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In the rapidly evolving digital era, where interconnected devices like smartphones proliferate, sensitive data exchange has surged,
amplifying cybersecurity risks. Therefore, a need for robust authentication to safeguard privacy and prevent unauthorized access,
driving innovative solutions that enhance digital security. This survey paper focuses on the critical need for advanced authentication
methods to address escalating cyber threats and the shortcomings of traditional single-factor authentication. Conventional methods,
reliant on passwords or tokens, are highly susceptible to breaches and user negligence, leaving significant security vulnerabilities.
This study bridges these gaps through an in-depth exploration of Continuous Authentication (CA) techniques, which utilize real-time
monitoring of user behavior and biometric data to enhance security and usability. A comprehensive analysis of multi-dimensional
identity factors (physiological, behavioral, and context-aware) highlights how their integration can improve reliability while respecting
privacy. The study provides insights into balancing security, usability, and privacy, guiding the development of modern, user-centric

authentication frameworks.

Index Terms—Continuous authentication, Biometric data, Single-factor authentication, Traditional methods, Privacy.

I. INTRODUCTION

IGITAL technologies are advancing rapidly, leading to

widespread adoption of interconnected systems such as
smartphones [1], smart homes [2], and the Internet of Things
(IoT) [3]; this proliferation of connected devices has height-
ened the volume and sensitivity of personal data exchanged,
creating critical security vulnerabilities. Strong and efficient
identity verification mechanisms are essential to protect users
and ensure a smooth experience. Authentication serves as the
cornerstone of digital security, ensuring only legitimate users
can access protected resources while safeguarding personal
information [4]. It plays a key role in safeguarding personal
information and resources. As cyber threats increase in fre-
quency and complexity, the need for multifactor authentica-
tion has grown [5]. Traditional authentication systems often
use single-factor authentication (SFA). SFA usually involves
something the user knows, like a password or PIN. But,
SFA is inadequate against cyber-attacks. Weak passwords are
easily cracked. Users often reuse credentials across platforms,
increasing breach risks [6], [7]. Therefore, the focus has moved
to multi-factor authentication (MFA). MFA enhances security
by combining knowledge-based (passwords), possession-based
(mobile devices, smartcards), and biometric factors (finger-
prints, face recognition, iris scans) [8], [9]. MFA improves
login-time assurance through the combination of more than
one distinct factor type, commonly categorized as something
the user knows, something the user has, and something the
user is. MFA therefore strengthens entry-point decisions, yet it
does not, on its own, ensure that the authenticated user remains
the same entity throughout the session [10]. Multi-dimensional
identity construction is conceptually separate from MFA.
MFA typically establishes initial trust at login, while multi-
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dimensional identity construction supplies the evidence used
to strengthen MFA implementations (e.g., multi-biometric
“something you are” combined with possession), and it also
supplies the continuous signals used for CA to maintain trust
after login [11].

Continuous authentication (CA) addresses the limitations of
traditional authentication. Unlike session-based authentication,
where users authenticate once for a session, CA continuously
monitors user behaviors and biometrics in real-time, verifies
identity throughout the session [12], [13]. It passively analyzes
factors like keystroke dynamics, facial expressions, voice, and
how users interact with their devices. CA systems enhance
both security and usability without requiring user input after
the initial authentication [14]. Integrating CA with multi-
dimensional identity construction enables more accurate user
assessment by leveraging personal data, including physiologi-
cal, behavioral, and contextual information. This comprehen-
sive approach strengthens authentication and reduces unau-
thorized access risks, but also creates challenges balancing
security and privacy concerns.

The development of authentication methods mirrors the
increasing complexity of cyber threats. Initially reliant on
inherently vulnerable passwords, over 80% of data breaches
involve compromised credentials [15], highlighting the ur-
gent need for more secure approaches. MFA significantly
lowers unauthorized access risk by combining verification
factors [20]. However, introduces challenges like user in-
convenience and system complexity [21], [22]. To address
these issues, biometric authentication has gained traction due
to its convenience and difficulty in forging. Fingerprint and
facial recognition are now standard in many devices, offering
higher security compared to traditional password systems
[23], [24]. However, biometric data is highly sensitive and,
if compromised, cannot be changed like a password, raising
significant privacy concerns and necessitating robust protection
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[25], [27]. Additionally, biometric systems can experience
false acceptance and rejection rates, which may impact user
trust and system reliability [28].

CA enhances security and user convenience by continu-
ously monitoring user behaviors and biometrics in real-time
[30], [31]. This model employs biometric, behavioral, and
contextual information for verification, making it difficult for
unauthorized access to go undetected. Modern studies integrate
advanced algorithms to process complex datasets, improving
the accuracy and reliability of CA systems [30], [32]. However,
challenges include safeguarding the security and privacy of
the continuously collected personal information [35]. High
accuracy in a range of real-life environments is also critical,
with variations in behavior and environments having an impact
on system performance [36], [38]. User acceptance is critical
for successful CA system implementations, requiring trust in
responsible information processing and minimal authentication
intrusion [39], [40]. Overcoming obstacles requires robust
encryption, regulatory compliance (e.g., GDPR [41]), and
user-friendly, secure interfaces that maintain usability. Thus,
CA offers a secure, effective, user-focused solution for digital
environments.

Multi-Factor Authentication (MFA) should be introduced as
the entry-point control that verifies identity at login using two
or more factors, since it strengthens access decisions through
multiple independent proofs of identity rather than a single
credential. MFA can also be expressed as an authentication
strategy that “considers more than one significant attribute”
for identifying a user, which highlights the design intent
of reducing single-point failure at login [42]. Continuous
Authentication (CA) should be defined as in-session identity
assurance that keeps checking whether the active user remains
the legitimate account holder, instead of assuming the user
stays legitimate after the first login [43]. The relationship
between the two needs to be explicit and repeated throughout
the paper: MFA establishes initial trust, while CA maintains
trust after access is granted, reducing the post-login expo-
sure window that MFA alone cannot cover [42,43]. Recent
empirical results support the practical value of this framing,
since sliding-window, multimodal CA has been reported to
achieve 99.3% verification accuracy, detect impostors within
12 seconds, and keep false alarms under 1%, which makes
CA suitable as a runtime companion to MFA rather than
a purely theoretical add-on [43]. This relationship is also
timely for deployments, because a 2025 systematic review
of payment-system MFA found that 33% of industry tools
still rely on OTP-based MFA, even as research pushes toward
richer biometrics and behavioral signals, which strengthens the
case for CA as the continuity layer that complements legacy
MFA instead of replacing it [44].

CA enhances real-time security but is constrained by a
trade-off between security, usability, and privacy. CA solu-
tions’ constant monitoring of behavioral and biometric sig-
nals raises user concerns over surveillance and data misuse.
Furthermore, CA systems require accurate data, as errors
(false positives or negatives) undermine trustworthiness [45].
Integrating multi-factor authentication (biometrics, behavior
monitoring, context-aware factors) introduces challenges in

technical compatibility, complexity, and data breach risks. As
digital connectivity expands, need for secure, user-friendly
authentication grows, necessitating multi-layered solutions be-
yond traditional methods. CA is promising, yet research lacks
clarity on balancing its core triad: security, usability, and
privacy. Progress has been made, but studies focus on iso-
lated factors like biometrics or behavior, with some exploring
integrated frameworks. Privacy concerns and ethical issues in
continuous monitoring remain underexplored. This survey ad-
dresses these gaps, examining how multi-dimensional identity
construction integrates with CA. It identifies best practices
for balancing security, usability, and privacy. The goal is to
advance development of secure, user-centric systems that meet
demands. Key research questions include:

* How can multi-dimensional identity factors be seamlessly
integrated into CA frameworks to enhance security without
compromising user experience?

¢ Which combination of biometric, behavioral, and contex-
tual data provides the most reliable and secure authentication
in diverse digital environments?

This survey paper emphasizes the demand for authentication
methods to address cyber threats and the limitations of tradi-
tional single-factor authentication. Passwords and tokens are
vulnerable to breaches and human error, creating security gaps.
The paper investigates CA techniques that leverage real-time
monitoring of user behavior and biometrics to enhance security
and usability. It explores the integration of multi-dimensional
identity factors (physiological, behavioral, and contextual) for
improved reliability and privacy. The survey is structured to
cover foundational concepts, authentication techniques, secu-
rity and privacy implications, usability challenges, privacy-
preserving methodologies, and future directions, concluding
with recommendations for secure, user-centric systems.

A. Motivation of the Study

Existing literature lacks a comprehensive analysis com-
paring traditional and continuous authentication CA models
and algorithms, which is the primary motivation for this
study. Our research provides a vital resource for understanding
these methods, assisting researchers in selecting superior CA
techniques and developing models for smart devices.

1) Contributions

e It revisits the foundations of traditional authentication
(e.g., passwords, PINs, static biometrics) and explains their
diminishing efficacy compared to modern solutions. * It cat-
alogues and evaluates the full spectrum of CA frameworks,
grouping them by the behavioral or physiological dynamics
they track to confirm a user’s identity over time. * We compare
competing CA approaches to lay out the pros and cons.
For every study reviewed we note the authentication strategy
adopted, the sensors employed, the datasets analyzed, the
neural-network or statistical models trained, and the reported
performance figures. ¢ Finally, we discuss the insights gained,
the persistent challenges, and directions for future work.



