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Abstract—Path planning is one of the most basic and 
pivotal aspects in research of robots, which is to solve the 
walking problem of robots. As a widely used reinforcement 
learning method, Q-learning is employed when the robot has 
no prior knowledge of how its actions affect its environment. 
For Q-learning method, there is a problem of exploration-
utilization in robot path planning. Therefore, robot path 
planning based on an improved Q-learning method is proposed. 
According to the environment in which the robot is located, a 
Markov decision model is established to design the reward-
punishment mechanism and action strategy of the robot in the 
path planning. During the robot training process, a heuristic 
search function is defined and added to the value iteration 
algorithm in order to reduce the invalid path exploration in the 
environment. The experimental results show that the proposed 
method not only reduces the length of path and improves the 
efficiency of path planning, but also accelerates the speed of 
robot learning. This indicates the effectiveness of the proposed 
method. 

Keywords—Reinforcement learning, Q-learning, path 
planning, heuristic search  

I. INTRODUCTION  
Robot path planning is defined as a problem of finding a 

proper collision-free path for one or more robots from a start 
point to a goal point with regard to different evaluation 
criteria [1,2]. The number of feasible paths for a mobile 
robot to go from a start point to the goal point is often very 
large. Therefore, the path planning problem is one of the 
most challenging tasks in mobile robotics [1,3,4,5].  

Reinforcement Learning (RL) is one of machine learning 
methods and the robot can seek an effective strategy to solve 
a continuous decision task based on RL [7]. Q-learning, a 
stochastic dynamic programming algorithm in RL, which is 
based on the theory of Markov Decision Process (MDP), 
does not require the interactive model of a machine-
environment [8,9]. However, for traditional Q-learning, this 
is a blind searching for a target in a simple unknown region 
full of obstacles. Therefore, traditional Q-learning methods 
may not be suitable for a complicated environment. An 
improved method based on Q-learning is proposed in order 
to overcome the shortcoming of blind searching in this paper.  

II. AN IMPROVED Q-LEARNING ALGORITHM 

A. Algorithm principle  
The Markov Decision Process (MDP) refers to a decision 

maker who makes decisions sequentially in a random 
dynamic system. That is, according to the state observed at 
each moment, the decision maker takes an action selected 
from the available actions to make a decision. Therefore, the 
entire path planning problem can be abstracted as an MDP, 
related parameters are defined. 

1) Action set  𝐴𝐴 = {𝑎𝑎𝑖𝑖}, 𝑖𝑖 ∈  {𝑢𝑢𝑢𝑢,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡} . A 
robot can randomly generate an action 𝑎𝑎𝑖𝑖; 

2) State set 𝑆𝑆 = {𝑠𝑠𝑖𝑖} = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}, 𝑖𝑖 = 1,2, …. 

𝑆𝑆 records the positions of the robot during the movement. 
𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆  represents the position of the robot in the 𝑖𝑖𝑡𝑡ℎ  state. 
𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 represent respectively the coordinates of 𝑠𝑠𝑖𝑖. The initial 
position of the robot is the start state. Once the robot moves 
to the goal state, an episode ends and the robot will reselect 
the end position for the next training. 

𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡) represents that the robot takes the action 𝑎𝑎𝑖𝑖 at the 
time 𝑡𝑡. 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡) represents the robot’s state 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆 at the time 𝑡𝑡. 

3) Reward function 𝑟𝑟: By taking an action based on a 
state in each episode, the robot will get an instant reward. 
For example, 𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)

𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)
= 𝐸𝐸[𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1)

𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡+1)
|𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)]  where 

𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

 represents that the robot obtains the desired reward 𝑟𝑟 
based on the state 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡) and the action 𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡). According to 
the state 𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡) and 𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡) , the reward function is set as 
Equation (1). 

𝑟𝑟 =  �
1,        𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡) =   𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡) 
−1,       𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡)  =  𝑅𝑅𝑠𝑠𝑜𝑜(𝑡𝑡)  
0,                            𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒

                    (1) 

Where, 𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡)  represents the current state, 𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡) 
represents the goal state of a robot at the time 𝑡𝑡 and 𝑅𝑅𝑠𝑠𝑜𝑜(𝑡𝑡) 
represents the robot moves to the obstacles at the time 𝑡𝑡 in 
the environment. 

