));
 Delete 𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡), add 𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡)

State 𝑆𝑆 ←Closed_list;
 Update Open_list, Closed_list and State 𝑆𝑆;
 Endif
 Endfor
 Endif
 Execute 𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡), 𝑟𝑟, 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡 + 1)
 Calculate 𝜋𝜋∗from 𝑉𝑉𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)�

Update Q table: e.g., ε−greedy
Calculate 𝑄𝑄𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� according to Equation (11);

𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡) ← 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡 + 1);
Until 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡) is terminal;
Until the learning process ends.

III. EXPERIMENT RESULT AND ANALYSIS
In the experiment, a complicated packaging workshop

environment is built up with the setting of 30 × 30 (grid
representation) to test the feasibility of the proposed method.
In this packaging environment, a pink block represents the
start position, a red block represents the end position, the
sequential black blocks are obstacles, the white blocks are
efficient points that robot could be arrived in path planning.
The start state and the goal state are 𝑅𝑅𝑠𝑠𝑠𝑠(𝑡𝑡) = (23,22) and
𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡) = (9,3), respectively. The parameter setting for the
learning algorithms is as follows: exploration policy
𝜀𝜀 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , 𝜀𝜀 = 0.1 , discounted factor 𝛾𝛾 = 0.9 , learning
rate 𝛼𝛼 = 0.01, all the Q values are initialized at 0.

Fig. 1 is the statistical analysis of steps per episode of the
three methods mentioned above. The whole process of
searching has been repeated over 5000 times. Meanwhile, for
a clear comparison of the three path planning methods, path
length is recorded every 200 episodes in Fig. 1. The result
indicates that the proposed method not only reduces the
length of path and improves the efficiency of path planning,
but also accelerates the speed of robot learning.

Fig.1. The performance analysis of three methods

Cost value 𝐶𝐶 is generated by the robot moving to the
obstacle or the goal state. Meanwhile, cost value is calculated
to evaluate the state space during each episode in robot’s
path planning. The robot will consume energy from state
𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡) to state 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡 + 1) during each step in a navigation
task. Cost value 𝐶𝐶 is calculated according to the reward
function 𝑟𝑟. The formula is shown in Equation (12).

𝐶𝐶 = 𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

+ 𝛾𝛾𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡+1)

+ 𝛾𝛾2𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+2)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡+2)

+ ⋯

= ∑ 𝛾𝛾𝑖𝑖𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+𝑖𝑖)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡+𝑖𝑖)

𝑖𝑖=0 (12)

The three processes of path searching have been repeated
20000 times and the cost value per episode is shown in Fig. 2.
As shown in Fig. 2(a), the cost value becomes stable at about
6000 rounds in standard QL algorithm. In Fig. 2(b), the cost

101

value of RNH-QL [9] algorithm becomes stable at about
9500 rounds. However, the cost value of an improved QL
algorithm becomes stable at about 12000 rounds in Fig.2(c).
Therefore, an improved QL algorithm performs a good result,
which demonstrates that the robot has less state space in the
process of path planning. On the other hand, the cost value in
each episode also represents the energy consumption of the
robot. In contrast, the result illustrates that the robot has the
least energy consumption in an improved QL algorithm.

(a) Cost values in standard QL

(b) Cost values in RNH-QL

(c) Cost values in an improved QL
Fig.2. Cost values in three methods

Fig. 3 shows the experimental results of path planning
based on improved QL. In this complicated packaging
workshop environment, the robot has to go through many
fixed obstacles and some possible dynamic obstacles before
it reaches the goal state 𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡). The result shows that the
robot moves to the global goal without being trapped in a
local minimum through learning. The path searching using
the proposed algorithm makes the robot competent to
navigate in a large unknown environment and to adapt to
dynamic environments as well.

Fig.3. The performance of robot in an environment with more dynamic
obstacles

IV. CONCLUSION
For standard Q-learning method and some existing

improved methods, there is a problem of invalid path
exploration in robot path planning. To support mobile robots
to effectively make a better decision, a heuristic function is
defined and it is applied to the value iteration algorithm in
the path searching missions. The robot path planning
algorithm based on the improved Q-leaning aims at speeding
up the learning process and reducing the searching time. The
experimental results show that the algorithm has the
advantage of more adaptability to the environment for a
robot in a complex environment. Meanwhile, it can help the
robot reduce a large amount of state-action information by
utilizing the heuristic function during the path planning
process, which improves the efficiency of path planning.

REFERENCES
[1] Tsai C-C, Huang H-C, Chan C-K (2011) Parallel elite genetic

algorithm and its application to global path planning for autonomous
robot navigation. IEEE Trans Ind Electron 58(10):4813-4821.

[2] Fetanat M, Haghzad S, Shouraki SB (2015) Optimization of dynamic
mobile robot path planning based on evolutionary methods. In: IEEE
AI & Robotics (IRANOPEN), 2015.

[3] Soltani AR et al (2002) Path planning in construction sites:
performance evaluation of the Dijkstra, A*, and GA search algorithms.
Adv Eng Inform 16(4):291-303.

[4] Zhang J Q, Hu X M, Kang J S, Xiong F, Zeng N (2017) Novel
Cylinder Movement Modeling Method Based on Aerodynamics.
Chinese Journal of Mechanical Engineering 30(5):1193-1202.

[5] Konar A et al (2013) A deterministic improved Q-learning for path
planning of a mobile robot. IEEE Trans Syst Man Cybern Syst
43(5):1141-1153.

[6] Das P, Behera H, Panigrahi B (2015) Intelligent-based multi-robot
path planning inspired by improved classical Q-learning and
improved particle swarm optimization with perturbed velocity. Int J
Eng Sci Technol 19:651-669.

[7] Banerjee D, et al (2012) Path-planning of mobile agent using Q-
learning and real-time communication in an unfavorable situation. In:
2012 world congress on information and communication technologies
(WICT).

[8] Li S, Xu X, Zuo L (2015) Dynamic path planning of a mobile robot
with improved Q-learning algorithm. In: 2015 IEEE international
conference on information and automation.

[9] Zhang Fengyun, Duan Shukai, Wang Lidan. Route searching based
on neural networks and heuristic reinforcement learning. Cogn
Neurodyn (2017)11:245-258

102

	I. Introduction
	II. An Improved Q-Learning Algorithm
	A. Algorithm principle
	B. Algorithm description

	III. Experiment result and analysis
	IV. Conclusion
	References