TABLE I: A horizontal comparison clarifies the contribution of the present survey by situating it against closely related

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 4, DECEMBER 2025

reviews that focus either on continuous authentication (CA) or on multi-factor authentication (MFA) in isolation
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Primary scope Evidence What it emphasizes Aspects Present survey Ref.
Continuous - Reports that supervised learning domi- | Limited treatment of | The present survey explic- | [46]
Authentication nates CAS, with frequent use of score- | CA as an operational | itly structures CA through
Systems (CAS) level fusion; evaluation attention cen- | companion to MFA physiological, behavioral, and
and user profiling ters on FRR/FAR/EER, while usability, context-aware identity dimen-
security, and scalability are less consis- sions and discusses trade-offs
tently addressed and integration constraints as
first-order issues
Behavioral biomet- | 122 studies | Concentration of evidence in touch ges- | Narrower modality | The present survey extends be- | [47]
rics on mobile de- | included tures (n=76) and movement (n=63); | scope (behavioral, | yond mobile behavioral sig-
vices (authentica- | from 14,179 | keystroke (n=30); reports low mean re- | mobile-heavy); nals to include broader iden-
tion + demographic | screened porting quality (5.5/14) limited system-level | tity construction and context-
detection) framing beyond | aware factors, aligned with its
study quality multi-dimensional taxonomy

MFA in digital | 70 Quantifies implementation gaps: 33% | CA and post-login | The present survey addresses | [44]
payment systems | academic of industry tools still rely on OTP-based | identity = assurance | the post-login gap by fram-
with NIST | papers MFA; 60% of reviewed papers integrate | are largely outside | ing CA as continuous session
alignment (2017-2024) | biometrics; payment systems show 77% | scope assurance and discusses pri-

+ 13 | alignment with NIST standards vacy/usability trade-offs that

industry shape deployability

tools
Continuous 80 papers Proposes a classification framework | Less emphasis | The present survey’s | [48]
biometric focused on data sampling strategies | on context-aware | distinct angle is the
authentication and supports metric-level comparison | identity and broader | “multi-dimensional  identity
taxonomy across continuous biometrics CA-MFA system | construction” framing that
with emphasis architecture includes  contextual  and
on sampling behavioral layers alongside
(2018-2024) biometrics

II. WIDELY DEPLOYED AUTHENTICATION
METHODS

Traditional authentication methods rely on single-factor and
multi-factor approaches to verify user identities. Password
protection remains a common method, utilizing passphrases
or PINs as a knowledge-based factor [49], [50]. Widely
implemented and easy to use, passwords are vulnerable to
weaknesses such as easily guessed, reused across platforms,
or susceptible to phishing attacks, leading to a significant
number of data breaches [51], [52]. Token-based authenti-
cation introduces a possession factor, where users present a
physical device such as smartcards or smartphones [53], [54].
Although tokens add an extra layer of security, they come
with challenges such as the potential for loss or theft and
the complexity of managing additional hardware [55], [56].
Biometric authentication methods, including voice recognition
and facial recognition, have gained popularity due to their
convenience and difficulty to forge [22], [57]. Voice biometrics
leverage built-in microphones in devices to authenticate users
based on unique vocal characteristics, but advancements in
technology raise concerns about voice mimicry and spoofing
[52], [58]. Facial recognition systems have evolved from
simple image analysis to more sophisticated techniques that
assess three-dimensional features and user expressions, en-
hancing security but also introducing privacy issues and the
risk of being bypassed with photos or masks [59], [60].
Ocular methodologies such as iris and retina scanning offer
high accuracy and are challenging to replicate; they require
specialized, high-quality hardware and robust image analysis
techniques, making them costly and less accessible [61], [62].
Other methods include hand geometry and vein recognition,

which analyze the physical shape and vein patterns of a
user’s hand for authentication [63], [64]. While these methods
provide a non-intrusive means of verification, they face limi-
tations related to environmental robustness and susceptibility
to advanced spoofing attacks [65]. Fingerprint scanners are
extensively used in personal devices for their intuitive nature,
but they are prone to being replicated from surfaces and raise
significant privacy concerns [66]. Thermal image recognition
and geographical location-based authentication add contextual
layers to security by analyzing unique thermal patterns and
validating access based on the user’s location. However, these
methods are influenced by user conditions and environmental
factors, which can affect their reliability and accuracy [19],
[67], [68]. Traditional authentication methods offer varying
levels of security and convenience; each comes with its own
set of advantages and limitations. The continuous evolution of
cyber threats necessitates the integration of more sophisticated
and multi-dimensional authentication mechanisms to enhance
security without compromising user experience [69], [70].
Today, identification and authentication for accessing sensitive
data are among the primary use cases for MFA.

III. MODES OF CONTINUOUS AUTHENTICATION

Continuous authentication is not only a change in when
identity is checked, it also changes what can go wrong during
checking. Each modality discussed in this section is there-
fore analyzed through five deployment-critical dimensions:
(1) signal stability over time (behavioral drift), (ii) sensor
availability and context dependence, (iii) adversarial exposure
(iv) privacy risk, and (v) resource cost (latency, energy, and on-
device feasibility). This structure enables the survey to derive
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TABLE II: WIDELY DEPLOYED AUTHENTICATION METHODS
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Method Advantages Drawbacks Level Usability Ref.

Password Simple, common Low Entropy, Forgot- | Low High [49], [50], [51], [52]

Protection ten codes

Token Presence Hard to copy Token Loss, Added | Medium Moderate [53], [54], [55], [56]
overhead

Voice Biometrics Easy, non-intrusive Privacy risks, Health | Medium High [54], [58]
dependency

Facial Recognition Secure, touchless Privacy risks, Envi- | High High [591], [60]
ronmental Sensitivity

Ocular-Based Accurate, secure Costly, User Intru- | High Moderate [61], [62]
siveness

Hand Geometry Simple, non-intrusive Less secure, Place- | Medium High [63], [64], [65]
ment Sensitivity

Vein Recognition Hard to replicate Costly scanners, Data | High Moderate [63], [64]
vulnerability

Fingerprint Common, easy Spoofable, Medium High [66]

Scanner Acquisition Quality

Thermal Recogni- | Unique, touchless Environment Medium Low [19], [67], [68]

tion Sensitive, Accuracy
Variability

Geo-Location Context-based Unreliable GPS, | Low High [19], [67], [68]
Spoofing prone

challenges from method properties. Recent research offers
various definitions for CA. Traore [72] defines CA as ”a new
generation of security mechanisms that continuously monitor
user behavior and use this as a basis to re-authenticate them
periodically”. Similarly, Ibanez-Lissen et al. [73] describe CA
as “a security mechanism that monitors user actions at every
point in time during a session and determines if that user is the
legitimate one”. These definitions, however, have limitations.
Traore definition primarily focuses on behavioral biometrics,
overlooking other authentication factors, while Ibanez-Lissen
definition does not specify whether the authentication process
is active or passive. Additional studies emphasize the need
for a more comprehensive definition that includes multiple
authentication dimensions. Stylios and Aegean [74] argue that
CA should integrate physiological and behavioral biometrics
alongside context-aware authentication modes to establish a
robust security framework. Furthermore, Hasan et al. [75]
highlight the importance of passive monitoring in CA systems
to enhance user experience and reduce disruptions. Building on
these insights, we suggest defining CA as the continuous and
passive monitoring of users through the recognition of physi-
ological biometrics, behavioral biometrics, and context-aware
authentication modes during a session. This comprehensive
definition addresses the multifaceted nature of modern authen-
tication systems, ensuring that CA integrates a broad range of
user features and actions to enhance both security and user
convenience. We suggest CA as continuously and passively
monitoring users by means of recognizing user features and
actions (i.e., physiological biometrics, behavioral biometrics,
or context-aware authentication modes). Section 3 reviews
authentication methods through the lens that MFA governs
entry-point assurance, whereas multi-dimensional identity con-
struction provides the signals that can strengthen MFA and
enable CA for post-login assurance. Figure 1 shows a mul-
timodal biometric framework integrating behavioral (voice,

hand geometry) and physiological (facial, vein, fingerprint)
features.

