
An Efficient and Privacy-preserving Ranked Fuzzy
Keywords Search over Encrypted Cloud Data

Xianglai Yang
State Grid of China Technology

College
Jinan, China

Jianmei Cao
State Grid of China Technology

College
Jinan, China

Youjie Wang
State Grid of China Technology

College
Jinan, China

Abstract—As cloud computing becomes widespread, more
and more users prefer to outsource their local sensitive data
into the cloud. In order to protect data privacy, these sensitive
data usually have to be encrypted before outsourcing, which
makes effective data utilization a very difficult task. Although
traditional searchable encryption techniques allow users to
securely search over encrypted cloud data, they only support
exact single keyword search, i.e. they do not allow any minor
spelling errors or format inconsistencies. Besides, these
traditional schemes only support Boolean search, without
capturing any relevance of data files and rarely sort the search
result. Recently, fuzzy keyword search over encrypted data
techniques are introduced to resolve the problem of spelling
errors and format inconsistencies. But these methods may
incur large index size, search result inaccuracy and high search
complexity, which greatly reduce the system usability and
efficiency. This paper proposes the solution for privacy
preserving ranked fuzzy keyword search over encrypted cloud
data with small index. K-grams and Jaccard coefficient are
utilized to construct fuzzy keyword set and produce fuzzy
results, and an efficient relevance criteria is also provided to
capture the relevance between data files and search requests.
Extensive experimental results show the efficiency of our
proposed method.

Keywords—K-Gram, Fuzzy Keyword Search, Ranked
Keyword Search, Searchable Encryption, Cloud Computing

I. INTRODUCTION
Recently, with the rapid development of cloud

computing, more and more individuals and enterprises
(collectively called data users) prefer to outsource their local
data into the cloud server in order to save storage costs and
enjoy the on-demand high quality applications. However,
the server is considered as “honest but curious” and is not
fully trusted by data owners. To protect data privacy,
sensitive data such as the patients' health information or
personal health records, government documents, emails
have to be encrypted before outsourcing, which makes
efficient data utilization a very challenge task. Besides, in
cloud computing, some data owners may want to share their
outsourced data with many other data users. And the single
user might only intend to search certain data files in a given
occasion.

Although traditional searchable encryption techniques [1,
2, 3, 4] could achieve the security and efficiency by creating
an index for each keyword and associate the keyword with
the data files, they may have some drawbacks. First, they
only support exact keyword search, i.e., they do not allow
any minor spelling errors and format inconsistencies[5],

which greatly reduce the system usability. It is quite normal
that users may input keywords that are not precisely match
the pre-set keywords. Second, these schemes only support
Boolean search, without capturing any relevance between
data files and search request, and rarely sort the search result.
Users have to retrieve all of the received files to find the
ones they most interested in, which may incur large post-
processing costs. Although the state-of-the-art information
retrieval techniques have already utilized a variety of
scoring mechanisms [6] to rank the relevance of data files,
these plaintext-based schemes are not suitable in the context
of encrypted data. Besides, they are too slow to be used on a
large data collection.

This paper proposes the solution for privacy preserving
ranked fuzzy keyword search over encrypted cloud data. K-
gram is used to construct fuzzy keyword set and Jaccard
coefficient to quantify keyword similarity[11], avoiding
enumerating all fuzzy keywords and reducing the index
space and search space. We eliminate keywords with
Jaccard coefficient smaller than our threshold value. After
eliminating, it may greatly reduce the index size, storage
and communication costs. In addition, an efficient relevance
criteria (e.g.,) is also used to capture the
relevance between data files and search requests, which
named ad the criteria relevance score. For security
consideration, One-to-many Order Preserving Mapping
(OPM) algorithm is utilized to encrypt the score and Order-
Preserving Symmetric Encryption (OPSE) scheme in [12, 8].

The rest of paper is organized as follows. Section II
summarizes the features of related work. Section III
introduces the system model, threat model, and our design.
Section IV provides the construction and details of our
proposed scheme. Section V presents the security and
efficiency analysis. Finally, section VI concludes the paper.

