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User identity verification is of great significance for the secure operation of UAV systems. This article exploits the spatial-temporal
features of user screen-touch trajectory (STT) to develop a passive user authentication framework for unmanned aerial vehicle
(UAV) systems. We first design a multi-dimensional STT data structure to accurately record continuous touch interactions and
extract 21 discriminative spatial-temporal features for behavioral characterization. We then construct a classifier based on Random
Forest (RF) for robust nonlinear feature learning and also a classifier based on Radial Basis Function Neural Network (RBFNN) for
modeling fine-grained touch behavior patterns. By combining the two classifiers and assigning each classifier an appropriate weight,
we develop a fusion-based passive user authentication framework. The new framework has the potential to significantly enhance the
security of UAV operation systems by offering a flexible, continuous, and non-intrusive authentication solution, and it also can serve
as a complementary security layer or an enhancement to traditional authentication mechanisms in UAV ground control systems.

Index Terms—Unmanned Aerial Vehicle Security, Passive Authentication, Screen-touch Trajectory, Spatial-temporal Features,

Machine Learning.

I. INTRODUCTION

NMANNED Aerial Vehicle (UAV) technology represents

a new generation of aerospace operational platforms,
scenario-driven application solutions, and cross-domain in-
dustrial ecosystems that deeply integrate information and
communication technologies with modern industrial develop-
ment. Emerging UAV technologies are expected to establish a
new paradigm of aerial operations and multi-scenario service
systems, enabling comprehensive support and coordinated
interaction across domains such as agricultural crop protection,
logistics and transportation, energy infrastructure inspection,
emergency response, urban governance, and geological sur-
veying [8], [12]. The deep convergence of UAV systems
with 5G communications will further accelerate transforma-
tive upgrades across vertical industries—expanding application
scenarios, enhancing real-time responsiveness and operational
precision, reducing overall operational costs, and strengthening
large-scale collaborative management capabilities.

At present, UAV technology has been widely adopted in
critical domains such as agricultural crop protection, logis-
tics transportation, energy infrastructure inspection, emergency
response, urban governance, geological surveying, environ-
mental monitoring, forest fire prevention, marine mapping,
bridge inspection, security patrols, aerial cinematography, me-
teorological sensing, border control, cold-chain delivery, and
structural inspection [8], [13]. In these mission-critical UAV
application scenarios, the Ground Control Station (GCS) is
typically required to store sensitive information—including
flight parameters, mission planning data, confidential opera-
tional commands, and device access credentials—while also
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interfacing with sensitive cloud-based scheduling platforms
and classified mission databases.

With the rapid proliferation of operational terminals and
the increasing integration of UAVs across diverse industry
systems, precise verification of operator identity and access
privileges has become increasingly essential. Such verification
is critical for ensuring strong protection of classified opera-
tional data and core industry information within the broader
UAV application ecosystem [15]. Consequently, secure and
reliable operator access control is of paramount significance
for maintaining the safe and trustworthy operation of UAV
systems.

Identity and access verification within UAV operation sys-
tems serves as an indispensable security service for validat-
ing the legitimacy of UAV operators and their associated
privilege levels. Modern UAV operation systems typically
consist of large numbers of UAV devices, ground control
terminals, and cross-industry access nodes deployed across
heterogeneous and multi-scenario working environments. This
diversity introduces substantial complexity and challenges to
the large-scale deployment and governance of identity and
access control mechanisms [9]. Passive authentication verifies
user identity by analyzing behavioral characteristics exhibited
during the operational process, making it particularly suitable
for scenarios requiring continuous authentication. Compared
with traditional active authentication methods, passive authen-
tication integrates seamlessly into the user’s workflow without
interrupting the operational process. This property makes it
an ideal approach for achieving continuous authentication in
UAV missions.

It is worth noting that in the complex operational scenarios
of UAV applications, passive authentication technologies play
a critical role in enabling continuous and non-intrusive verifi-
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cation of operator identity and device privileges. First, active
authentication requires the operator’s explicit participation,
which is difficult to enforce in large-scale, multi-scenario UAV
operations or remote-control environments. Second, to ensure
flight security and mission accuracy, operators must continu-
ously perform demanding tasks—such as flight control, data
acquisition, and emergency response—leaving little opportu-
nity for frequent additional active verification procedures [14],
[4], [3]. Furthermore, UAV operations continuously generate
large volumes of sensitive mission data, necessitating periodic
verification of both operator identity and task legitimacy
to strengthen access control over sensitive information [5].
Motivated by these considerations, we aim to design a flexible
and cost-effective passive authentication scheme that enables
continuous and non-intrusive identity and mission verification
within UAV systems.

Observations show that different operators exhibit stable
and distinctive touch interaction trajectories, shaped by their
operational preferences and long-term muscle memory [7],
[17], [2]. In UAV operation scenarios, operators naturally leave
interaction traces on the touchscreen interface. To investigate
the practical differences in touch behaviors among operators,
we designed a controlled experiment. Four participants were
instructed to perform the same UAV inspection task, with
the flight route, mission objectives, testing environment, and
operating device fully standardized. A fixed 10-step sampling
strategy was used to capture the STT. Fig. 1 presents the
visualized trajectories of the four participants, where each
color represents one continuous touch gesture without finger
lift. The visual results demonstrate that despite identical task
conditions, the operators exhibit significant variations in both
spatial distribution features (e.g., trajectory span) and dynamic
interaction characteristics (e.g., turning frequency of trajecto-
ries).