A. Physiological Biometrics

Physiological biometrics (fingerprint recognition, face
recognition, and iris recognition) are among the well-known
and most used traditional authentication modes. These modes
are also utilized for continuous authentication. Figure 1
presents a continuous authentication (CA) architecture that
constructs identity using two complementary signal families.
Behavioral modalities (e.g., voice recognition, hand geom-
etry) support ongoing user verification during interaction,
capturing dynamic patterns that can be sampled repeatedly
over time While physiological modalities (e.g., Face, vein,
fingerprint, thermal) primarily support user enrollment and
high-confidence verification, providing more stable biological
signatures for template creation. Raw signals are transformed
through feature extraction, then processed by an authentication
algorithm that performs matching and decision-making against
the enrolled profile. The system outputs user validation deci-
sions, while selected/fused features enable multimodal fusion
and are stored as an enrollment profile in cloud or local
repositories for subsequent continuous checks

1) Face and Voice as Biometrics

Continuous authentication methods using face and voice
biometrics have emerged as critical solutions for enhancing
security in mobile and computing environments. Abolarinwa
[76] proposed a face recognition-based authentication system
for mobile devices. By employing a Support Vector Machine
(SVM) classifier trained on facial images from 10 participants,
they achieved a False Acceptance Rate (FAR) ranging from
0.1% to 1% with overall accuracy of 64%. Similarly, Lu et al.
[77] developed a voice-based authentication method, evaluated
with 18 users, achieving a recognition accuracy of 97% and
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Fig. 1: Modes of continuous authentication.

a False Positive Rate (FPR) of 0.1%. Alharbi and Alshan-
bari [78] advanced this field by combining FaceNet for face
recognition and Gaussian Mixture Model (GMM) for voice
recognition in a multimodal biometric system, demonstrating
a notable reduction in Equal Error Rate (EER) compared
to unimodal methods. Abbaas and Serpen [79] employed
an ensemble classifier integrating face and voice biometrics,
reporting accuracy, precision, True Negative Rate (TNR), and
True Positive Rate (TPR), all exceeding 99%, while maintain-
ing FPR and False Negative Rate (FNR) below 1%. Stokkenes
et al. [80] facilitated the development of multimodal biometric

systems by creating a dataset that includes face, voice, and
periocular data from 150 participants. This dataset has proven
instrumental in testing and optimizing multimodal biometric
methods. Abuhamad et al. [42] conducted an extensive survey
of over 140 studies on behavioral biometrics, which included
several voice-based and multimodal approaches integrating
face and voice recognition, emphasizing the superior perfor-
mance of such systems. Fereidooni et al. [81] introduced
AuthentiSense using few-shot learning with face/voice inte-
gration, achieving 97% F1-score for mobile platforms. Other
notable contributions include the work by Alshardan et al.
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TABLE III: Continuous authentication methods using face and voice biometrics

Type Method Algorithm Participants | Advantages Drawbacks Performance Ref
Face Face recognition (mo- | SVM 10 Simple, Spoofable, FAR: 0.1-1%, TAR: [76]
bile) common quality- 73%, Acc: 64%
dependent
Voice Voice authentication - 18 Easy, non- | Mimicry risk, | Acc: 97%, FPR:0.1% | [77]
intrusive privacy
Multimodal FaceNet + GMM | FaceNet + | - High security Complex inte- | Lower EER [78]
(face & voice) GMM gration
Multimodal Face & voice ensem- | Ensemble - High Needs Acc, Prec, TNR, TPR | [79]
ble performance classifiers >99%; FPR, FNR
<1%
Multimodal Face, voice, periocu- | - 150 Supports - Dataset for testing [80]
lar data research
Survey Behavioral biometrics | - 140+ studies | Comprehensive | - Highlights [42]
review multimodal edge
Multimodal AuthentiSense (face | Few-Shot - Few-shot effec- | Needs data F1: 97% (mobile) [81]
& voice) tive
Multimodal Deep learning multi- | Deep Learning - Strong integra- | High cost Acc: 96.8%, Low | [82]
modal tion EER

[82], who proposed a deep learning-based multimodal au-
thentication framework combining face and voice biometrics,
reporting an overall accuracy of 96.8% and a reduced EER
compared to individual modalities. Additionally, Zhang et
al. [83] investigated the role of facial expressions and voice
variations in CA systems, achieving a True Accept Rate (TAR)
of 92% with a FAR of 0.8%. Yadav et al. [84] explored a
hybrid approach using Convolutional Neural Network (CNNs)
for face recognition and Recurrent Neural Network (RNNs) for
voice authentication achieving a combined accuracy of 98.2%.
Thomas and Preetha Mathew [85] developed a face and voice
authentication system under varying lighting and noise condi-
tions, achieving performance with an EER below 2%. These
studies collectively demonstrate the efficacy and potential of
integrating face and voice biometrics for CA, highlighting
advancements in recognition accuracy and multimodal integra-
tion by synthesizing findings from diverse methodologies, this
research underscores the critical role of face and voice biomet-
rics in securing digital environments. Face- and voice-based
continuous authentication usually performs well in controlled
capture, yet its main challenges come from capture variability
and presentation risk. Illumination, pose, and ambient noise
degrade the stability of similarity scores, which forces systems
to either widen decision thresholds (raising false accepts) or
increase sampling (down user experience). Continuous use
also increases the exposure window for replay and presentation
attacks, so liveness and presentation attack detection become
a practical requirement rather than an optional add-on. Recent
biometric PAD literature stresses that spoof resistance must
be treated as a measurable performance axis, not a qualitative
claim, because operational error rates can shift once attacks
are considered.

2) Gait Recognition

The gait recognition has experienced significant advance-
ments in recent years. Figure 2 Illustrates a unified view
of gait recognition using multiple or single cameras. High-
lights 3D (skeleton-based, cross-view) and 2D (model based,
appearance-based) methods for capturing and analyzing hu-

man walking patterns. Han and Bhanu [86] employed model-
based gait recognition techniques that used body segment
dynamics to extract unique gait patterns, achieving an accuracy
of 92% on the USF Gait Dataset. Similarly, Shiraga et al. [87]
proposed a CNN-based approach for cross-view recognition
using OU-ISIR dataset, achieving 95.4% TAR with 3.1%
FAR. This approach outperformed earlier handcrafted feature
methods by leveraging deep feature representation. Wu et al.
[88] introduced a spatiotemporal gait representation method
that encoded motion dynamics in a compact form, achieving
an accuracy of 94.8% on the CASIA-B dataset under normal
walking conditions. Zhang et al. [89] extended this work
by incorporating generative adversarial networks (GANs) to
enhance cross-view gait recognition, reporting TAR values
exceeding 96% on multiple benchmark datasets. While earlier
studies focused on silhouette-based methods [90], recent ad-
vancements have shifted towards skeleton-based approaches,
as demonstrated by Qin et al. [91], who achieved a FAR of
only 2.5% using 3D pose estimation techniques integrated with
graph convolutional networks. Another notable contribution
was made by Chao et al. [92], who developed a (GEI)-based
deep learning model that achieved state-of-the-art performance
with 97.3% accuracy on the OU-MVLP dataset. The model
reduced computational complexity while maintaining high
accuracy, showcasing GEI’s potential in feature extraction.
Furthermore, Huang et al. [93] explored domain adaptation
techniques, achieving 93% TAR on cross-domain datasets by
minimizing domain discrepancies through adversarial training.
In contrast, Cheng et al. [94] investigated the role of temporal
attention mechanisms, achieving a TAR of 94.5% on the
CASIA-B dataset under occluded scenarios, which was previ-
ously a challenging condition for traditional models. The use
of hybrid methods combining handcrafted and deep learning
features has also shown promise. Gadaleta and Rossi [95]
combined accelerometer- based data with CNNs, achieving
an accuracy of 91% in real-world scenarios with varying
walking surfaces. Similarly, Yousef et al. [96] proposed a
hybrid deep learning model that integrates residual networks
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and RNN, reporting a FAR of 1.8% and a TAR of 97% on the
TUM Gait dataset. Such hybrid models effectively address the
limitations of both traditional and deep learning approaches.
Despite these advancements, challenges such as occlusion,
varying walking speed, and cross-view recognition remain
prevalent. To address these, Ghosh [97] employed transformer
architectures, achieving state-of-the-art results with a TAR of
96.8% on the OU-ISIR dataset under varying speed conditions,
while Wang et al. [98] used self-supervised learning against
occlusions (94.2% accuracy on CASIA-B). Recent studies
emphasize large-scale datasets, exemplified by Shen et al. [99]
introducing a dataset with over 20,000 subjects, facilitating
the development of more generalized gait recognition models.
Gait is attractive for passive CA, but the derived challenges

are tightly coupled to device placement and context switching.
Pocket, hand-held, and bag placement produce different iner-
tial signatures, which can resemble “intra-user variation” at the
classifier level and inflate false rejections if the model is not
placement-aware. Context changes create discontinuities that
look like impostor segments, so robust systems need segment-
quality gating and context-aware fusion rather than longer
windows alone. Evidence from context-aware fusion research
shows that adaptive weighting can materially reduce error,
with multimodal schemes reporting accuracy gains when the
system dynamically shifts weight based on signal reliability
and configuration changes [49].