II. RELATED WORKS

A. Searchable encryption
Existing searchable encryption schemes generally create

an encrypted searchable index for each keyword and
associate the keyword with the data files which contain the
keyword. Boneh et al. [2] proposed a public key encryption
(PKE) scheme, in which each file is encrypted using public
key by data owners and the authorized data users can search
the files using their private key. But this scheme fails
regarding access policy and dictionary attack, and it takes
too much time to calculate public key. Paper [13] proposed
a general search scheme called predicate encryption

2019 International Computer Science and Applications Conference (ICSAC 2019)

Published by IEC © 2019 the Authors and IEC 17

schemes, they proposed to support both conjunctive and
non-conjunctive query. However, none of those existing
Boolean keyword searchable encryption techniques
supported ranked or fuzzy keyword search.

B. Fuzzy keyword searchable encryption
Li et al. [5] first solved the problem of fuzzy keyword

search over encrypted data. They proposed the “Wild-card-
based Fuzzy Set Construction (WFSC)”, in which each
keyword needs to build a fuzzy set, they use edit distance to
quantify keyword similarity. An improved method,
“Dictionary-based Fuzzy Set Construction (DFSC)” is
proposed in [7], in which each keyword is corresponding
with the fuzzy keywords.

C. Ranked keyword searchable encryption
Ranked keyword search captured the relevance between

data files and search request and ranks the search results.
Boldyreva et al. [12] proposed a order preserving symmetric
encryption (OPSE) scheme, it supports deterministic
property, in which a random coin generator and sampling
function was implemented. Wang et al. [8] introduced a
more secure ranked keyword search scheme over encrypted
cloud data, it used Order Preserving Mapping (OPM)
algorithm to encrypt the score. Cao et al. [9] proposed
several improvements such as multi-keyword search feature.

D. Multi-keywords searchable encryption
Many literatures tried to improve the efficiency and

security of a single keyword search scheme. Golle et al. [14]
first proposed the conjunctive keyword search technique,
and Byun et al. [15] introduced a more efficient conjunctive
keyword search scheme. Cao et al. [9] presented a muti-
keyword search scheme over encrypted cloud data and
established various privacy requirements. Liu et al. [16]
allowed the cloud server to participate in the partial
decryption of the data files.

III. PROBLEM FORMULATIONS

A. Abbreviations and Acronyms
We consider a cloud system consisting of three entities

in this paper: cloud server, data owner and data user, as Fig.
1 illustrates.

Fig. 1. Frame of keyword search over encrypted cloud data

In our system model, data owner has a collection of
files and intends to outsource them
to the cloud server in encrypted form , and a predefined
set of distinct keywords is extract
from . In order to search on the encrypted data effectively,
data owner will first build a secure searchable index for
each keyword in before outsourcing. Then outsourcing

all the encrypted indices and data files to the cloud
server.

In this paper we assume that the authorization between
data owner and data users have been appropriately done. An
authorized user can input a search request and selectively
retrieve files which he/she interests. To search the file
collection for a given search request such as , the
authorized user first computes a fuzzy set of and then
acquires a corresponding trapdoor through search
control mechanisms such as broadcast encryption. Upon
receiving , the cloud server is responsible for searching
the index and return corresponding set of encrypted
file IDs. To improve the search accuracy, the search result
should be ranked by the cloud server according to some
ranking criteria.

The proposed ranked fuzzy keyword search scheme
returns the results according to the following rules.

1) If the user's search request exactly matches the
pre-set keyword, the cloud server returns corresponding
ranked files containing the keyword;

2) If exact match fails, i.e., there exists minor spelling
errors or format inconsistencies in the search request, the
cloud server will return the closet possible ranked results
based on pre-specified similarity semantics.