Fig. 1. Differences in STT among four users under the same UAV operation
task.

This experiment confirms that touch interaction patterns
show clear individual uniqueness across operators and can
serve as a critical basis for identity verification and differentia-
tion, further validating the feasibility of the proposed approach.

Existing passive authentication techniques are primarily
based on spatial or temporal features. However, in UAV touch
operation scenarios, as the complexity of UAV mission tasks
increases, these two approaches become increasingly inade-
quate in accurately and deeply describing operator behaviors
[1], [10], [6]. This results in a significant reduction in the
ability to distinguish operational features, making it difficult
to meet the stringent identity verification and differentiation
requirements. While these methods represent major break-
throughs in passive authentication, relying solely on spatial
or temporal features is unlikely to effectively address the
practical challenges posed by more complex and dynamic
UAV operation environments [18]. For example, factors such
as wind interference in outdoor environments, body vibra-
tion during flight, sudden changes in operation pace under
emergency conditions, operator fatigue from long-duration
tasks, and temperature-induced sensitivity variations in touch-
screen can all disrupt the spatial distribution and temporal
stability of touch trajectories. These disturbances may di-
rectly compromise the distinguishability of an operator’s touch
characteristics, resulting in degraded performance of passive
authentication systems in UAV operations.

However, the results of this study indicate that by jointly
leveraging the spatial-temporal features of STT, we are able
to not only provide a complete spatial-temporal representa-
tion of operator identity but also significantly improve the
performance of passive user authentication in UAV mission
scenarios. The key contributions of this work are summarized
as follows:

1) We provide extensive experimental results demonstrating
that, in UAV operational scenarios, an operator’s continu-
ous touchs behavior can be represented as both spatial and
temporal biometric features. These spatial-temporal features
exhibit good stability for a specific operator and show high
distinguishability across different operators.

2) We propose a novel method for describing the spatial-
temporal characteristics of user-related touch behavior. Specif-
ically, we define a new data structure that supports the record-
ing of multi-finger touch data, which allows for the complete
storage and description of touch operation behavior. We then
compute 21 derived features, including position, velocity,
direction, rate of change, time, and multi-touch correlation
features, forming a touch feature array (TFA) to characterize
the spatial-temporal properties of touch behavior.

3) We further utilize two machine learning algo-
rithms—Random Forest (RF) and Radial Basis Function Neu-
ral Network (RBFNN)—to learn the TFA, forming two clas-
sifiers. By assigning appropriate weights to each classifier, we
developed a new passive authentication framework suitable for
UAV operational systems.

II. PROPOSED AUTHENTICATION FRAMEWORK
A. Overview of Our Approach

In this section, we design a new identity verification method
based on the spatial-temporal features of STT, as illustrated
in Fig. 2. First, STT data are collected from UAV control
operations and preprocessed to suppress noise. A moving
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Fig. 2. Workflow of the proposed authentication approach for UAV systems.

average filter is employed to smooth raw trajectories while
preserving their essential temporal characteristics. Second, 21-
dimensional spatial-temporal features are extracted from the
denoised STT signals and organized into a unified feature
set. To eliminate scale inconsistencies and dimensional bias,
the extracted features are further standardized and normalized
prior to model training. Third, the processed feature set is fed
into the classification module. Two machine learning models,
namely RF and RBFNN, are adopted to independently learn
the STT feature representations and construct two binary
classifiers. Each classifier is trained exclusively on positive
samples from legitimate users, whereas all other samples are
implicitly treated as negative. This one-class—oriented binary
classification strategy effectively addresses the challenge of
inexhaustible negative samples and significantly reduces the
reliance on large-scale labeled datasets. Finally, the outputs of
the trained classifiers are combined through weighted fusion
to construct an optimal ensemble classifier. During inference,
the ensemble classifier evaluates incoming STT samples and
produces a detection probability. If the probability exceeds a
predefined threshold, the user is authenticated as legitimate;
otherwise, the operation is identified as an illegal intrusion. In
such cases, the current control permissions are immediately
revoked, and active authentication or additional identity veri-
fication mechanisms are triggered.

B. Data Acquisition Module and SCTO Modeling

We define one complete touch operation as: the process
from the first finger touch screen to all finger contacts leaving
is recorded as a single complete touch operation (SCTO),
which will be used for feature calculation and machine learn-
ing in subsequent studies. In order to comprehensively capture
touch data and model the SCTO, we designed a new con-
tinuous touch data storage structure, which is used to record
touch data and fundamental elements of feature calculation,
and can support multi touch recording of multi finger oper-
ation, calculate the correlation characteristics between multi

contacts, and realize accurate digital storage and description of
SCTO. This data structure records the coordinate set (X, Y),
instantaneous speed set (V), instantaneous direction set (D),
and corresponding time frame set (T) for each touch point at
the specified sampling frequency. These sets represent the data
collection of the SCTO accurate to time frames. The spatial-
temporal features of each SCTO will be calculated based on
these touch data tuples.