Motion dynamics, characterized by unique gait patterns
have emerged as a reliable biometric modality for human



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 4, DECEMBER 2025

TABLE IV: Continuous authentication methods using gait recognition

Type Method Algorithm Participants | Advantages Drawbacks Performance Ref
Model-based | Body segment | Not specified USF  Gait | High accuracy Needs precise | Acc: 92% [86]
dynamics Dataset modeling
CNN-based Cross-view CNN OU-ISIR Effective, supe- | High computa- | TAR: 95.4%, FAR: | [87]
recognition Dataset rior tion 3.1%
Spatiotemporal] Motion encoding Not specified CASIA-B Compact, accu- | Struggles with | Acc: 94.8% [88]
(Normal) rate abnormal gait
GANs-based | Cross-view with | GANs Multiple Enhanced TAR | Complex train- | TAR > 96% [89]
GANs Datasets ing
Skeleton- 3D poses with GCNs | GCNs Not specified | Low FAR, 3D | Needs precise | FAR: 2.5% [91]
based poses data
GEl-based GEI deep learning Deep Learning OU-MVLP High accuracy Needs quality | Acc: 97.3% [92]
Dataset GEI
Domain Adversarial training Ady. Training Cross- Robust to shifts | Hyperparam. TAR: 93% [93]
Adapt. Domain sensitive
Datasets
Attention Occlusion handling Attention CASIA-B Works  under | Needs complex | TAR: 94.5% [94]
Mech. (Occluded) occlusion model
Hybrid CNN + accelerometer | CNN Real-world High real-world | Needs sensors Acc: 91% [95]
Scenarios accuracy
Hybrid ResNet + RNN ResNet + RNN | TUM  Gait | High TAR, low | Complex, high | FAR: 1.8%, TAR: | [96]
Dataset FAR computation 97%
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activity recognition. Gait-based techniques utilize data from
body-worn motion sensors (e.g., gyroscopes, accelerometers)
to extract and analyze movement patterns for authentication.
Ray-Dowling [100] placed sensors on the waist of 36 par-
ticipants, adopting Fast Fourier Transform (FFT) for feature
extraction with 72-88% accuracy and 7% EER, noting per-
formance depends on sensor placement. In a larger work,
Gafurov [101] performed a study of gait-based recognition
with sensors at a range of locations in the body. There were
100 subjects: 30 with sensors at ankles, 30 at arms, 100 at hips
and 50 with mobiles in pockets. K-Nearest Neighbors (KNN)
algorithm was adopted for classification, with EERs of 5%,
10%, 13%, and 7.3%, respectively, for sensors at ankles, at
arms, at hips, and in pockets. These experiments reveal how
the position of sensors can affect accuracy in recognition.
Recent studies in gait-based recognition try to make such
a system increasingly reliable and efficient under variable
environments. Ellavarason et al. [102] developed a hybrid
algorithm with Principal Component Analysis (PCA) and
Support Vector Machines (SVMs) and achieved 90% accuracy
with a custom made dataset of 60 subjects, Similarly Liu et
al. [103] developed a deep learning algorithm with the use of
convolutional neural networks (CNNs) for feature extraction
in gait, with an EER of 4.2% with the OU-ISIR dataset.
These experiments reveal how deep and machine learning can
simplify and make gait recognition effective and efficient. To
make performance even efficient, many studies have proposed
fusing information between several sensors. Correspondingly,
a pace variance compensating temporal attention mechanism
with an EER of 3.8% using CASIA-B was proposed by Kumar
and Verma [104].

3) Iris Recognition
Iris recognition has witnessed remarkable advancements via

integration of machine learning, deep learning, and improved
hardware for feature acquisition. Daugman [105] established

the development of the iris recognition algorithm using a
patented mathematical model that extracted iris patterns as
phase information, achieving a FAR of 0.0001% and a TAR of
99.9% on the ICE dataset. Similarly, Wildes [106] proposed an
automated system leveraging Laplacian pyramids for feature
extraction, achieving 98% TAR with 0.01% FAR, establishing
a foundation for subsequent iris biometric systems. More
recently, Proenca and Alexandre [107] and Hasan [108] ad-
dressed challenges of iris recognition under visible light. They
developed a segmentation algorithm to accurately process de-
graded iris images, achieving 90.4% accuracy on the UBIRIS
dataset. Yan et al. [109] extended this work, introducing a
novel normalization technique to handle off-angle iris images,
reporting 94.5% TAR on the CASIA-IrisV3 database. Omran
and AlShemmary [110] adopted CNNs for iris feature extrac-
tion, achieving 98.8% accuracy and 0.003% FAR on IITD
datasets. To improve cross-sensor performance, Kerrigan et al.
[111] adopted one-to-one sensor mapping for domain adapta-
tion via GANSs, reducing cross-sensor performance degradation
and achieving 96% TAR on ND IRIS-0405 datasets. Ahmad
and Fuller [112] adopted lightweight deep neural networks
for smartphone iris recognition, achieving 91.2% accuracy
and 93% TAR on real time smartphone-captured datasets.
To address occlusion, Yin et al. [113] developed a multi-
task feature extraction and segmentation scheme, achieving
97.6% TAR on CASIA-Iris Thousand datasets. Nguyen et al.
[114] developed a deep model with spatial attention, achieving
98.3% TAR and negligible 0.002% FAR on MICHE-I datasets.
In contrast, Liang et al. [115] used near-infrared imaging for
contactless iris recognition, achieving 99.1% accuracy on III'T-
contactless datasets and robustness in variable lighting. With
access to larger datasets, work in this direction continued to
become even more cultured, with iris recognition technology
being developed and sharpened.
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TABLE V: Continuous authentication methods using iris recognition

Type Method Algorithm Participants | Advantages Drawbacks Performance Ref

Model- Phase-based iris | Patented Model | ICE Dataset Low FAR, high | Needs precision | FAR: 0.0001%, TAR: [105]

Based recognition TAR 99.9%

Handcrafted Laplacian pyramids | Laplacian Pyra- | Not specified | Reliable Limited adapt- | TAR: 98%, FAR: [106]
feature extraction mids method ability 0.01%

Segmentation | Processing degraded | Not specified UBIRIS Works on de- | Poor image | Acc: 90.4% [107], [108]
iris images Dataset graded struggles

Normalization| Off-angle iris correc- | Novel CASIA- Handles angles | Computationally | TAR: 94.5% [109]
tion Techniques IrisV3 heavy

Deep Learn- | CNN-based feature | CNNs IITD Dataset | High accuracy Needs large | Acc: 98.8%, FAR: [110]

ing extraction data 0.003%

Domain Cross-sensor iris with | GANs ND-IRIS- Works across | Complex train- | TAR: 96% [111]

Adaptation GANs 0405 sensors ing

Lightweight Mobile iris recogni- | Not specified Mobile Mobile-friendly | Hardware lim- | Acc: 91.2%, TAR: [112]

DL tion Datasets its 93%

Multi-Task Joint segmentation & | Multi-Task CASIA- Robust,  high | Complex model | TAR: 97.6% [113]
extraction Learning Thousand TAR

Attention Spatial attention iris | Attention MICHE-I High TAR, low | High computa- | TAR: 98.3%, FAR: [114]
recognition Mech. Dataset FAR tion 0.002%

Contactless NIR-based iris recog- | Not specified IIT- High accuracy Needs NIR | Acc: 99.1% [115]
nition Contactless hardware

4) ECG and EEG Features as Biometrics

The use of electroencephalography (EEG) and electrocar-
diography (ECG) for biometric authentication is an emerging
issue due to their anti-spoofing and uniqueness capabilities.
EEG monitors brain activity, and ECG monitors heart activity.
Since these physiological traits cannot simply be imperson-
ated, they work effectively for continuous authentication. Mar-
cel and Milldn [116] designed an EEG based system for use
in authentication, comparing brain waves for beta and alpha,
and reached 91% accuracy for a custom corpus. Similarly,
Hosseinzadeh et al. [117] used ECG for authentication with
a correlation-based matcher, reaching an EER of 2.5% for
the PhysioNet corpus. As noted, both EEG and ECG can
work individually as single biometric modalities. Others exper-
imented with combining EEG and ECG for enhanced security
in terms of use in verification. Riera et al. [118] used EEG
spectral features and ECG time domain features and attained
a 95.3% TAR and a 3.2% FAR for a corpus of 50 subjects.
Kaliappan et al. [119] utilized deep feature fusion and attained
an EER of 1.8% for use with the AMIGOS corpus. As can be
seen, combining modalities boosts accuracy. The latest work
used larger datasets and machine learning algorithms. Zhang
et al. [120] utilized CNNs for EEG/ECG feature extraction,
attaining 96.5% accuracy for the DEAP corpus. Similarly,
Arnau-Gonzalez et al. [121] have utilized RNNs for the
analysis of temporal features and attained a TAR of 97%
and a FAR of 2% for use with the DREAMER corpus. Such
works show deep learning’s potential for biometric verification
accuracy and scalability. Works have combined EEG/ECG
with additional biometric features. Priya et al. [122] designed
a system merging EEG, eye blink, and voice, with 1.2%
EER in a fusion corpus. Similarly, Zhang et al. [123] merged
EEG, ECG, and gait, with 98.4% TAR and 0.5% FAR in a
multimodal corpus. All these works enhance system robustness
and reliability, especially for continuous verification.

B. Behavioral Biometrics

Behavioral biometrics introduces a different failure mode:
behavior drifts even when identity stays constant. Typing
rhythm, mouse dynamics, and touchscreen gestures change
with fatigue, injury, stress, and device form factor, so static
templates age quickly and require periodic adaptation. This
creates a methodological challenge for the literature as well:
a 2024 scoping review screened 14,179 records and included
122 studies, yet only 7 of 122 provided enough detail for
replication and only 5.5% reported testing on demographic
groups, which weakens the credibility of “low EER” claims
when deployed across diverse users. Consequently, challenges
such as fairness, longitudinal stability, and reproducibility
should be derived and discussed as first-order issues for
behavioral CA, not treated as secondary limitations [45].
The following modes of behavioral biometrics are used for
continuous authentication.