4) Value function 𝑉𝑉𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)�: At a certain time 𝑡𝑡 , the 
robot observes the state of the environment 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡), and then 
choose an action 𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡) . After executing the action, the 

robot receives a reward 𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

, which evaluates how great 
that action is. Then, the state of the robot will change into 
𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡 + 1)  and the robot will choose the next action 
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡 + 1) according to related knowledge. The goal of Q-
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learning is to learn a mapping from states to actions. That is, 
the robot is to learn a policy 𝜋𝜋 . The value function 
represents a prediction of future returns. In accordance with 
a certain strategy in the current state, the robot can obtain 
the expected value of cumulative returns. This value is used 
as an indicator to evaluate a state. The expression is shown 
in Equation (2). 

𝑉𝑉𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)�    = 𝐸𝐸𝜋𝜋 �𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡+1)

+ 𝛾𝛾𝑉𝑉𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡 + 1)��𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝜋𝜋�  
(2) 

Where, 0 ≤ 𝛾𝛾 ≤ 1 is discount factor that keeps a trade-
off between the importance of immediate and long-term 
rewards. According to Equation (2), value function can be 
expressed as Equation (3). 

𝑉𝑉𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)� = ∑ 𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)�[𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

+𝑎𝑎𝑖𝑖∈𝐴𝐴

𝛾𝛾 ∑ 𝑝𝑝𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡) ](3) 

In Equation (3),   

𝑝𝑝𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

= 𝑃𝑃𝑃𝑃[𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡 + 1)|𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)]         (4) 

Where, 𝑝𝑝𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

 represents the probability that the 
robot takes an action 𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡) and shifts to state 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡 + 1). 
𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)�  is the probability that the robot selects 
action 𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)  according to state 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)  under policy π . 
Therefore, the optimal state-value function can be expressed 
as Equation (5). 

𝑉𝑉𝜋𝜋∗ �𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)�  

= 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎𝑖𝑖∈𝐴𝐴 𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

+ 𝛾𝛾 ∑ 𝑝𝑝𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1) 𝑉𝑉𝜋𝜋∗(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡 +
1))    (5) 

Each iteration process in the strategy iteration algorithm 
is usually composed of two parts: strategy evaluation and 
strategy improvement. In the strategy evaluation, the value 
function 𝑉𝑉𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)�  is calculated according to the current 
strategy. In the strategy improvement, the value function 
𝑉𝑉𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)� is maximized to 𝑉𝑉𝜋𝜋∗(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)) and the strategy is 
improved. The strategy iteration algorithm repeats each 
iteration process until the optimal strategy 𝜋𝜋∗ is converged. 
According to Equation (4), the optimal strategy 𝜋𝜋∗ can be 
expressed as Equation (6). 

𝜋𝜋∗ = 𝑎𝑎𝑎𝑎𝑎𝑎max𝜋𝜋 𝑉𝑉𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)� ,∀𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡) ∈ 𝑅𝑅𝑆𝑆(𝑡𝑡)          (6) 

5) Q value function 𝑄𝑄𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� : The value 
iterative algorithm continuously iterates the Q value, and 
finally all the Q values converge to an optimal value. 
𝑄𝑄𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� can be regarded as a Q function when an 
action 𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡) has been executed under the state 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡), and 
the optimal Q value could be obtained. For Q-learning 
which learns the value function over state-action pairs, Q 

value function can be expressed as Equation (7). 

𝑄𝑄𝜋𝜋∗ �𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� = 𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

+ 𝛾𝛾 ∑ 𝑝𝑝𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1) 𝜋𝜋∗      
(7) 

Where, 𝑄𝑄𝜋𝜋∗�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� stands for the value of taking 
action 𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡) in state 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡) under policy 𝜋𝜋∗. The recursive 
definition of Q-function provides the basis for the Q-
learning algorithm. The one-step update formula of Q-
learning is Equation (8). 

𝑄𝑄𝜋𝜋 �𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� = (1 − 𝛼𝛼)𝑄𝑄𝜋𝜋 �𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� +

𝛼𝛼𝛼𝛼𝜋𝜋∗ �𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)�   (8) 

Where, 0 ≤ 𝛼𝛼 < 1 is the learning rate that defines the 
importance of recently obtained information compared to 
old information in updating Q value. Therefore, Q value 
function is a predictive function that estimates the expected 
return from the current state-action pair. 

6)  Heuristic function 𝐻𝐻𝜋𝜋(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)): 

Set 𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡) = (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐) , where 𝑥𝑥𝑐𝑐 ,  𝑦𝑦𝑐𝑐  represent 
respectively the coordinates of 𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡). 𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡) represents the 
robot’s neighbor states at the time 𝑡𝑡, which are adjacent of 
the current state. 

𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡) = �𝑥𝑥𝑛𝑛𝑖𝑖 ,𝑦𝑦𝑛𝑛𝑖𝑖� , i = {up, down, left , right}       (9) 

Where, 𝑥𝑥𝑛𝑛𝑖𝑖 ,𝑦𝑦𝑛𝑛𝑖𝑖 represent respectively the coordinates of 
𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡) . Set 𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡) = (𝑥𝑥𝑔𝑔,𝑦𝑦𝑔𝑔) , where 𝑥𝑥𝑔𝑔 ,  𝑦𝑦𝑔𝑔  represent 
respectively the coordinates of 𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡) . 𝐷𝐷  represent the 
distance between two states, for example, 𝐷𝐷(𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)) 
represents the distance between the current state 𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡) and 
the goal state 𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡).  

According to the comparison of 𝐷𝐷(𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡))  and 
𝐷𝐷(𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)), 𝑅𝑅𝑠𝑠𝑛𝑛𝑢𝑢𝑢𝑢(𝑡𝑡) and 𝑅𝑅𝑠𝑠𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡) could be deleted 
in next path searching episode. Therefore, for the purpose of 
improving the learning efficiency, a suitable heuristic 
function 𝐻𝐻𝜋𝜋(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)) is set as Equation (10). 

𝐻𝐻𝜋𝜋(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)) = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝐷𝐷(𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)),
𝐷𝐷(𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)))    (10) 

Where,  𝐷𝐷(𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)) =  �(𝑥𝑥𝑔𝑔 − 𝑥𝑥𝑐𝑐)2 + (𝑦𝑦𝑔𝑔 − 𝑦𝑦𝑐𝑐)2, 

 𝐷𝐷(𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)) =  �(𝑥𝑥𝑔𝑔 − 𝑥𝑥𝑛𝑛𝑖𝑖)
2 + (𝑦𝑦𝑔𝑔 − 𝑦𝑦𝑛𝑛𝑖𝑖)

2. 

The heuristic function 𝐻𝐻𝜋𝜋(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡))  is applied to 
𝑄𝑄𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� , Equation (8) could be rewritten by 
Equation (11). 

𝑄𝑄𝜋𝜋 �𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� = (1 − 𝛼𝛼)𝑄𝑄𝜋𝜋 �𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� +
𝛼𝛼𝐻𝐻𝜋𝜋(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡))       (11) 
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Equation (11) not only considers the Q value under 
random environment, but also accelerates the convergence 
of Q value. 

B. Algorithm description  
In order to improve the efficiency of Q-learning, it is 

worthy of exploring how to utilize reinforcement learning 
without prior knowledge. A mechanism of search-space 
reduction was proposed in section 3.1, in which a robot 
could reduce the state space gradually. The nature of the 
algorithm is giving up some states during the path searching. 
In the proposed algorithm, Open_list  is used to store the 
current state and its neighbor states. Closed_list is used to 
store the left states after each iteration. According to Q 
value function 𝑄𝑄𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� , Q table  stores Q value 
after each episode. When fewer states are deposited in the 
state space, the algorithm efficiency will be promoted. 

A heuristically accelerated Q-learning algorithm solves 
an MDP problem with explicit use of a heuristic function 
𝐻𝐻𝜋𝜋(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)) for influencing the choice of actions by 
the learning robot. The algorithm is described. 

Initialize Open_list, Closed_list and Q table; 

Repeat (for each episode): 

a) Initialize the parameters 𝛾𝛾,𝛼𝛼; 

b) Repeat (for each step of episode): 

     Open_list← 𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡),𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡); 

  Calculate 𝐷𝐷 �𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)�  according to Equation 
(10); 

  If 𝐷𝐷 �𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)�=0: 

      Break; 

  Else: 

      𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡) ← 𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡); 

      For each 𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡): 

      Calculate 𝐷𝐷(𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)) according to Equation 
(10); 

         If 𝐷𝐷(𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)) < 𝐷𝐷(𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)): 

              Set 𝐻𝐻𝜋𝜋(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)) ←  𝐷𝐷(𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)); 

              Delete 𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡), add 𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡); 

              State 𝑆𝑆 ←Closed_list; 

         Else: 

              Set 𝐻𝐻𝜋𝜋(𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)) ←  𝐷𝐷(𝑅𝑅𝑠𝑠𝑛𝑛𝑖𝑖(𝑡𝑡),𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡)); 
              Delete 𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡), add 𝑅𝑅𝑠𝑠𝑐𝑐(𝑡𝑡) 

State 𝑆𝑆 ←Closed_list; 
         Update Open_list, Closed_list and State 𝑆𝑆; 
         Endif 
       Endfor 
     Endif 
     Execute 𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡), 𝑟𝑟, 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡 + 1) 
     Calculate 𝜋𝜋∗from 𝑉𝑉𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)� 

Update Q table: e.g., ε−greedy 
Calculate 𝑄𝑄𝜋𝜋�𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡),𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)� according to Equation (11); 

𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡) ← 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡 + 1); 
Until 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡) is terminal; 
Until the learning process ends. 