The higher the sampling frequency, such as once every
0.01s, the more precise the data description is. Meanwhile, this
will also increase memory usage for the same time sample,
which can be adjusted according to the specific needs in
practical applications. In this design, a sampling frequency
of 0.1s is used, and the size of a single SCTO sample is
only 500KB to 1MB, which is lightweight, and can achieve
good classification and identity verification performance. Ad-
ditionally, the required training dataset size is only 200MB
to 400MB, consisting of 400 SCTO samples, which is highly
acceptable.

Based on the SCTO sample data, highly discriminative
spatial-temporal features can be calculated. As shown in Table
1, we calculate 21 types of SCTO features. Depending on
the actual performance, all or a subset of these features are
selected to form the final feature arrays of the SCTO samples.
These arrays are then input into machine learning algorithms to
form the classifiers, which are subsequently evaluated in terms
of accuracy, detection time, and other performance metrics.

C. Machine Learning Algorithms and Classifier Module

Multi identity classification in this scenario will have the
challenge that negative samples can not exhaust all the oper-
ation modes of potential attackers. To address this limitation,
this study adopts binary classification framework, where legit-
imate users serve as the sole positive sample, and other touch
operations deviating from this sample’s features are classified
as negative samples. This approach significantly reduces the
sample collection scale, eliminating the need to collect exten-
sive data from illegal users for classifier training. It avoids
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TABLE I

DESCRIPTION OF SCTO FEATURES.

Feature Category

Feature Name

Description

Position Features

Average X Coordinate

The mean position of all points in the X direction, reflecting the horizontal
concentration trend.

X Coordinate Standard Deviation

The dispersion of X-direction positions, with a larger value indicating a more
scattered distribution.

X Coordinate Range

The maximum span of X-direction positions, reflecting the horizontal operation
range.

Average Y Coordinate

The mean position of all points in the Y direction, reflecting the vertical
concentration trend.

Y Coordinate Standard Deviation

The dispersion of Y-direction positions, with a larger value indicating a more
scattered distribution.

Y Coordinate Range

The maximum span of Y-direction positions, reflecting the vertical operation
range.

Total Movement Distance

The total length of the touchpoint trajectory, reflecting the spatial span of the
operation.

Average Step Length

The average displacement between adjacent frames, reflecting the average dis-
tance of a single movement.

Speed Features

Average Speed

The ratio of total movement distance to duration, reflecting the overall speed of
the operation.

Speed Standard Deviation

The standard deviation of speed at each moment, reflecting the degree of speed
fluctuation; a smaller value indicates more stable speed.

Average Speed Change Rate

The average absolute change in speed between adjacent moments, reflecting the
average magnitude of speed increase or decrease.

Speed Range

The difference between the maximum and minimum speed, reflecting the extreme
fluctuations in speed.

Maximum Speed

The highest speed during the operation, reflecting the speed upper bound of the
operation.

Direction Features

Average Direction

The average direction of all moments, reflecting the main orientation of the
operation.

Average Direction Change Rate

The average absolute change in direction angle between adjacent moments,
reflecting the average magnitude of direction change.

Direction Change Standard Deviation

The standard deviation of direction angle changes, reflecting the stability of
direction change; a smaller value indicates more stable direction.

Change Rate Features

Average X Direction Position Change

The mean change in X-coordinate between adjacent points, reflecting the average
trend of X-direction position change (positive for rightward movement, negative
for leftward movement).

Average Y Direction Position Change

The mean change in Y-coordinate between adjacent points, reflecting the average
trend of Y-direction position change (positive for upward movement, negative for
downward movement).

Multi-Touch Features

Multi-Touch Start Time Difference

The time difference between the start times of multiple touchpoints, reflecting
the synchronization of multi-touch activation.

Relative Position of Two Touchpoints

The coordinate difference between any two touchpoints, reflecting the spatial
distribution relationship of multi-touch points.

Time Features

Duration

The total time from the start to the end of a touchpoint, reflecting the time span
of the operation.
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dependence on negative samples, effectively enhancing the
system’s universality and resistance to interference in multi-
touch and multi-scenario environments.

We trained multiple machine learning frameworks using the
SCTO feature arrays and found that the two with the best com-
prehensive performance in this scenario were Random Forest
(RF) and Radial Basis Function Neural Network (RBFNN),
forming two classifiers. To further enhance authentication
performance, we assign appropriate weights to each classifier
and form the weighted fusion classifier [18], [16].

In order to explore the optimal judgement performance of
this binary classification framework, we conducted perfor-
mance evaluations of each classifier in a predefined multi-
touch operation scenario. We use classification performance
and time efficiency as two key evaluation metrics. Classi-
fication performance was measured by accuracy (the pro-

portion of correctly classified samples to total samples) and
recall rate (the ability to correctly identify authorized user
operations), which respectively reflect the overall reliability
of classification results and the completeness of identifying
positive samples. Time efficiency focuses on the detection
time, reflecting whether the system can timely, rapidly, and
effectively identify and prevent illegal intrusions. This is
directly related to the effective protection ability of the device.

Subsequently, this study compares accuracy, recall, detec-
tion time and other key metrics of each classifier through
experiments, and determines the optimal classifier, which
provided solid technical support for enhancing the reliability
of identity verification of UAV touch devices. The detailed
working principles of two classifiers (RF and RBFNN) in this
scenario are elaborated on in the following subsection.
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1) Random Forest

Random Forest (RF) transforms identity authentication into
a multidimensional feature-voting process through ensemble
learning with multiple decision trees. Its core workflow con-
sists of three stages: construction of positive and negative sam-
ples, mixed-feature learning, and ensemble decision-making.