1) Touch Dynamics

Touch dynamics have emerged as a prevalent technique
for smart device user authentication by analyzing user be-
havior with touches, swipes, and taps on touchscreens. It’s
an ongoing, transparent user authentication method based on
individual behavior trends. Several algorithms and techniques
have been researched and developed for accuracy and re-
liability in touch-based authentication methodologies. Sae-
Bae et al. [124] proposed a five-finger gesture and motion
multi-touch scheme for information collection. They utilized
Dynamic Time Warping (DTW) for comparison and attained
90% accuracy with an EER of 2% to 5% in a 34-subject
collection. In contrast, Rauen et al. [125] examined us button
press and scroll behavior, using a Random Forest model
for classification and attaining 96.26% to 99.68% accuracy
with a FAR of 3.15% and a False Rejection Rate FRR of
9.13%. Long-term continuous authentication, where a system
monitors users over time, has also been a concern for most
studies. Frank et al. [126] proposed a system examining
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TABLE VI: Continuous authentication methods using ECG and EEG features as biometrics

Type Method Algorithm Participants | Advantages Drawbacks Performance Ref

EEG-Based Alpha & beta wave | Not specified 20 subjects Unique, spoof- | Needs EEG | Acc: 91% [116]
D proof hardware

ECG-Based ECG signal authenti- | Correlation PhysioNet Unique heart | Needs ECG | EER: 2.5% [117]
cation pattern hardware

Multimodal Spectral + time fea- | Not specified 50 More secure Complex TAR: 95.3%, FAR: | [118]

(EEG+ECG) | ture fusion participants system 3.2%

Multimodal Deep learning fusion Deep Learning AMIGOS Low EER, deep | Needs big data, | EER: 1.8% [119]

(EEG+ECG) learning high computa-

tion

EEG & ECG | CNN-based feature | CNN DEAP High accuracy Needs labeled | Acc: 96.5% [120]
extraction data

EEG & ECG | Temporal features via | RNNs DREAMER High TAR, low | Complex TAR: 97%, FAR: 2% | [121]
RNNs FAR processing

Multimodal EEG + blink + voice | Not specified Hybrid Robust, reliable | High complex- | EER: 1.2% [122]
ID dataset ity

Multimodal EEG + ECG + gait | Not specified Multimodal Highly reliable Needs multiple | TAR: 98.4%, FAR: | [123]
fusion dataset Sensors 0.5%
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swipe behavior, using KNN and SVMs for classification and
attaining 97% accuracy with an EER of 4.3% in a 30-subject
collection. Similarly, Meng et al. [127] utilized deep learning
for touch-based authentication, attaining a TAR of 98.2%
and a FAR of 1.8% with a custom collection. Others have
combined touch dynamics with additional behavior biometrics
to improve accuracy. Liu et al. [128] proposed a model using
an accelerometer and touch gesture, with 95.7% accuracy
and an EER of 3.1% when trained and evaluated over a
50-subject collection. Mahfouz et al. [129] went further by
combining touch dynamics and pressure, achieving 96.8%
accuracy and a FAR of 2.7% over a big-data corpus. Others
have focused on scaling touch-based authentication to larger
audiences and diverse environments. Bajaber et al. [130]
compared touch dynamics performance across device types
with varying screen dimensions, achieving 93.5% accuracy
over the TOUCHALYTICS corpus. Others regard ensemble
approaches, such as gradient boosting and random forests, as
effective for improving classification accuracy in touch-based
authentication. Touch dynamics achieves strong short-window
accuracy in many studies, yet the dominant deployment chal-
lenge is behavioral drift combined with device heterogeneity.
Touch features shift with screen size, posture, fatigue, and
interaction context, so thresholds calibrated on one device
or one period can inflate false rejections when the user’s
routine changes. This makes model update policy part of the
authentication method, rather than an implementation detail.
Adaptive weighting in multimodal CA provides a practical
mitigation because it can down-weight touch signals when
reliability drops and shift emphasis to other passive channels.

2) Stylometry Dynamics

Stylometric identification techniques scan a person’s id-
iosyncratic writing style by examining factors like sentence
structure, term use, and writing behavior to confirm their
identity. Stylometric techniques apply to short and long writ-
ings, using machine learning to detect such trends across a
writer’s works. Brocardo et al. [131] proposed a stylometry-
based scheme for user authentication by decomposing writings
into shorter segments to extract salient information. Simple

(e.g., use of characters and terms) and complex (e.g., N-gram
analysis) features were considered in decomposing writings to
extract salient information using the SVM algorithm, an EER
between 9.98% and 21.45% in two datasets, Twitter and Enron,
was attained. In experiments, lexical and N-gram feature
combinations can maximize stylometric analysis, according
to experiments. Bhargava et al. [132] continued such work
by researching specific operations in writings. 3,057 tweets
underwent processing through machine algorithms, includ-
ing SVM, KNN, Random Forest, and Multilayer Perceptron
(MLP) with a 94.38% accuracy in classification, their scheme
showed that combining a variety of classifiers can classify
effectively short, informal writings. Stylometric identification
recently adopted deep and composite approaches to maximize
accuracy. Toshevska and Gievska [133] proposed a system
using CNNs to analyze sentence-writing behavior. Training
a model on a custom email dataset attained an EER of
7.3%. Similarly, Almlawi et al. [134] proposed a composite
model combining RNNs with an attention mechanism for
long-writing stylometric analysis, achieving 96.7% accuracy
in IMDB review datasets. All such experiments reveal neural
networks can capture complex stylometric features for au-
thentication. Other works have blended stylometry with other
performance improvement approaches. Stylometric analysis
with topic modeling, mixing traditional lexical and syntactic
features with Latent Dirichlet Allocation (LDA), achieved an
EER of 8.4% for a Reddit corpus [135]. In another publication,
a mix of social media and email corpus was analyzed via
stylometric analysis using transformer-based architectures like
BERT, with 97.2% accuracy [136]. Cross-domain stylometric
analysis, writing variation, and dataset variation have also
been tackled. Schaetti and Savoy [137] developed a scheme to
address such variation via domain adaptation, with an EER of
12.5% when modeling between articles and blogs. Stylometry
is attractive for continuous identity inference during text
production, yet its reliability depends strongly on task type
and content constraints. Short-form writing (e.g., messages)
yields sparse stylistic evidence, while topic changes can dom-
inate lexical features and mimic user change. Segment-based
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approaches reduce sparsity but increase latency, which delays
intruder detection. For this reason, stylometry is best analyzed
as a complementary dimension in a multi-dimensional identity
model, rather than a standalone continuous authenticator.

3) Keystroke Dynamics

Keystroke pattern analysis is an established technique for
user authentication, utilizing individuals typing habits. Factors
such as key press events, key press duration, and key press
interval fall under keystroke style categories. By collecting and
comparing these factors, systems can accurately differentiate
between and authenticate ongoing use. Earlier and current
implementations have gone a long way in enhancing accuracy
and efficiency. Joyce and Gupta [138] initially researched
keystroke dynamics for user authentication through typing
pace analysis. In experiments with 33 subjects typing a uni-
form paragraph, the system attained a FAR of 0.25% and a
FRR of 16.36%. This initial study proved keystroke dynamics
feasible for authentication in theory. Following its applica-
tion, keystroke-based authentication was extended to smart-
phones by Gascon et al. [139]. They developed a continuous
keystroke-based system for smartphones, utilizing 300 subjects
typing short sentences (with background-captured finger mo-
tion) and SVM for comparison; experiments attained a 92%
TPR and a 1% FPR, confirming keystroke dynamics viable
for smartphone use. In following studies, newer techniques to
improve accuracy and reduce rejection have been researched.
Several algorithms for keystroke analysis were evaluated in a
benchmarked corpus with 51 subjects in a study by Killourhy
and Maxion [140]. Their experiments attained an 8% EER
via digraph analysis and distance measurement. Similarly,
Ayeswarya and Singh [43] incorporated keystroke features
with a user’s probabilistic model for continuous authentication
improvement, with an EER of 5.5% over a custom corpus of
53 subjects. Integration with deep learning techniques boosted
keystroke pattern recognition performance, too. Alpar [141]
developed a system using CNNs for feature extraction in tem-
poral and local dimensions for keystroke sequences, achieving
96.5% TPR and 0.7% FPR over 200 subjects, this technique
outperforms most traditional keystroke methods. Almohamade
[142] also designed a model combining RNNs and ensemble,
with a mere 3.2% EER over a large corpus. Finally, keystroke
pattern transferability between platforms and environments has
been studied. Banerjee et al. [143] analyzed this transferability
between desktop and mobile platforms, with 91.8% TPR and
2.1% FPR. In conclusion, keystroke dynamics have been
proposed for use across a range of platforms.