B. Threat Model
The cloud server is considered “honest but curious” and

could not be fully trusted by users in our model, this is
consistent with existing searchable encryption schemes[5, 8,
10]. Even though data files are encrypted, the cloud server
may try to capture extra sensitive information from user's
search request , encrypted files, and indices while
performing keyword-based search over C. So the search
should be performed in a secure manner that allows data
files to be securely retrieved and revealing as little
information as possible. We will follow the security
definition proposed in the existing searchable encryption.

C. Design Goals
In this paper, we should achieving the following security

and performance guarantee.

1) Storage-saving ranked fuzzy keyword search, which
means that the returning results are ranked according to
some ranking criteria and the fuzzy keyword set consumes
low storage costs.

2) Muti-keyword search, which means our proposed
scheme supports multiple keywords search.

3) Privacy-preserving search, which means the cloud
server is prevented from capturing extra useful information
from the encrypted data files and the indices and the
trapdoors.

4) Access accuracy search, which means that when a
user inputs a keyword and the exact match fails, and there
are more than one fuzzy keyword set contain this keyword,
the server is sure which data files should be return.

5) Efficiency, which means above-mentioned goals
should be achieved with low storage size, communication
and computation overhead.

18

D. Preliminaries
Edit distance String similarity can be measured by

several measures. In [5, 7], they use edit distance technique
to implement their scheme. The edit distance
between two words and is the number of operations
required to transform one of them into the other. The three
primitive operations are presented.

1) Insertion: inserting a single character into a word;

2) Deletion: deleting one character into a word;

3) Substitution: changing one character to another in a
word.

Files The file set of size is denoted as

 is the i-th file, is the unique identifier of .

Encrypted files Let be the data owner's secret key,
 can generate which are used to

encrypt data files .

Input: ,

Key Generation:

Output:

 can be implemented by hash functions; and can
be implemented by block cipher such as .

Fuzzy keyword search Existing schemes usually use
edit distance technique to define the fuzzy keyword search:
Given a set of n encrypted data files , a set of distinct
keywords and edit distance is pre-
defined. Searching input is , is the target keyword
for searching, is the threshold of fuzzy search based on
edit distance, . The fuzzy keyword search returns a
set of file IDs whose corresponding data files probably
contain the word . The corresponding files IDs that
contain are denoted as : if , then return

; otherwise, return ,where
. Note that the above definition is based on

the assumption that . In fact, can be different for
distinct keywords and the system will return
satisfying if exact match fails.

Ranking function In information retrieval community,
we generally use ranking function to rank files by
computing score of file relevance to a given search request.

 rule is widely used in statistical measurements
for computing relevance score, where (term frequency)
is simply the number of times a given term or keyword
appears in a data file, and (inverse document
frequency) is achieved by dividing the number of files in the
whole collection by the number of files containing the term.
Among many weighting techniques, we choose
the widely used relevance score defined as Equation (1).

(1)

Here denotes the searched keywords; denotes the
 of term (keyword) in file ; denotes the number

of data files that contain the term t; denotes the total
number of files in the collection, and is the number of
indexed terms in file .

IV. EFFICIENT RANKED FUZZY KEYWORDS SEARCHABLE
SYMMETRIC ENCRYPTION SCHEME

Before introducing our proposed scheme, first of all we
separately discuss the previous fuzzy keyword search
scheme, ranked keyword search scheme and our previous
work on ranked fuzzy keyword search.

A. K-gram based fuzzy keyword set
K-gram K-gram refers to a substring which length is .

The substring meets “highly adjacent” feature. For example,
“com”, “omp”, “mpu”, “put”, “ute”, “ter” are all 3-grams of
the word “computer”, and each substring is called 3-gram.
We can see that with regard to a string of length , when we
divide it into k-grams, we will get substrings, and
each substring's length is . In this paper, we use “#” to
denote the beginning and the end of a word. Thus the set of
3-grams of the word “computer” is: “#co”, “com”, “omp”,
“mpu”, “put”, “ute”, “ter”, “er#”. So with regard to a string
of length , when we divided it into k-grams, we will get

 substrings, and the total size of k-grams is
. In fact, there are many same k-grams in

, which may further reduce the index size.