RF constructs positive samples labeled as 1 using the
legitimate user’s SCTO data. Negative samples labeled as 0 are
generated by injecting Gaussian noise into the feature matrix
of the positive samples. After noise injection, each feature
follows the probability density function

F@) = ——exp (—(‘“)) , 1)

202

where = denotes the perturbed feature value, y is the perturba-
tion mean (set to 0 so that features fluctuate around the original
positive-sample values), and o is the perturbation standard
deviation, controlled at 50% of the standard deviation of the
corresponding positive-sample feature. This approach simu-
lates both the similarity between legitimate and illegitimate
operations and the characteristics of spoofing behaviors. It
addresses the difficulty of obtaining large-scale illegitimate-
operation data, enabling the generation of suitable negative
samples using only positive samples and reducing dependence
on extensive training datasets.

This study employs a forest of 100 decision trees, where
each tree independently learns a different subset of the SCTO
feature group. The ensemble of decision trees effectively
reduces the risk of overfitting and prevents the model from
learning noise. During the learning process, each tree ranks
the importance of features, with higher-contributing features
to identity differentiation being prioritized for splitting. The
parallel decision-making of multiple trees enables the capture
of complex relationships between features.

Random Forest (RF) performs feature importance evalua-
tion through random selection of feature subsets. During the
training of each decision tree, a subset of features is randomly
chosen to build the split nodes, preventing a single feature
from dominating the classification result. This approach al-
lows the model to deeply explore the distinguishing value of
multiple feature combinations for identity recognition, such
as the correlation between the x coordinate concentration and
velocity stability, which could be characteristic of a user’s
typical operation behavior. The node-splitting mechanism of
decision trees is based on information gain and the Gini index.
The Gini index measures node impurity and is computed as

oV22m

K
G(t)=1-> p(klt)?, )
k=1

where G(t) represents the Gini index of node ¢ (a lower value
indicates higher purity), K is the total number of classes (in
this case, K = 2 corresponding to positive sample £ = 1
and negative sample k& = 0), and p(k|t) is the proportion of
samples of class k at node ¢. Information gain is based on
entropy, which is calculated as

K

H(t) =~ p(k|t) log, p(k|?), 3)

k=1

where H (t) is the entropy of node ¢. Information gain is then
given by

|t ]

1G(t,a) = H(#) — |tﬂ

H{(ty), (4)

>
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where IG(t,a) is the information gain of feature a at node
t, and a higher value indicates a better split. The term a
represents the feature to be evaluated, and values(a) is the
set of all possible values for feature a. The subscript ¢,
corresponds to the child node when feature a takes value v, and
|t,|/|t| represents the proportion of child node samples to the
total number of parent node samples. This splitting mechanism
adapts automatically to different feature distributions, finding
the optimal threshold for continuous features and capturing
associations in discrete features by combining different inter-
vals. The frequency of a feature being selected as a split node
in each tree is used to quantify the feature’s importance, which
is computed as

T
I(a) = %Z <AG(t,a) : 'fJ) , )

where I(a) is the importance score of feature a, T is the
number of decision trees in the forest (here T' = 100),
AG(t,a) is the decrease in Gini index when feature a is
used to split node ¢, |t| is the number of samples at node
t, and N is the total number of samples in the training set.
This quantifies the feature’s contribution to the classification
process and ensures that critical features are not omitted.

In the ensemble decision stage, RF outputs the probability
that an SCTO sample belongs to a legitimate user. This
probability is aggregated from the voting results of multiple
decision trees and can be expressed as

1 T
Pla=1) =53 I(h(z) =1), (©6)

where P(x = 1) is the probability that sample z is a
legitimate user, and h;(x) is the detection result of tree ¢ for
sample x. A value of 1 indicates the sample is classified as
a legitimate user, while O indicates an illegitimate user. I()
is the indicator function, which returns 1 if the condition is
true, and O otherwise. A higher detection probability indicates
that the touch characteristics match more closely with the
legitimate user’s pattern. Further, the algorithm divides the
feature distribution of a single sample into several sub-samples
for further detection. The proportion of valid sub-samples is
determined by

1 M
R:Mﬂ;I(P(xm:1)>9), 7)

where R is the proportion of sub-samples classified as le-
gitimate, M is the total number of sub-samples, x,, is the
m-th sub-sample, and 6 is the detection probability threshold.
If the probability of more than a certain proportion of sub-
samples exceeds the threshold, the sample is classified as
legitimate, following the majority voting principle to determine
whether the overall touch operation is from a legitimate user.
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Specifically, during the detection process, RF aggregates all
sub-samples of a single sample, computes the average predic-
tion probability, the maximum probability, and the proportion
of samples exceeding the threshold, and ultimately uses the
proportion of samples exceeding the detection threshold to
determine the SCTO sample classification.

This aggregation strategy helps resist “occasional opera-
tional variations,” such as coordinate deviations caused by
hand tremors, thus improving the stability of identity au-
thentication. However, experimental studies show that when
each SCTO sample is divided into only one sub-sample, the
classification accuracy of the model is highest during both
training and detection.

