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Abstract 
This study analyzes changes in temperature and vegetation cover in the Mahajanga II 
district (Madagascar) between 1994 and 2024. The spatial distribution of temperatures 
was determined using an autoencoder, while vegetation cover dynamics were assessed 
using NDVI indices obtained from Landsat images. The results show a significant 
increase in temperatures over the study period, more pronounced in inland areas than 
along the coast, with a cumulative increase of approximately 2°C for central areas and 
1°C for coastal areas. At the same time, dense and very dense vegetation cover has 
declined sharply, replaced by very sparse vegetation and the expansion of bare soil, while 
water surfaces have also decreased. These changes indicate that vegetation loss 
contributes directly to local temperature increases by reducing the capacity of 
ecosystems to moderate the climate and maintain hydrological balance. The use of the 
autoencoder has made it possible to identify the areas most vulnerable to warming, 
providing a relevant tool for environmental planning and sustainable land management. 
The preservation and restoration of vegetation therefore appear to be essential measures 
for limiting local warming and maintaining the ecological functions of the district. 
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1. Introduction 
Vegetation cover plays a decisive role in regulating the climate at local, regional, and 
global scales. Through its biophysical and biogeochemical processes, it controls 
energy exchanges between the Earth's surface and the atmosphere, notably by 
modulating albedo, evapotranspiration, and solar radiation absorption [1]. These 
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mechanisms actively contribute to limiting surface warming and stabilizing air and 
soil temperatures, making vegetation a key component of the climate system. 

In tropical regions, which are subject to increasing anthropogenic pressure, 
changes in land use linked to deforestation, agricultural expansion, and urbanization 
are leading to a marked decline in vegetation cover. This transformation of landscapes 
disrupts the surface energy balance and amplifies thermal contrasts, promoting a local 
rise in temperatures [3]. Conversely, areas with dense vegetation are generally 
characterized by more moderate and stable thermal conditions, confirming the ability 
of vegetation to mitigate excessive heat [6].  

This study addresses this issue and aims to analyze the influence of changes in 
vegetation cover on temperature variability in the Mahajanga II district. The aim is 
to assess the contribution of the dynamics of vegetation cover degradation to the 
increase in temperatures observed over the last few decades, while highlighting the 
interaction between vegetation and maritime influence in local thermal regulation. 

2. Methodology 
2.1. Study Area 

                              The district of Mahajanga II is located in the Boeny Region, in northwestern 
Madagascar, between 15° and 16° south latitude and 46.4° to 48° east longitude. It 
covers an area of approximately 468,721 hectares and comprises nine rural 
communes, including Ambalabe Befanjava, Ambalakida, Andranoboka, Bekobay, 
Belobaka, Betsako, Boanamary, Mahajamba Usine, and Mariarano. 

 
Figure 1. Study Area 
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2.2. Database 
The data used in this study fall into two main categories: 

• Landsat satellite data (USGS): Landsat images were used to calculate the 
normalized difference vegetation index (NDVI), a key indicator of 
vegetation density and vigor. Two periods were considered, namely August 
1994 and August 2004, in order to assess changes in vegetation cover over 
a decade. The images have a spatial resolution of 𝟑𝟑𝟑𝟑 𝒎𝒎 ×  𝟑𝟑𝟑𝟑 𝒎𝒎 , 
providing a level of detail appropriate for analyzing changes in land cover 
at the local scale. 

• Climate data: Surface temperature data comes from the European Center 
for Medium-Range Weather Forecasts (ECMWF), via the Copernicus 
Climate Data Store (ERA5-Land) platform. This data is provided in the 
form of a regular grid based on latitude, longitude, and time, with a spatial 
resolution of 𝟎𝟎.𝟏𝟏° ×  𝟎𝟎.𝟏𝟏°, or approximately 𝟗𝟗 𝒌𝒌𝒌𝒌. It covers the period 
from 1994 to 2024, allowing for analysis of the spatio-temporal variability 
of temperature in the study area over a thirty-year scale. 