K-gram based dictionary In this chapter, a k-gram
based dictionary is a set of all the k-grams of distinct
keywords . We define a dictionary of
size as , where denotes k-grams
of keyword .

Jaccard coefficient There are many measures to
quantify string similarity. In this paper, we choose Jaccard
coefficient for our proposed scheme. The Jaccard coefficient
is used to measure the similarity among finite sets, which is
defined as the size of the intersection divided by the size of
the union of the sets, i.e. Equation (2).

 (2)

Here, sets and denote the set of k-grams for
keyword and respectively. Here we specify
that when both and are empty, . If is equal to

, will have the highest Jaccard coefficient value ()
compared to the other keywords in the index.

K-gram based fuzzy keyword search In this paper,
Jaccard coefficient is adopted to construct our fuzzy
keyword set: Given a set of n data files , a set of distinct
keywords . We generate the
dictionary for , here denote the
k-grams of keyword . For every gram

, we build a k-gram based index
, here denote a set of keywords which

may contain the gram . Thus, the whole k-gram based
index can be expressed as .

19

We assume that the search keyword is , and is
the threshold of fuzzy search based on Jaccard coefficient
(can be determined in our experiments). First we
generate the k-grams for , which is denoted as . For
every gram , the server will
match it in the k-gram index introduced above and return
relative keywords containing the k-gram . To reduce our
search space, we only want to search the keywords which is
closely related with user's search request.

If the Jaccard coefficient of keyword is bigger
than our threshold value , we add to our fuzzy
keyword set .

B. K-gram based index
We assume that the user's search request contains

multiple keywords, denoted as . In our
scheme, for each , we first compute its k-grams ,
and then compute the fuzzy keywords set using the
method mentioned in Section IV.A Thus all fuzzy keyword
sets of are . So the server can retrieve the
inverted index to obtain corresponding data files and return
them to users.

An example of k-gram based index is shown in Table I.

TABLE I. AN EXAMPLE OF K-GRAM BASED INDEX ()

 k-gram com

keyword computer complete complicated ... come

According to the keyword (such as), the
posting list of includes three enties: keyword, file ID and
score, which is consistent with [8]. An example of the
posting list is shown in Table II.

TABLE II. AN EXAMPLE POSTING LIST OF PROPOSED K-GRAM BASED
INDEX

 keyword

file ID ...

score 2.34 1.46 14.36 ... 4.77 5.45

Keyword denotes the whole keywords the in the k-gram
based index. File ID denotes the file identifier containing the
corresponding keyword.

C. The efficient ranked fuzzy keywords search scheme
Based on the storage saved fuzzy sets mentioned above

and the secure ranking function in [8], our proposed
ranked fuzzy keywords search scheme can be described as
follows.

Initialization: The data owner then scan and extract
distinct words from , for each

, build , is the set of file IDs which
contains the word .

In the Setup phase:

1) The data owner uses his/her secret key sk to generate

 which are used to encrypt k-
grams in dictionary ,

. The data owner also
calls to generate random
keys , and outputs

.

2) The server then uses the index structure in Table I and
Table II to build a k-gram index. The details are shown in
Fig. 2.

Fig. 2. The details of for proposed scheme

3) The data owner outsources the encrypted index table
and encrypted data files C to the cloud server.

In the phase:

1) The authorized user inputs his/her search request .
He/She first computes the fuzzy keyword set that
satisfies with , then
computes the trapdoors and sends
it to the cloud server.

2) Upon receiving the search request
, the cloud server compares them

with the index table. He/She uses to locate the
matching list of the index, and uses to decrypt the
entries. Then he/she knows the file identifiers
and their associated encrypted relevance scores

. The server fetches the files and sends back
them in a ranked sequence according to the encrypted
relevance scores .