2) Radial Basis Function Neural Network

We first preprocess the SCTO data by applying Z-score
normalization to map all features to a distribution with a mean
of 0 and a variance of 1, expressed as

r_ T B

= , ®)

g

where x is the original feature value, p is the mean of the
feature in the training set, and o is the standard deviation of
the feature. This ensures that all features contribute equally
to the RBFNN learning process, enabling nonlinear fitting.
All training samples are labeled as positive, allowing the
RBFNN to focus on learning the distribution patterns of
legitimate user touch features, thus avoiding classifier bias
due to uneven distribution of negative samples. The core
advantage of RBFNN stems from the radial basis functions
in the hidden layer and the adaptive learning of parameters.
The process involves using K-means clustering to determine
centers, calculating /5 based on neighborhood distance, and
solving for weights using regularized least squares, thereby
modeling the SCTO features.

The hidden layer of the RBFNN maps the low-dimensional
nonlinear features of the touch operation to a high-dimensional
linearly separable space. The center parameters and 5 values
are automatically learned through data-driven processes. The
centers are determined using the K-means clustering algorithm
applied to the training set features. The optimization objective
of the K-means algorithm is to minimize the sum of squared
distances within clusters, expressed as

K
T=" > llr— el ©)

k=1z2€Cy

where K is the pre-set number of cluster centers, i.e., the
number of RBFNN neurons, Cy is the set of samples belonging
to the k-th cluster, and uy is the center vector of the k-th
cluster. |z — py|? is the squared Euclidean distance between
sample = and the center uy. Each cluster center corresponds
to an activation point of a radial basis function. This process
captures the legitimate user’s touch features, ensuring that all
typical feature clusters of touch operations are covered.

The width parameter 3 determines the activation range of
the radial basis function. It is computed by calculating the dis-
tance between each center and the nearest neighboring center.

The Euclidean distance between two neighboring centers is
expressed as

D
min_dist, = _min > (a0’ (10)
i#k d=1

where uyg,d is the value of the k-th center in the d-th feature
dimension, and D is the total number of feature dimensions.
Combining the formula for 5, the closer the centers are, the
larger the [ value will be, resulting in a smaller activation
range. This enables RBFNN to produce strong activations for
samples close to the center of the legitimate user feature and
weak activations for samples that deviate from the center.
Regularization weights need to be solved to avoid overfitting.
We construct the design matrix and solve for the weights using
regularized least squares. The design matrix G is defined as

d1(z1)  ¢a2(71) br(z1) 1
p1(z2)  @2(w2) ... oPx(z2) 1

G= : : - : N an
bi(en) da(en) ... ox(an) 1

where N is the number of training samples, and ¢ (x;) is the
activation value of the k-th radial basis function for the i-th
sample. The last column represents the bias term. Each row in
the design matrix G corresponds to a training sample, and each
column corresponds to the output of a hidden layer neuron,
i.e., the activation value of the radial basis function for that
sample. The last column, filled with 1s, ensures that RBFNN
is resilient to incidental noise, such as tremors or mis-touches,
when learning touch features. To solve for regularized weights,
a unit matrix is added to suppress overly large weights and
improve the generalization ability of the classifier.

RBFNN classifies touch operation features through the
nonlinear mapping of the radial basis function (RBF). The
radial basis function is described as

or(x;) = exp (=B - o — pll?)

where the similarity between sample x and center p is mea-
sured. The kernel width parameter [ is dynamically deter-
mined by the minimum Euclidean distance between centers.
For each center p, the minimum distance to other centers is
computed as min_dist, and the kernel width is adapted by

5= 1

2 - min_dist*’
When the touch features are dense, the distance between
centers is small, leading to a large [ value. This results in a
function that is sensitive to fine differences near the centers.
When the touch features are sparse, the distance between
centers is large, leading to a smaller 3 value to ensure coverage
of peripheral samples. This adaptive sparsity feature perfectly
matches the distribution patterns of touch operations, where
conventional patterns are concentrated and peripheral varia-
tions are scattered. On this basis, high-dimensional feature
mapping is achieved by constructing the design matrix G.
For each input sample, the RBF outputs (i.e., the similar-
ities) to all centers are computed and form matrix column
vectors. Each row of the matrix intuitively reflects how well

12)

(13)
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the sample matches each of the touch feature centers. To guard
against noise in touch operations, regularized least squares are
used to solve for the weights, which are expressed as

weights = (GTG + \I)"*GTy, (14)

where G7T' is the transpose of the design matrix G, X is
the regularization parameter used to control the strength of
regularization, [ is the identity matrix of the same dimensions
as GT@, and y is the label vector of the training samples. Since
all training samples are positive labels, y is a vector of all 1s.
This method helps reduce the impact of noise and ensures that
RBFNN focuses on stable touch patterns, ultimately achieving
robust linear combinations and classification of nonlinear
features.

Once the weights in (14) are determined, we use the
RBFNN classification to determine whether the STT sample
is positive or negative. The decision function can be expressed
as

K
fl@) = wier(x) +b, (15)
k=1
where f(z) denotes the decision value output by RBFNN for
the STT sample x, wy, represents the trained weight associated
with the kth radial basis function, ¢y (z) is the activation
value of the kth RBF corresponding to sample z, and b is the
bias term. During classification, a threshold 6 is introduced to
separate authorized and unauthorized operations. If f(x) > 6,
the sample is identified as originating from a legitimate user;
otherwise, it is classified as an illegal intrusion.