4) Eye Movement

Behavioral biometric features of eye movements and blinks
show significant potential for continuous user authentication.
These methods analyze patterns of eye fixation, saccades,
and blinking behavior, leveraging the uniqueness of individual
ocular activities for secure authentication systems. Early and
recent studies have demonstrated the effectiveness of these
features in achieving high accuracy and low error rates. Zhang
et al. [144] objects (middle and eight edges) using eye-tracking
equipment. Their experimental results validated the utility of
these features for authentication, setting the foundation for
future research in this domain. Sluganovic et al. [145] extended

this concept by analyzing subjects’ screen focus and recording
eye movements. In a large subject group, the system reached
88.73% accuracy and 10.61% EER, proving eye motions
a reliable alternative for continuous authentication. Recent
works focus on improving accuracy and dependability in eye-
based authentication. Ayeswarya and Singh [43] explored a
system using eye blink features for authentication, detecting
and comparing blink patterns during authentication. Testing
with the CEW dataset reached 98.4% accuracy, proving eye
blink patterns a reliable biometric. Similarly, Javed et al. [146]
proposed a scheme combining eye motion and blink features.
Their system reached 96.7% TAR and 1.2% FAR with the
EMOT dataset, proving combined eye-based features work
effectively. Other works have proposed new techniques for the
analysis of eye motion. Zemblys et al. [147] used deep neural
networks (i.e., CNNs) for spatiotemporal feature extraction via
eye-tracking, reaching 5.6% EER with a 50-subject dataset.
Yang et al. [148] used combined gaze estimation and eye
fixation analysis, reaching 97.2% accuracy with a mixed
simulation-real dataset. All these works confirm how deep and
machine learning techniques are improving performance of
eye-based techniques for authentication.

C. Context-Aware Authentication

Context-aware authentication systems monitor a plethora of
user behavior and environment factors such as IP addresses,
device, OS, GPS location, battery and network consumption,
web browsing, and web activity in an ongoing manner to au-
thenticate and verify a user’s identity in real-time. By tracking
contextual factors, such as these, in real-time, the systems seek
to detect normal and anomalous behavior, enhancing security
and minimizing unauthorized access. These systems have
been grouped into several categories, including location-aware,
time-aware, device-aware, network-aware, environment-aware,
activity-aware, and usage-aware, and several such categories
have been sequentially proposed in literature, with Sbeyti
[149] suggesting an implicit authentication mechanism utiliz-
ing a user activity pattern. In such a mechanism, a system
monitors behavior such as where files have been accessed,
operations performed, network access times, and involved
IP addresses. In experiments with eight subjects, the system
demonstrated efficacy with 90% accuracy, a 13.7% FAR, and
an 11% FRR. This demonstrates how combining contextual
factors enables efficient continuous authentication. Gomi et
al. [150] proposed a web-browser-based authentication mech-
anism with an analysis of web-browser activity, including IP
addresses, URLs, and access times, using linear regression
(LR). In experiments with 1,000 subjects, such a mechanism
attained 85% accuracy and an EER of 0.03%, proving that
web-browser behavior could serve to identify a user. Mahbub
et al. [151] utilized app-use behavior for CA, monitored
the duration of use of a specific app, and utilized Hidden
Markov Models (HMMs) for classification. In two experi-
ments with datasets UMDAA-02 and Securacy, the system
performed well with a 94% TAR and 5.2% FAR for UMDAA-
02 and a 91% TAR and 6.1% FAR for Securacy. In other
work, app use can make an authentication system smarter,
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TABLE VII: Context-aware authentication methods and performance metrics
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tion patterns

network

Method Description Contextual Parame- | Performance Advantages Drawbacks Ref
ters

Location-Based Auth. | Uses GPS, Wi-Fi, IP | GPS, IP, Wi-Fi, cellu- | Acc: 93.5%, EER: | Hard to fake Signal loss issues [152]
for ID verification lar data 1.8%

Time-Based Auth. Verifies via time- | Access time, session | EER: 2-7%, TAR: | Adapts to habits Spoofing risks [154]
based patterns duration 90%

Device-Based Auth. Uses device data for | Device ID, OS, hard- | Acc: 96%, TAR: 93% | Seamless integration Device dependency [153]
authentication ware behavior

Network-Based Auth. | Analyzes IP, traffic | IP, traffic, VPN usage | TAR: 90%, FAR: 3% Real-time monitoring False positives risk [155]
patterns

Environmental Con- | Uses ambient factors | Temperature, light, | Acc: 88%, EER: 5% Non-intrusive Environmental sensi- | [68], [156]

text Auth. like light, noise noise data tivity

Activity-Based Auth. Tracks physical be- | Gait, gestures, typing, | TAR: 94%, FAR: 5% | Continuous security Behavioral variability [151]
havior for ID app use

Usage Pattern Auth. Uses device interac- | App usage, browsing, | Acc: 95%, FAR: 2% Leverages user habits | Privacy & data needs [157]

according to its theme. In the most recent work, extended
context-aware authentication incorporated hybrid techniques.
Cui et al. [152] combined GPS information with network and
battery use behavior, with 93.5% accuracy and an EER of
1.8% with a custom dataset. Similarly, Gupta [153] designed
a system combining browsing behavior with device-related
parameters with training and prediction through ensemble
techniques with 95.2% accuracy and a FAR of 2.1%, its
performance outscored traditional techniques. In these studies,
combining diverse contextual information sources boosts an
authentication system’s accuracy and robustness. As context-
aware authentication continues to mature, it’s becoming in-
creasingly capable of offering secure, CA. Future research
should focus on integrating additional contextual data streams,
optimizing hybrid models, and addressing challenges such as
privacy concerns and system scalability. Context-aware and
multimodal CA reduces single-sensor fragility, yet it creates
new integration challenges that directly follow from the design.
Fusion improves robustness when one channel degrades, but
it also expands the attack surface and complicates calibration
because each modality has distinct noise patterns and failure
costs. Recent work that fuses keystroke dynamics and gait
through context-driven scoring reports 98.25% accuracy with
2.35% EER, illustrating the upside of adaptive weighting, but
such gains depend on reliable context signals and careful
handling of missing modalities. Therefore, fusion should be
analyzed together with “fallback behavior” (what happens
when signals disappear), not only with accuracy metrics [44].

D. Multi-dimensional identity construction

Multi-dimensional identity construction can be defined as
the process of integrating heterogeneous evidence (biometrics,
behavior, device state, and context) into a single, continuously
updated trust representation that supports risk-scored deci-
sions rather than one-off checks [158]. This framing becomes
concrete in immersive workspaces where identity is inferred
from task-bound signals, such as keyboard typing plus virtual
hand movements and dwell time, achieving about 95% average
identification accuracy (11/15 participants) with 0.41% FAR
and 4.02% FRR in one evaluation [159]. Evidence diversity

also matters in real-world wearables because models must
separate identity from routine motion; a smartwatch study
reported ;1000 h of data from 60 participants, showing 0.29
EER in controlled settings and 0.7 EER under real-world
conditions [160]. Touch-and-motion identity signals on smart-
phones contribute another dimension, where HMOG-based
continuous authentication on 100 subjects reached roughly
99.0-99.2% accuracy and an EER of 1.25% [161]. Behavioral
identity evidence can also be extracted from interaction dy-
namics in adversarially diverse scenarios; a mouse-dynamics
study explicitly evaluated continuous authentication under two
distinct gaming contexts to stress-test stability across tasks
[162]. Physiological dimensions strengthen identity construc-
tion when captured passively; a deep-learning PPG method
reported 99.5% (BIDMC), 99.6% (MIMIC), and 99.2% (Cap-
noBase) accuracies, highlighting how cardiac signatures can
act as high-discriminability signals under benchmark condi-
tions [163]. Practical constraints still shape which dimensions
are usable on-device; low-frequency multi-channel PPG at 25
Hz with 4 s windows achieved 88.11% average test accuracy,
2.76% EER, and reduced sensor power consumption by 53%
versus 512 Hz [164]. Security-oriented synthesis remains
essential because multimodal identity pipelines create new
attack surfaces; a 2025 review emphasizes missing dataset
standardization and calls for security-first reporting using
FAR/FRR/EER while explicitly mapping spoofing, replay, and
presentation threats [165]. Privacy constraints further affect
what “multi-dimensional” can safely mean in deployment;
a 2024 survey organizes privacy-preserving biometrics and
stresses persistent trade-offs between privacy protection, se-
curity, and recognition performance across modalities [166].
Context-aware designs attempt to retain multiple dimensions
without exposing raw traces; a mobile proposal explicitly
combines context awareness with privacy-preserving contin-
uous authentication goals to reduce unnecessary data disclo-
sure while keeping risk sensitivity [167]. Multi-dimensional
construction is also visible in cross-modal identity learning,
where camera-based PPG and fingerprints are fused using
cross-modal attention to align both signals into a unified latent
space for verification [168]. Interpretability now functions as
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an additional “dimension” for operational trust, since decision
transparency supports auditing and tuning; an explainable
CNN-LightGBM approach reported 98.7% average accuracy
and 2.07% EER on ExtraSensory while using LIME to expose
feature influence for genuine vs. impostor decisions [169].