V. PERFORMANCE ANALYSIS
We conducted a thorough experiment of our proposed

scheme which is implemented by Java language. In our
experiment, 10714 real data files are selected from the

20

website [17].

According to our k-gram based scheme, the threshold
 based on Jaccard coefficient controls the size of fuzzy

keyword set. It indicates the lowest similarity between the
search requests and the fuzzy keywords we generated. To
find the best value of , we scan all the words in our
downloaded files and use different Jaccard coefficient
values from to to build fuzzy sets. As shown in Fig.3,
when Jaccard coefficient value is greater than 0.21, the size
of fuzzy set is almost , the fuzzy keyword search results
will not be obvious, and when Jaccard coefficient value is
0.3, the fuzzy set of word “fuzzy” only contain the word
“fuzzy”. However, when the coefficient value is less than
0.15, the fuzzy set size will be greater than 20, it will waste
storage and computation space, and some words in the set
may have nothing to do with user's search request.
According to Fig.3, we found that when the coefficient
value is 0.18, we can get a reasonable fuzzy keyword size,
which is consistent with [11].

Fig. 3. Relationship between Jaccard coefficient value and fuzzy set size

Index construction: According to the complexity
analysis Section IV.A we know that with regard to a string
of length , when we divided it into k-grams, we will get

 substrings, and the total size of k-grams is
. In fact, there are many same k-grams in

, which may further reduce the index size.

To allow efficient secure ranked fuzzy keyword search
over encrypted cloud data, we adopt the k-gram based index
illustrated in Table I and Table II, when is the same, the
index size of our proposed scheme is smaller than DFSC
scheme in [7]. We randomly select 10 words of length

 respectively to construct the fuzzy set,
Fig.4 shows that the fuzzy keyword number of our k-gram
based fuzzy set construction (KFSC) is relatively small. We
randomly select different number of files and observe the
sizes of indices when the keywords number are

 respectively. We can see that our
proposed index size is smaller than early RFKS scheme in
[10]. Here we assign .

Search: The search time includes trapdoor building time,
posting list fetching time in the index, decrypting time for
each entry. We can also consider the top-k retrieval. The
cloud server can get the top-k retrieval as fast as the plain
text search because of the order-preserved encrypted scores
and our small index size. And we can also make some minor
spelling errors and format inconsistencies when we input
our search keywords, which may obviously improve the
system usability and efficiency. Besides, the problem of
result inaccuracy mentioned in Section I will not appear in

this paper because of the k-gram based fuzzy set.

Fig. 4. The comparison of fuzzy keyword number between KFSC and
DFSC

Fig. 5. The comparison of index size between KFSC and DFSC

Besides, as [8] proved, the One-to-many Order-
Preserving Mapping scheme is safe, so we can ensure that
out proposed scheme is also secure because our ranking
scheme is consistent with [8]. We will no longer prove it in
this paper.

VI. CONLUCSIONS
This paper introduced a complete framework of an

efficient privacy preserving ranked fuzzy keyword search
over encrypted cloud data. For the efficiency and security
consideration, the k-gram and Jaccard coefficient are
adopted to accomplish fuzzy keyword search and One-to-
many Order-Preserving Mapping scheme to build the
inverted index. Through thorough performance and security
analysis, it is showed that our proposed scheme is privacy
preserving and efficient.

The future work will study the problem of improving the
efficiency of index building and searching. And we will also
explore privacy preserving schemes under stronger threat
models.

REFERENCES
[1] Bellare, M., Boldyreva, A., ONeill, A.: Deterministic and efficiently

searchable encryption. In: Advances in Cryptology - CRYPTO 2007,
vol. 4622, pp. 535-552. Springer Berlin / Heidelberg (2007).

[2] Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key
encryption with keyword search. In: Advances in Cryptology -
EUROCRYPT 2004, vol. 3027, pp. 506-522. Springer Berlin /
Heidelberg (2004).