D. Data Integration and Decision Output Module

This module is used to collect and integrate the large volume
of data generated by previous processes, further formulate
the decision rules, and output the final judgement results.
This judgement result will be read by the operation author-
ity control program. If identified as an unauthorized user,
the operation authority will be terminated, and a series of
input-based identity information (such as passwords, account
binding, verification codes, or biometric information) will be
re-verified, thereby ensuring the security of critical devices.

For detection results with a large sample size, we adopt
a proportion-threshold-based decision method. Specifically,
when the proportion of positive samples exceeds the preset
threshold, the user is ultimately classified as a legitimate
user, otherwise it is deemed an unauthorized intrusion. The
higher the threshold, the stricter the judgment becomes. It
enhances the flexibility and adjustability of the system in
various UAV operational scenarios. This module serves as the
final refinement of our passive identity verification system.

ITII. EXPERIMENT AND ANALYSIS
A. Data Acquisition and Performance Metrics

To evaluate the performance of the proposed passive identity
authentication method, we applied it to an industrial scenario
involving UAV inspection tasks for potential safety hazards
within a factory and conducted a series of experiments. A
specific inspection mission was selected as the experimental

scene, ensuring that the UAV followed the same route, while
the study focused solely on the differences in operational
behavior among different users.

In this experiment, 400 touch data samples from one
authorized user were collected as the classifier training set.
Additionally, 151 samples from the same authorized user
were used as the positive test set, and 173 samples from
five non-authorized users were used as the negative test set.
To evaluate the classifier’s resistance to imitation attacks, the
negative samples were collected by non-authorized users who
attempted to replicate the authorized user’s operation behavior
through observation and imitation. This design allowed for the
verification of whether the classifier could distinguish between
genuine samples and imitation-based negative samples. In
total, 324 test samples were used in this evaluation.

Each sample represented a continuous touch operation last-
ing up to 5 minutes. The data acquisition frequency was set to
0.1 seconds, resulting in a maximum sequence length of 3000,
although actual lengths varied between 1 and 3000 depending
on individual operating habits. The maximum number of
simultaneous touch points was limited to three fingers.

Performance of the passive authentication method was eval-
uated using False Acceptance Rate (FAR) and False Rejection
Rate (FRR). Specifically, FAR measures the proportion of
imposters or unauthorized users incorrectly accepted as legit-
imate users, while FRR measures the proportion of legitimate
users incorrectly rejected by the system. The Equal Error Rate
(EER) represents the critical point at which FAR equals FRR.
In addition, the Receiver Operating Characteristic (ROC) curve
and the Area Under the Curve (AUC) were used to illus-
trate the trade-off relationship between system sensitivity and
specificity. T'able2 summarizes the AUC values for individual
classifiers and the optimal fusion classifier, providing a direct
comparison of their performance.

TABLE 11
AUC VALUES OF SINGLE CLASSIFIERS AND OPTIMAL FUSION
CLASSIFIER

Classifier AUC

RF 0.922
RBFNN 0.917
RF + RBENN  0.955

B. Performance Analysis of Individual Classifiers

Two machine learning algorithms, RBFNN and RF, were
used to learn from the aforementioned training set to construct
two classifiers. These classifiers were then tested on the
collected positive and negative sample datasets to evaluate
their discrimination capability and conduct comparative per-
formance analysis. As shown in Fig. 3, The ROC curves and
the corresponding AUC values of the two classifiers were
plotted as evaluation metrics.

We can see from Fig. 3 that both the RBFNN and the
RF classifiers demonstrated excellent performance, with AUC
values exceeding 0.91. This indicates that both RBFNN and
RF exhibit high discrimination accuracy for touch sequences
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Fig. 3. Comparison of ROC curves between RF and RBFNN classifiers.

under the proposed method, and both classifiers show strong
resistance to imitation-based attacks. These findings suggest
that the passive user authentication approach based on spatial-
temporal feature extraction from continuous touch trajectories
has significant potential for adaptation to various complex
UAV application scenarios.

C. Performance Analysis of the Fusion Classifier

To further improve binary classification accuracy, reduce
the risk of misclassification caused by single-model bias, and
explore the potential of classifier integration, a weighted fusion
approach was applied to the detection results of individual
samples.

We conducted a weighted allocation experiment using the
RF and RBFNN classifiers. Specifically, the weighted detec-
tion probability for each sample was defined as follows. Let ¢;
denote the detection probability of RF for a given sample, and
g2 denote that of RBFNN. Assign the weight of RF as w; and
the weight of RBFNN as wy = 1—w;. The weighted detection
probability g for a single sample can then be expressed as

q = w1q1 + wa2qa. (16)

In this way, each sample obtains a new weighted probability
value. Combined with the original positive and negative labels,
a new ROC curve and AUC value for the dual-classifier
weighted fusion can be obtained. This represents the fusion
performance under a specific weight allocation scheme.