III. EXPERIMENT RESULT AND ANALYSIS  
In the experiment, a complicated packaging workshop 

environment is built up with the setting of 30 × 30 (grid 
representation) to test the feasibility of the proposed method. 
In this packaging environment, a pink block represents the 
start position, a red block represents the end position, the 
sequential black blocks are obstacles, the white blocks are 
efficient points that robot could be arrived in path planning. 
The start state and the goal state are 𝑅𝑅𝑠𝑠𝑠𝑠(𝑡𝑡) = (23,22) and 
𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡) = (9,3), respectively. The parameter setting for the 
learning algorithms is as follows: exploration policy 
𝜀𝜀 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , 𝜀𝜀 = 0.1 , discounted factor 𝛾𝛾 = 0.9 , learning 
rate 𝛼𝛼 = 0.01, all the Q values are initialized at 0.  

Fig. 1 is the statistical analysis of steps per episode of the 
three methods mentioned above. The whole process of 
searching has been repeated over 5000 times. Meanwhile, for 
a clear comparison of the three path planning methods, path 
length is recorded every 200 episodes in Fig. 1. The result 
indicates that the proposed method not only reduces the 
length of path and improves the efficiency of path planning, 
but also accelerates the speed of robot learning. 

 
Fig.1. The performance analysis of three methods 

Cost value 𝐶𝐶  is generated by the robot moving to the 
obstacle or the goal state. Meanwhile, cost value is calculated 
to evaluate the state space during each episode in robot’s 
path planning. The robot will consume energy from state 
𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡) to state 𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡 + 1) during each step in a navigation 
task. Cost value 𝐶𝐶  is calculated according to the reward 
function 𝑟𝑟. The formula is shown in Equation (12). 

𝐶𝐶 =  𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡)

+ 𝛾𝛾𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+1)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡+1)

+ 𝛾𝛾2𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+2)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡+2)

+ ⋯    

= ∑ 𝛾𝛾𝑖𝑖𝑟𝑟𝑅𝑅𝑠𝑠𝑖𝑖(𝑡𝑡+𝑖𝑖)
𝑅𝑅𝑎𝑎𝑖𝑖(𝑡𝑡+𝑖𝑖)

𝑖𝑖=0    (12) 

The three processes of path searching have been repeated 
20000 times and the cost value per episode is shown in Fig. 2. 
As shown in Fig. 2(a), the cost value becomes stable at about 
6000 rounds in standard QL algorithm. In Fig. 2(b), the cost 
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value of RNH-QL [9] algorithm becomes stable at about 
9500 rounds. However, the cost value of an improved QL 
algorithm becomes stable at about 12000 rounds in Fig.2(c). 
Therefore, an improved QL algorithm performs a good result, 
which demonstrates that the robot has less state space in the 
process of path planning. On the other hand, the cost value in 
each episode also represents the energy consumption of the 
robot. In contrast, the result illustrates that the robot has the 
least energy consumption in an improved QL algorithm. 

 
(a) Cost values in standard QL 

 
(b) Cost values in RNH-QL 

 
(c) Cost values in an improved QL 
Fig.2. Cost values in three methods 

Fig. 3 shows the experimental results of path planning 
based on improved QL. In this complicated packaging 
workshop environment, the robot has to go through many 
fixed obstacles and some possible dynamic obstacles before 
it reaches the goal state 𝑅𝑅𝑠𝑠𝑔𝑔(𝑡𝑡). The result shows that the 
robot moves to the global goal without being trapped in a 
local minimum through learning. The path searching using 
the proposed algorithm makes the robot competent to 
navigate in a large unknown environment and to adapt to 
dynamic environments as well. 

 
Fig.3. The performance of robot in an environment with more dynamic 
obstacles 

IV. CONCLUSION  
For standard Q-learning method and some existing 

improved methods, there is a problem of invalid path 
exploration in robot path planning. To support mobile robots 
to effectively make a better decision, a heuristic function is 
defined and it is applied to the value iteration algorithm in 
the path searching missions. The robot path planning 
algorithm based on the improved Q-leaning aims at speeding 
up the learning process and reducing the searching time. The 
experimental results show that the algorithm has the 
advantage of more adaptability to the environment for a 
robot in a complex environment. Meanwhile, it can help the 
robot reduce a large amount of state-action information by 
utilizing the heuristic function during the path planning 
process, which improves the efficiency of path planning. 
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