[3] Boneh, D., Waters, B.: Conjunctive, subset, and range queries on
encrypted data. In: Theory of Cryptography, vol. 4392, pp. 535-554.
Springer Berlin / Heidelberg (2007)

[4] Chang, Y.C., Mitzenmacher, M.: Privacy preserving keyword

21

searches on remote encrypted data. In: Applied Cryptography and
Network Security, vol. 3531, pp. 391-421. Springer Berlin /
Heidelberg (2005).

[5] Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy
keyword search over encrypted data in cloud computing. In:
INFOCOM, 2010 Proceedings IEEE. pp. 1-5 (march 2010).

[6] Singhal, A.: Modern information retrieval: a brief overview.
BULLETIN OF THE IEEE COMPUTER SOCIETY TECHNICAL
COMMITTEE ON DATA ENGINEERING 24, 2001 (2001).

[7] Liu, C.; Zhu, L.; Li, L. & Tan, Y. Fuzzy keyword search on encrypted
cloud storage data with small index Cloud Computing and
Intelligence Systems (CCIS), 2011 IEEE International Conference on,
2011, 269 -273.

[8] Wang, C.; Cao, N.; Li, J.; Ren, K. & Lou, W. Secure Ranked
Keyword Search over Encrypted Cloud Data Distributed Computing
Systems (ICDCS), 2010 IEEE 30th International Conference on, 2010,
253 -262.

[9] Cao, N.; Wang, C.; Li, M.; Ren, K. & Lou, W. Privacy-preserving
multi-keyword ranked search over encrypted cloud data INFOCOM,
2011 Proceedings IEEE, 2011, 829 -837.

[10] Xu, Q.; Shen, H.; Sang, Y. & Tian, H. Privacy-Preserving Ranked
Fuzzy Keyword Search over Encrypted Cloud Data PDCAT, 2013

Proceedings IEEE, 2013.
[11] Zhou, W.; Liu, L.; Jing, H.; Zhang, C.; Yao, S. & Wang, S. K-Gram

Based Fuzzy Keyword Search over Encrypted Cloud Computing.
Journal of Software Engineering & Applications, 2013, 6.

[12] Boldyreva, A.; Chenette, N.; Lee, Y. & O’Neill, A. Order-Preserving
Symmetric Encryption Advances in Cryptology - EUROCRYPT 2009,
Springer Berlin / Heidelberg, 2009, 5479, 224-241.

[13] Lewko, A.; Okamoto, T.; Sahai, A.; Takashima, K. & Waters, B.
Fully Secure Functional Encryption: Attribute-Based Encryption and
(Hierarchical) Inner Product Encryption Advances in Cryptology –
EUROCRYPT 2010, Springer Berlin / Heidelberg, 2010, 6110, 62-91.

[14] Golle, P.; Staddon, J. & Waters, B. Secure conjunctive keyword
search over encrypted data Applied Cryptography and Network
Security, 2004, 31-45.

[15] Byun, J. W.; Lee, D. H. & Lim, J. Efficient conjunctive keyword
search on encrypted data storage system Public Key Infrastructure,
Springer, 2006, 184-196.

[16] Liu, Q.; Wang, G. & Wu, J. An efficient privacy preserving keyword
search scheme in cloud computing Computational Science and
Engineering, 2009. CSE'09. International Conference on, 2009, 2,
715-720.

[17] http://www.ietf.org/rfc.html.

22

	I. Introduction
	II. related works
	A. Searchable encryption
	B. Fuzzy keyword searchable encryption
	C. Ranked keyword searchable encryption
	D. Multi-keywords searchable encryption

	III. Problem Formulations
	A. Abbreviations and Acronyms
	B. Threat Model
	C. Design Goals
	D. Preliminaries

	IV. Efficient ranked fuzzy keywords searchable symmetric encryption scheme
	A. K-gram based fuzzy keyword set
	B. K-gram based index
	C. The efficient ranked fuzzy keywords search scheme

	V. Performance analysis
	VI. Conlucsions
	References