We performed weighted allocation experiments using RF
and RBFNN, and Fig. 4 illustrates the comparison between
the fusion classifier with equal weights (w; = wo = 0.5) and
the original single classifiers. As shown in Fig. 4, the ROC
curve of the fusion classifier lies entirely above those of the
single classifiers, with an AUC value reaching 0.95—higher
than either individual model. This indicates that the weighted
fusion classifier achieves significantly improved performance
compared to single classifiers, demonstrating the potential for
highly accurate, imitation-resistant binary classification. Such
performance suggests that the proposed method can better
adapt to various complex Industrial Internet of Things (IloT)
application scenarios.

TPR

—— RBF (AUC=0.917)
—— RF (AUC =0.935)
==+ Fusion Classifier (AUC = 0.957, w,:0.5, w,:0.5)

0.2

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

FPR

Fig. 4. ROC curve comparison among RBFNN, RF, and the weighted fusion
classifier.

D. Detailed Analysis of the Relationship Between Weighting
Scheme and Performance

Considering the vast number of possible weight distributions
in practice, we aimed to identify the optimal weight allocation
and explore the relationship between weight distribution and
performance (AUC value), as well as its trend. To achieve this,
we conducted an interval precision segmentation experiment.
The weight range of 0 to 1 was evenly divided into N
intervals. One weight, wi, was then iteratively assigned to
each point within this range, and the second weight, ws, was
determined as 1 — w;. This process generated N AUC values
corresponding to these different weight allocations. Fig. 5
shows the relationship between weight allocation and the
fusion classifier’s performance as the weight range [0, 1] was
evenly divided into 1000 parts. Each allocation corresponds to
an AUC value, reflecting the trend of fusion performance.

1.0

S S e
9 % o

Fusion Classifier AUC Value
=
EN

1 = AUC Variation Curve (Maximum Value: 0.95904)
® Optimal Weight: wpp, = 0.25926

0.5

RBF Weight (Wpp=1—wgpr)
Fig. 5. Usability to weights of two classifiers.

From Fig. 5, a peak is observed, indicating that the op-
timal weight distribution occurs at RBFNN : RF = 0.25926
: 0.74074, where the fusion classifier achieves the highest
AUC value of 0.95904, representing the optimal performance.
Additionally, this method establishes a universal optimization
framework, enabling the determination of the optimal weight
distribution for any future application scenario or newly con-
structed training and test dataset.

This adaptability verifies the scalability and robustness of
the proposed dual-classifier fusion method, ensuring it main-
tains excellent performance across different data distributions
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and application scenarios. It also demonstrates that by appro-
priately adjusting the weights (w; and ws) of the two classifiers
(RF and RBFNN), the proposed method can flexibly control
the authentication performance, making it suitable for various
industrial Internet of Things (IloT) scenarios.

E. Detection Time Analysis

The detection time of a classifier is directly related to the
ability to detect intruders in a timely manner and effectively
intercept them. The longer the detection time, the longer
the intruder’s illegal operation, which increases the potential
damage to relevant devices and information. Therefore, it is
essential to validate the detection time of each classifier.

We recorded the detection times for 30 trials of 5 samples
using RF and RBFNN, and compared the differences in their
detection times. In practical applications, only about 5 samples
(with a sample group size of 5 steps) are sufficient to determine
whether the user is legitimate, thus significantly reducing the
detection time. As shown in Fig. 6, the detection times for
the two classifiers (RF and RBFNN) over 30 trials for 5
samples were recorded. It can be observed that the detection
times for both RF and RBFNN are in the millisecond range,
indicating their fast response capabilities and strong timeliness
and security.

0801 —*— RF
—sa— RBFNN

0.75

0.70

Time(s)

0.65

0.60

Detection Count

Fig. 6. Comparison of millisecond-level detection times for RF and RBFNN.

Box plots are a statistical visualization method that intu-
itively presents the central tendency, dispersion, and outliers
of data. They consist of five key statistics: minimum, first
quartile, median, third quartile, and maximum. By using a
box plot, one can easily compare the central position, degree of
dispersion, and distribution differences of various data groups.

Fig. 7 provides a more detailed analysis of the detection
time distribution for RF and RBFNN using box plots. The
horizontal axis represents the classifier type, and the vertical
axis represents the detection time. The red horizontal line
represents the median, the box represents the interquartile
range (IQR), and the whiskers represent the maximum and
minimum detection times. The experimental results show
that the IQR for RBFNN is relatively longer, with greater
fluctuations in detection time, and the overall detection time

is longer, ranging from 0.60s to 0.80s. In contrast, RF has the
shortest IQR, with the data most concentrated and the most
stable detection time, completing detection between 0.55s and
0.60s.

Although there are differences in the data distributions,
these differences are minimal, with all times being within
the millisecond range and not exceeding 0.8 seconds. Such
small time differences provide almost no additional opera-
tional space in practical applications. Moreover, the longest
detection time does not exceed 0.8 seconds, and the shortest
is 0.5 seconds, meaning detection can be completed almost
instantaneously after sample collection. This ensures timely
and fast identification of legitimate users and illegal intrusions,
providing solid and stable support for effective interception.

0.759

0.701

Time(s)

0.65 4

0.55

RF RBFNN

Fig. 7. Box plot of 30 trials of detection times for RF and RBFNN.