IV. OPERATIONAL CHALLENGES

The challenges summarized below arise from identifiable
properties of the methods discussed in Section 3. Physiological
traits tend to raise concerns around template compromise
severity and spoof resistance; behavioral traits primarily suffer
from drift, device heterogeneity, and evaluation reproducibil-
ity; context-aware fusion reduces single-modality brittleness
but increases system complexity, attack surface, and depen-
dence on reliable sensor availability. Resource constraints are
not a generic issue either: recent measurements on resource-
constrained devices show authentication pipelines can be re-
duced from 2700 to 2100 CPU cycles, with runtime dropping
from 61.2 ms to 42.3 ms and energy from 21.3 m] to
19.8 mlJ, highlighting that energy and latency trade-offs are
measurable and should be reported alongside FAR/FRR/EER.
This linkage keeps the challenge discussion evidence-driven
and avoids repeating generic limitations [170]. Integrating
novel solutions has consistently presented major obstacles
for both developers and managers. Foremost among these
challenges is ensuring user acceptance, which is critical for
the successful adoption of robust identity protocols and multi-
factor authentication. Implementing MFA solutions demands a
meticulous and detailed strategy, particularly since many of the
difficulties emerge from the very opportunities and advantages
they offer.

A. Usability

User authentication poses significant usability challenges
that arise from three key perspectives (task efficiency, task
effectiveness, and user preference) collectively [22]. Task
efficiency captures the time taken to register or log in [171]. In
contrast, task effectiveness measures the number of attempts
for success, reflecting how well users recall or input cre-
dentials. Preference shapes which approach individuals favor,
underscoring the need for user-centric systems [172]. As noted
in Alahmadi et al. [173], friction in authentication routines
often fuels user dissatisfaction, leading them to circumvent
security guidelines. Demographic factors amplify these ten-
sions. Younger users input PINs or graphical credentials more
swiftly Kausar et al. [174], while older adults often need
more time for similar tasks. Studies by Qazi et al. [175]
and De Andrés et al. [176] suggest gender variance matters
less for login performance than expected. Cognitive factors
have a role in shaping experiences, too. Verbally strong users
perform best with textual approaches, while graphical prompts
suit others. Password-reliant systems risk issues if poorly
designed; organized passphrases or prompts can reduce user
frustration. User authentication complexity extends even to
device-related concerns. Small or touchscreen keyboards cause
typos and slow typing, making handhelds cumbersome for
textual passwords [176], [177]. Other studies note similar

efficiency issues, and as Adeniran et al. [178] and Yusop et
al. [179] highlight, many platforms avoid newer methods (vs.
passwords/PINs) for this reason. Multi-factor authentication
boosts security via tokens, biometrics, or one-time codes, but
complexity must be added carefully to avoid discouraging use.
Baseer and Charumathi [180] emphasize balancing usability
and security, critical for biometrics like ECG (best in static
environments [181]) and smartphone camera-based face/iris
recognition (Garea-Llano and Morales-Gonzalez [182]), which
show potential but raise data transmission concerns. Lone and
Mir [183] found biometrics enable fast logins and higher sat-
isfaction on Android, but enterprise deployment and training
carry higher costs. Ethical factors compound complexity: not
all users can access biometric systems e.g., those with limb
loss or sensory impairments. Despite these challenges, user
acceptance determines an authentication method’s success.
Furuberg and @seth [184] stress prioritizing user experience
drives adoption. Overly convoluted processes (e.g., long, fre-
quently changed passwords) push users to risky behaviors like
storing credentials insecurely. Usability improvements include
simpler PINs or visual aids, though solutions must remain
threat-resilient. Some researchers explore novel designs, such
as gamification, story-based prompts, and graphical interac-
tions, to speed adoption and improve usability [185], [186].
However, caution is needed: new solutions can introduce
drawbacks like memorability issues or privacy risks. Moreover,
Safder [44] notes uniform designs rarely meet diverse user
needs. Traditional methods like the username-password model
will coexist with emerging biometrics, adaptive MFA, and
device-specific interfaces. The field must adapt to rapid tech
change without neglecting legal and ethical factors tied to
data privacy and inclusivity. Ultimately, managing this balance
requires cross-disciplinary collaboration. security experts, UX
designers, policymakers, and end-users must co-create robust,
accessible practices, ensuring innovation does not compromise
usability or fairness.

B. Integration challenges

Integration challenges remain despite developers addressing
usability concerns. Most consumer MFA solutions are heavily
hardware-centric, complicating broader organizational conver-
gence. Merging physical and IT security offers efficiency and
compliance gains but faces hurdles: chief among them is
unifying security teams and upgrading legacy access systems
not designed for interoperability. Specific studies highlight
limitations of mixing old and new components. For instance,
Surve et al. [187] reported bridging older card-based entry
with modern biometrics often demands specialized hardware
adaptors, raising costs and prolonging deployment. Addition-
ally, integrating non-native biometric sensors is problematic
when existing frameworks lack standardized interfaces [188].
Consequently, many enterprises struggle to accommodate new
biometric devices, a difficulty compounded by needing con-
tinuous system-wide updates. For multi-biometrics (multiple
factors in parallel), Inverso et al. [189] note added architectural
and performance considerations, concurrent verification path-
ways may delay or require software backend reengineering.
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Vendor dependence is another key concern: enterprise MFA
products are often isolated ecosystems with minimal flexibility
for adopting unfamiliar hardware [190]. Nguyen and Beijnon
[191] found most vendors offer closed interfaces, making
new sensor integration costly or unfeasible without extensive
custom development. This proprietary nature raises trust and
reliability questions, especially for organizations relying on
black-box solutions. Limited transparency complicates audit-
ing data flows and security measures [192] and fosters risks
from software updates or vendor lock-in. Meanwhile, Sun et
al. [193] recommends “biometrics independence”, frameworks
adapting to multiple sensor technologies and manufacturers to
meet interoperability standards. Openness in both hardware
and software can mitigate these issues. Fourné [194] have
noted a growing call for open-source MFA components, al-
though mainstream adoption remains slow. Ultimately, organi-
zations must weigh trade-offs between proven, vendor-specific
solutions and customizable, transparent alternatives. This de-
cision should account for upfront integration costs, long-term
sustainability, upgrade paths, and third-party trustworthiness.

C. Security and Privacy

An MFA framework is a digital ecosystem incorporating
critical components: sensors, data storage, processing units,
and communication channels [195]. Each element faces attacks
of varying scales, from simple replay attempts to sophisticated
adversarial exploits [196]. Since privacy depends on robust
security at every stage, the first layer of concern focuses on the
input device itself [197]. Ensuring only authorized controllers
handle sensitive personal data is pivotal, as it relates to a
primary risk: data spoofing. Specifically, attackers may inject
fraudulent data the MFA system accepts as genuine [198].
This risk escalates with greater biometric use, as attackers
can analyze sensor technology and hardware to identify ef-
fective spoofing materials. Ideally, system architects secure
the environment; if unfeasible, they should at least evaluate
possible spoofing vectors early in the design process. The
risk of capturing physical or electronic patterns, replayed to
the MFA system, must be tackled systematically, often via
timestamps or other measures to neutralize replay attacks
[199]. Unfortunately, biometric spoofing can be relatively
straightforward to implement [200]. While biometrics enhance
MFA performance, they also expand the attack surface for
intruders.

Another major threat is data theft during transmission
between the sensor and processing or storage unit. If commu-
nication channels from input to database lack adequate protec-
tion, attackers can intercept sensitive data [201]. Developers
must ensure robust security measures, including encryption
and secure transfer protocols, at every point to resist such
threats [202]. An additional concern is theft of secret data
samples [200]. For knowledge-based factors, zero-knowledge
approaches are vital; without them, an attacker obtaining the
user’s secret immediately compromises the system. Biometrics
demand greater protection, as they cannot be replaced if
compromised. Security protocols must safeguard biometric
data during capture, transmission, storage, and processing

[200]. Data storage is another potential single point of failure,
especially when databases use centralized architectures [203],
[204]. Moreover, some remote systems communicating with
the database lack authorization to access personal information,
underscoring the need for isolation and irreversible encryption
[205]. Location-based attacks (e.g., GPS jamming/spoofing)
undermine MFA by producing false time and location data,
with similar vulnerabilities in cellular and WLAN location
services [206], [207]. Finally, as an IT system, MFA must
maintain sufficient throughput to handle authentication request
volumes [208]. A system processing one biometric match
per hour but needing 100 becomes infeasible, regardless of
security improvements [209]. To mitigate these risks, careful
hardware selection, system capacity planning, and a dedicated
penetration testing environment are essential. Many organi-
zations now rely on external audits to identify emerging
vulnerabilities and guide strategic improvements. Ultimately,
continuous assessments and updates remain critical to ensure
an MFA system delivers a secure environment in practice.

D. Modality-Specific Issues

In real-life environments, authentication mechanisms must
align with a user’s current state and activity, as no single
mechanism works for all users in all settings. Continuous
authentication techniques relying on physiological factors
struggle to become ubiquitous. Fingerprints require occasional
active scans, counterintuitive to CA, which aims to passively
authenticate users without specific actions [43]. Fingerprint
technology cannot enable continuous, unobstructed authen-
tication, so its use is compromised in environments where
full attention isn’t assured [210], [211]. Voice-based CA also
faces limitations: it depends on constant speech, making it
uncomfortable for quiet users or those in speech-impractical
environments [212]. Interruptions to speech, plus the intrusion
of constant audio monitoring, raise privacy concerns [213].
Moreover, background noise and speech variation reduce the
reliability and specificity of voice-dependent systems in set-
tings needing unobtrusive security [214].