2.3. Calculation of NDVI 
The Normalized Difference Vegetation Index (NDVI) is based on the ability of 
vegetation to absorb light in the visible red range (≈  𝟎𝟎.𝟔𝟔𝟔𝟔 − 𝟎𝟎.𝟔𝟔𝟔𝟔 µ𝒎𝒎) and reflect 
strongly in the near infrared (≈  𝟎𝟎.𝟕𝟕𝟕𝟕 − 𝟎𝟎.𝟗𝟗𝟗𝟗 µ𝒎𝒎), due to the cellular structure of 
leaves [8]. This spectral property makes it possible to assess the density and vigor of 
vegetation, thus serving as a proxy for biomass and plant health. It is represented by 
this equation: 

 
Re
Re

Nir dNDVI
Nir d

−
=

+
    (1) 

 
Where Nir is the reflectance in the near-infrared band and Red is the reflectance in the 
red band. 
NDVI values theoretically range from −𝟏𝟏  to +𝟏𝟏 . Values close to  +𝟏𝟏  indicate 
dense, healthy vegetation, while values close to 𝟎𝟎 or negative correspond to non-
vegetated areas, water, or areas with sparse vegetation [5]. 

In order to interpret the vegetation index (NDVI) values, a thematic classification 
was applied to distinguish between different types of vegetation cover and their 
ecological conditions. The thresholds used are based on previous studies and adapted 
to the ecological characteristics of tropical areas [9]. 
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Table 1. NDVI index classification 

NDVI Value Class Ecological Interpretation 

< 0.0 Water, clouds, 
snow Absence of vegetation 

0.0 – 0.1 Bare soil Urban areas, exposed soils 

0.1 – 0.2 Very low 
vegetation Dry savanna, steppe 

0.2 – 0.3 Low vegetation Sparse grasses 

0.3 – 0.5 Moderate 
vegetation Croplands, pastures 

0.5 – 0.7 Dense vegetation Secondary tropical forests 

> 0.7 Very dense 
vegetation 

Humid tropical forests, lush 
vegetation 

2.4. Autoencoder method 
An autoencoder is an unsupervised neural network used to reduce the dimensionality 
of a dataset while preserving its essential characteristics. It consists of two parts: 

• Encoder: compresses the input data 𝒙𝒙 into a latent representation 𝒛𝒛 of 
lower dimension. 

• Decoder: reconstructs the original data 𝒙𝒙� from 𝒛𝒛. 
The model is trained to minimize the difference between x and 𝒙𝒙�, usually via the 

mean squared error (MSE): 
 

 

2
( , )L x x x x= −    (2) 

 
This approach allows relevant latent features to be extracted, which are useful for 

tasks such as classification, clustering, or pattern detection in environmental data, 
such as soil or air temperature [2]. 

2.5. Silhouette Index 
The Silhouette index measures the cohesion and separation of clusters for each point. 
For a point 𝒊𝒊:  

 
( ) ( )( )

max( ( ), ( ))
b i a is i

a i b i
−

=       (3) 

 
Where  

• 𝒂𝒂(𝒊𝒊) is the average distance between point i and all other points in the same 
cluster, 

• 𝒃𝒃(𝒊𝒊) is the average distance between point i and all points in the closest 
different cluster. 

The average index (𝒙𝒙�) across all points varies between −𝟏𝟏 and 𝟏𝟏: values 
close to 𝟏𝟏 indicate good clustering, while values close to 𝟎𝟎 or negative indicate 
poorly defined clusters [7]. 
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3. Results 

3.1. Indice de NDVI 
Figures 2 and 3 illustrate the spatial distribution of vegetation cover and its proportion 
of the total area in the Mahajanga II district in August 1994, based on Landsat 5 
images. Analysis of these maps highlights the existence of particularly green areas, 
reflecting the presence of water bodies and dense vegetation in certain parts of the 
district. At that time, very dense vegetation and dense vegetation accounted for 6% 
and 16.5% of the total area, respectively, indicating that vegetation cover was still 
well developed. 

Most of the territory is dominated by medium-density vegetation, which occupies 
39.3% of the study area. Formations with low and very low vegetation cover 21.9% 
and 3.7% of the district, respectively. Bare ground areas remain marginal, accounting 
for only 0.5%. Finally, water bodies represent 12.1% of the total area, playing a 
significant role in the landscape organization and local distribution of vegetation. 

 
                                 Figure 2. Vegetation cover index in 1994 
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 Figure 3. Area of vegetation cover classification as a percentage 

Figures 4 and 5 show the spatial distribution of vegetation cover and its proportion 
of the total area in the Mahajanga II district in 2024. The results highlight a marked 
degradation of vegetation cover over the last few decades. Dense vegetation now 
covers only 14.58 ha, while very dense vegetation covers only 0.18 ha, representing 
a negligible proportion of the total area. This decline reflects a significant loss of plant 
biomass and a decrease in the natural regeneration capacity of ecosystems. 