E. Security Analysis of Anti-Impersonation Attacks

Impersonation attacks refer to the scenario where an attacker
forges or mimics the biometric behavior features (such as
screen-touch operation habits) of a legitimate user in order
to gain unauthorized access [11]. These attacks pose a direct
threat to the security of biometric recognition systems, making
it crucial to evaluate the system’s robustness under such
conditions. In our anti-impersonation attack experiment, four
unauthorized users are instructed to observe the legitimate
user’s touch interaction habits during UAV control operations.
These unauthorized users attempt to imitate the operations of
legitimate users under performing the same UAV control tasks.

Our experimental results show that the recognition accuracy
of single classifiers is only between 0.87 and 0.92, indicating
that their classification accuracy and security are relatively
weak and more susceptible to deceptive attacks. In contrast,
the weighted fusion strategy significantly improves the ability
to resist impersonation attacks. The AUC of the RF+RBFNN
fusion classifier exceeds 0.95, outperforming single classifiers
and demonstrating strong anti-fraud capabilities.

The experimental detection set’s negative samples were data
collected from unauthorized users who observed and deliber-
ately mimicked the actions of authorized users. Despite this,
the UAV’s inspection tasks and flight routes were consistent,
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leading to excellent identification and classification results.
This is directly reflected in the classifier’s AUC value, which
consistently remained above 0.95, indicating that the series of
implicit operational habit features calculated by the proposed
method are difficult to observe and mimic by the naked eye.
This demonstrates the method’s ability to resist impersonation
attacks, highlighting the uniqueness and non-reproducibility of
these habitual features.

These results suggest that the anti-imitation performance
of the method can significantly enhance the security of op-
erational authority for important devices in fields such as
drones and Industrial Internet of Things (IIoT). Furthermore,
it provides a reliable supplementary identity verification solu-
tion, strengthening passive identity authentication and security
defense.

G. Experimental Analysis and Summary

In this experiment, we evaluated the performance of the
RF and RBFNN classifiers using a series of key metrics to
identify the optimal single-classifier model for the UAV indus-
trial inspection scenario. The selected classifier demonstrated
sufficient discriminative capability in distinguishing between
authorized and unauthorized screen-touch operations. Building
on this, we assigned appropriate weights to each classifier
and constructed a fused classifier that effectively combines
their complementary strengths. Experimental results show that
the AUC of the fused classifier consistently rises above 0.95,
representing a significant improvement over individual clas-
sifiers. This enhancement further strengthens its adaptability
to various complex operational conditions, including routine
authorized actions, imitation attacks, and noisy or disturbed
touch interactions, thereby improving both decision accuracy
and robustness.

Applying this authentication technique to UAV security ver-
ification effectively addresses several limitations of traditional
UAV control authentication mechanisms. First, it mitigates the
risks associated with hardware tokens (e.g., USB keys) that can
be lost and passwords that can be leaked, by binding identity to
a user’s unique screen-touch interaction patterns—serving as
a behavioral fingerprint. Second, compared with biometric au-
thentication methods (e.g., face recognition) that are sensitive
to lighting conditions and occlusions, touch behavior-based
authentication remains stable in dynamic UAV operational
environments and requires no additional hardware modules.
Third, the fused classifier, while maintaining a high decision
accuracy (AUC > 0.95), benefits from the fast training and
detection characteristics of individual classifiers, enabling real-
time identity verification during UAV inspection tasks without
causing delays that could undermine operational efficiency.
These advantages highlight the practical value of this research
in enhancing passive identity verification security and anti-
spoofing resilience in UAV operations.

In summary, the passive authentication technique based
on touch behavioral patterns offers a secure, timely, and
convenient identity verification solution for UAV systems. It
holds significant practical relevance for safeguarding opera-
tional permissions and ensuring secure access to critical UAV
equipment and mission workflows.

IV. CONCLUSION

This study proposes a passive identity authentication frame-
work based on touch interaction behavioral biometrics, aiming
to enhance the security of operation permissions in UAV
systems. We investigated whether SCTO can serve as a re-
liable behavioral biometric for continuous authentication, and
developed an effective scheme for SCTO data acquisition and
structured storage. Two machine learning algorithms—RF and
RBFNN—were trained on SCTO feature array to construct
classifiers. A weighted fusion mechanism was further intro-
duced to boost performance. Experimental evaluations, includ-
ing tests with spoofed SCTO samples, demonstrated that the
proposed framework achieves stable and high authentication
accuracy while maintaining strong resistance against mimicry
attacks. Moreover, the optimally selected scheme reaches
millisecond-level detection latency, verifying its capability for
fast, timely, and effective intrusion prevention.

In addition, the proposed method requires no extra hardware
modules. It leverages the native touch interactions of UAV con-
trol terminals to bind a user’s identity with their “behavioral
fingerprint,” ensuring both stability during mission execution
and a practical balance between real-time responsiveness and
security. This provides a lightweight, reliable, and deployable
solution for operation permission control, offering a robust
intrusion prevention mechanism for touchscreen-based UAV
equipment. The framework thus holds substantial practical
value for UAV operation security and exhibits promising ap-
plication potential. Future work will focus on three directions:

1) Optimizing SCTO feature engineering to extract more la-
tent and discriminative patterns from users’ operational habits;

2) Exploring adaptive weight fusion strategies to enable
dynamic parameter adjustment across different application
scenarios;

3) Extending the system to broader UAV tasks, such as
power-line inspection and agricultural operations, promoting
the transition from experimental validation to practical deploy-
ment and further enhancing security across touchscreen-based
UAV interaction scenarios.
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