Face and iris recognition have potential for CA but require
the device to remain focused on the user’s face. Yet they
face significant user acceptance hurdles, as constant camera
monitoring feels intrusive [215]. Users find the collection
of facial and eye data uncomfortable, leading to resistance
[216]. Additionally, lighting and obstructions disrupt these
techniques, reducing reliability in varied environments [217].
These weaknesses underscore the need to balance security with
user comfort and privacy to make biometric systems feasible
[218, 219]. Motion-based CA, using gait analysis to identify
users via walking behavior, also has obstacles. Jogging or
even light exercise can alter gait, reduce recognition accuracy
and cause authentication failures [220]. Since it relies on
repetitive behavior, it’s less reliable in scenarios with varied
physical activity, harming dependability [10], [221]. Worse,
gait analysis is impacted by shoes, state of the ground, and
carried items, introducing randomness and authentication com-
plications [222]. These factors make motion-based systems
less reliable in environments demanding high accuracy and
adaptability [223], [224].
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Context-aware techniques relying solely on GPS also have
weaknesses. GPS-based CA verifies location but fails if a
device is hijacked in that area. In such cases, the system
cannot distinguish between the legitimate user and a physical
impersonator [225], [226]. Location restrictions lock out legit-
imate users who step outside defined areas, inconveniencing
them and compromising usability. This inability to authenticate
users via location undermines GPS-dependent systems’ secu-
rity [227]. Online search history and web browsing-dependent
CA is even more challenging. Techniques lack a technical
framework for real use, specifically in terms of real-time
adaption to changing behavior [228]. Training algorithms to
adapt to new data (e.g., changed behavior or new websites)
while maintaining accuracy is a major challenge. Without
strong frameworks to manage this variation, these techniques
can’t provide reliable security, reducing their effectiveness in
CA [229]. Inability to have strong approaches for managing
changing behavior of a user renders search history-dependent
techniques less effective [230], [231]. All CA techniques
have weaknesses limiting their suitability for specific users.
Finger and voice recognition demand active user input, con-
flicting with passive CA goals. Face and iris recognition
face low acceptance and environmental issues; motion-based
systems struggle with activity variation. GPS-based systems
fail at device theft in target locations and exclude valid users
from predefined areas. Search-history-based techniques lack
the technical robustness to manage changing user behavior
effectively. These gaps highlight the need for multi-modal
systems, combining multiple techniques, to balance security
and usability, ensuring flexibility across user scenarios.

E. Other Issues

From a usability viewpoint, MFA introduces a range of
pragmatic concerns, varying in kind and severity across bio-
metric approaches. Perhaps the most critical issue is com-
promised accuracy in recognizing, with security and usability
implications. High FAR can break security through unautho-
rized access, and high FRR infuriates through continuous
rejection of valid access [232]. Experiments like Shah et
al. [233] show even slight recognition inaccuracies erode
user trust and discourage MFA use. Environmental variation
and changes in user behavior over time exacerbate these
accuracy issues, making consistent performance challenging
[22], [234]. Another key challenge is the lack of uniform
protocols and standards for continuous authentication. Or-
ganizations like the International Electrotechnical Commis-
sion (IEC) and International Organization for Standardization
(ISO) have promulgated standards for authentication usability
and cryptographic protocols, but not for CA [235]. Without
such standards, implementing and assessing CA systems is
harder, determining enrollment duration (when user behavior
is analyzed and modeled) is critical to balancing security and
usability. In case the period of enrollment is not long enough,
fails to capture enough user behavior, creating vulnerabilities
[236]. On the other hand, when it’s too long, access will be
delayed, and it will have a negative impact on a user [237]. In
addition, uniform standards for deciding when a device must

lock upon unauthorized access must be designed to ensure
security actions occur uniformly in any system [238], [239].
Without them, disparate CA systems can’t integrate, hindering
scalability across environments [240].

Power consumption is a key MFA usability concern, espe-
cially in handheld gadgets like smartphones. MFA frameworks
use sensors, such as proximity sensors, light sensors, gyro-
scopes, barometers, accelerometers, and digital compasses, to
track continuous behavior and physiological indications [242].
These sensors and data processing drain batteries quickly,
limiting widespread use [243]. Beyond this, CA raises user
security and privacy concerns. Users will not utilize such
frameworks when constant information dissemination is in-
volved, especially when data can be intercepted and abused
[244], [245]. Strong encryption and security measures are
essential but add complexity and requirements. Integrating
CA into existing security frameworks also demands signifi-
cant software and hardware modifications, requiring time and
investment [235], [246].

User acceptance and trust are critical for CA systems to
work effectively. Users must perceive CA as reliable, unob-
trusive, and useful for adoption. Negative experiences, like
false rejections or battery use, lead users to abandon CA.
Trust requires improving (CA’s) technical performance and
transparency in data collection, use, and protection [247].
Transparent privacy policies and user awareness can ease
concerns and build positive perceptions [248]. Studies by
Fleury and Chaniaud [249], involving evaluation and design
with users, can yield effective continuous acceptance solutions
supporting groups’ requirements and expectations. Despite
CA’s strong security potential, it faces significant usability
barriers: reduced recognition accuracy, lack of uniform pro-
tocols, high power use, privacy concerns, and user trust re-
quirements. Overcoming these via ongoing research is critical
for CA to deliver strong security without sacrificing usability.
When these barriers are addressed, CA can become a viable,
universally adopted security tool in real-life scenarios.

V. FUTURE OF MFA INTEGRATION

The future of multi-factor authentication is shaped by its
widespread use in industries and availability in consumer
goods of biometric service in terms of increased availability in
goods and industries’ acceptance. Scholars and early adopters
are working to insert new sensors in MFA platforms in an
attempt to seek security improvement with no usability loss.
Behavior analysis transitioned from analysis of simple typing
behavior to complex techniques including gesture and gait
analysis, using accelerometer data for creating profiles through
behavior [18], [40]. It can integrate seamlessly with text-based
authentication, supporting continuous authentication through
observation of device-user behavior [12], [241]. Telecommuni-
cation technology such as beam-forming, in terms of Multiple-
Input and Multiple-Output (MIMO) technology, is under con-
sideration for authenticating user tokens through identifying
sources of a signal [32]. All these approaches have increased
physical-layer security, but with demand for improvement in
terms of infrastructure in terms of wireless and integration
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TABLE VIII: Future of MFA integration

191

Method Description Advantages Drawbacks Ref
Behavior Detection Tracks typing, gestures, gait Secure, seamless Variable, Inaccurate [18], [40]
Beam-Forming Uses MIMO for localization Precise ID Complex, Costly [32], [31]
0oCS Identifies vehicle occupants Secure, personalized Unreliable, Inconsis- | [27], [17]
tent
ECG Authenticates via heart signals | Hard to fake Wearable, [35], [16]
Inconsistent, Costly
EEG Uses brain waves for ID Unique, secure Unpopular, Variable, [35], [16]
Impractical
DNA Uses DNA for authentication Ultimate security Slow, Ethical, Costly [24], [13]
TABLE IX: Evaluation of emerging MFA integration methods
Method Universality | Uniqueness Collectability | Performance | Acceptability | Spoofing
Behavior Detection High High Moderate High High Moderate
Beam-Forming Moderate High Low High Moderate Low
Techniques
Occupant  Classification | High Moderate High High High Moderate
Systems (OCS)
Electrocardiographic Moderate High Low High Moderate High
(ECG) Recognition
Electroencephalographic Low Very High Low High Low Very High
(EEG) Recognition
DNA Recognition Low Extremely Very Low Very High Low Very High
High

in terms of hardware [31]. Another development is Occupant
Classification Systems (OCS) in automobiles, through use
of sensors for occupant presence and occupant identification
through weight and postures, offering personalized security
and function in automotive environments [27], [17]. Elec-
trocardiographic (ECG) and Electroencephalographic (EEG)
recognition is taking biometric security to a new level through
heart and brain waves offering high security and individualized
user authentication [35], [16]. While ECG recognition offers a
level of security with the advantage of being difficult to mimic,
it requires specialized wearable devices and can be intrusive
for users. Similarly, EEG recognition provides uniqueness
but faces challenges in user acceptance and practicality due
to the need for non-invasive headsets and the complexity
of brain wave analysis. DNA recognition stands out as the
pinnacle of biometric security with its unparalleled uniqueness,
although its application is currently limited by high costs, in-
vasiveness, and ethical concerns [24], [13]. As these advanced
authentication methods continue to develop, they must address
challenges related to data privacy, user acceptability, and
the technical limitations of integrating multiple authentication
factors into cohesive and user-friendly systems.

VI. CONCLUSION

This survey emphasizes the growing need for more ad-
vanced authentication methods that move beyond traditional
single-factor approaches. The strategies for continuous au-
thentication, combined with multiple identity factors, offer
great potential for reducing data breaches and improving user
convenience. Key takeaways focus on finding the right balance
between security, privacy, user acceptance, and the challenges

of integrating multi-modal systems. As cyber threats con-
tinue to grow in sophistication, continuous authentication is
becoming a critical component in protecting digital assets
and personal data. With thoughtful design and thorough test-
ing, organizations and researchers can unlock the benefits of
continuous, context-aware identity verification across various
digital interactions.
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