Most of the territory is now dominated by very sparse vegetation, which occupies 
58.3% of the area studied, reflecting an advanced state of deforestation. Bare soil 
accounts for 5.1% of the district, while water surfaces now cover only 2.9%, reflecting 
the gradual drying up of wetlands. 
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Figure 4. Vegetation cover index in 1994 

 
                      Figure 5. Area of vegetation cover classification as a percentage 

3.2. Temperature classification using the autoencoder method 

3.2.1. Features of the autoencoder 
As shown in Figure 6, the autoencoder consists of an input layer of 12 neurons, an 
encoder that reduces the data dimension from 12 to 4 neurons through a linear 
transformation followed by an activation function, and a decoder that reconstructs 4 
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to 12 neurons. The output layer, which is the same size as the input layer, allows the 
model's performance to be evaluated based on the reconstruction error. 

 
Figure 6. Autoencoder Structure 

3.2.2. Regionalization of the study area 
The study area was subdivided into two groups based on the air temperature at 2 m. 

•  Group 1 has an average temperature of around 30°C over the last 31 years, with 
a maximum in April and a minimum in January. This group mainly corresponds to 
the coastal municipality of Mariarano, whose temperature regime is strongly 
influenced by its proximity to the sea. 

•  Group 2, which includes several municipalities in the Mahajanga II district 
located inland, has a higher average temperature of around 31.5°C. In this area, the 
temperature gradually increases with distance from the coast. The minimum is also 
observed in January, while the maximum is reached in October, unlike in group 1, 
where it occurs in April. These contrasts reflect the combined effect of continentality 
and seasonal dynamics on the spatial distribution of temperatures. 



RAHANTANOMENJANAHARY Telina Tsialonina Melinà et al. 
 

 

DOI: 10.33969/AIS.2025070107 120 Journal of Artificial Intelligence and Systems 
 

  Figure 7. Regionalization of the study area 

3.2.3. Validation 

The average Silhouette index obtained is 0.814, indicating that the clustering 
performed is of very good quality. The points in each cluster are well grouped together 
and clearly separated from other clusters. This suggests that the classification of areas 
according to temperature is consistent, and that the groups identified reliably reflect 
spatial differences within the study area. 

3.3. Annual temperature change 
The temperature trend in the Mahajanga II district (Figure 8) shows a highly 
significant upward trend in both areas studied, but with different rates of increase: 
0.0216 °C/year for area 1 and 0.0185 °C/year for area 2, according to the results of 
the Student's t-test. 

The minimum temperature for both areas was observed in 1996, with a value of 
approximately 29.5°C, a period corresponding to well-preserved vegetation cover, 
which is favorable for regulating the local climate. In the following years, the gradual 
degradation of the vegetation cover was accompanied by a continuous increase in 
temperatures, leading to a cumulative increase of approximately 2°C in zone 1 and 
1°C in zone 2 between 1994 and 2025. 
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           Figure 8. Temperature variation with linear trend line 

4. Discussion 
The evolution of temperatures in the Mahajanga II district between 1994 and 2025 
reveals a significant increase, which is more pronounced in inland areas than on the 
coast. This spatial differentiation can be explained by the proximity of the ocean, 
which moderates coastal temperatures thanks to the maritime thermal effect, while 
more continental areas experience greater variations. 

Analysis of vegetation cover using NDVI shows a marked deterioration in dense 
and very dense cover, replaced by very sparse vegetation and an increase in bare soil. 
Although this study does not include a direct statistical correlation analysis between 
temperature and vegetation, the literature indicates that vegetation loss contributes to 
higher local temperatures by reducing evapotranspiration and increasing soil 
exposure to solar radiation ([3], [6]). The decrease in water bodies observed over the 
same period also accentuates the warming trend by limiting the natural thermal 
regulation of ecosystems. 

5. Conclusion 
In conclusion, the study of the Mahajanga II district highlights a significant increase 
in temperatures between 1994 and 2025, which is more pronounced in inland areas 
than along the coast. This change coincides with a marked deterioration in vegetation 
cover, where dense and very dense vegetation has almost disappeared, giving way to 
a predominance of very sparse vegetation and the spread of bare soil. 

These results indicate that vegetation loss contributes directly to local 
temperature increases by reducing the capacity of ecosystems to moderate the climate 
and maintain hydrological balance. The preservation and restoration of vegetation, as 
well as the protection of wetlands, appear to be essential measures for limiting local 
warming and maintaining the ecological functions of the district. 

Finally, the use of autoencoders for temperature regionalization has made it 
possible to identify the most vulnerable areas, providing an operational tool for 
environmental planning and sustainable natural resource management. 
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