JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 3, OCTOBER 2025 120

Privacy-Preserving Decision Tree Inference in a Dual-Cloud
Outsourcing Model

Xiaoke Zhou', Qianxing Li!, Chuanyun Dai'!, Bingwei Wang!, and Yuheng Xia!
ISchool of Computer Science and Technology, Xidian University, Xi’an, 710071, Shaanxi Province, China

Privacy-preserving Decision Tree Evaluation (PDTE) enables clients to classify their private data using a decision tree classification
model hosted on a server, without revealing the data or classification results. This provides a feasible and secure alternative to
traditional decision tree evaluation methods. However, existing solutions often rely on complex operations such as homomorphic
encryption (HE) and garbled circuits (GC), which lead to significant computational and communication overhead when performing
privacy-preserving inference tasks on large-scale decision tree models. This results in difficulties in balancing data security, inference
accuracy, and computational efficiency. To address this issue, this paper proposes a secure and efficient privacy-preserving decision
tree outsourcing inference scheme based on secret sharing within semi-honest dual-cloud outsourcing model (SS-PDI). Our scheme
is roughly divided into four phases: in the preparation phase, the privacy-preserving decision tree is initialized by hiding the access
patterns of the nodes through ciphertext-oriented computational improvements based on the traditional decision tree. In the feature
selection phase, the feature selection protocol is improved by introducing the oblivious transfer technique, which reduces the number
of selected features and improves the operational efficiency. In the comparison phase, a lightweight Boolean circuit design is used
to effectively reduce the overhead of the secure comparison operation. In the evaluation phase, the dual cloud servers in the system
return the inference results to the client in the form of secret sharing. After experimental validation, our scheme achieves 74.8%
and 40.8% improvement in runtime over complex datasets in LAN and in WAN compared to previous schemes of the same type.
There is also a large improvement in the runtime on public datasets compared to previous schemes.

Index Terms—Decision Tree, Security Outsourcing, Privacy Protection, Arithmetic Secret Sharing, Boolean Secret Sharing.

I. INTRODUCTION conclusion, while outsourced decision tree computation offers
convenience, it simultaneously presents serious security and
privacy challenges.

In response to the aforementioned challenges, this paper
proposes SS-PDI, a secure and efficient privacy-preserving
decision tree outsourcing inference scheme based on secret
sharing within a dual-cloud outsourcing model. SS-PDI ef-
fectively integrates advanced cryptographic techniques with
PDTE, offering an innovative solution that ensures the security
of both the model and client data while satisfying practical
performance requirements. By utilizing the strengths of secret
sharing and a dual-cloud architecture, SS-PDI ensures that sen-
sitive information remains protected throughout the inference
process. Additionally, it strikes an effective balance between
security and computational efficiency, making it a promising
solution for real-world applications where both privacy and
performance are critical.

Our contributions can be summarized as follows:

o We enhanced the data structure of the decision tree within
the system model by adapting it for ciphertext computa-
tion, thereby obscuring the number of comparisons during
the inference stage. Building upon this improvement,
we also optimized the feature selection module using
Oblivious Transfer (OT) technology. This modification
effectively reduces the number of features selected dur-
ing the inference process, thereby further enhancing the
system’s efficiency.

o We design a secure comparison circuit based on Boolean
sharing to reduce the computational overhead associated
with secure comparisons. This approach leverages the

Manuscript received December 10, 2024; revised October 11, 2025. Cor- efﬁFlenCy of BOOI?an circuits, ‘enabhng' Fhe 'Secure C(')m'
responding author: Xiaoke Zhou (email: 20049200456 @stu.xidian.edu.cn). parison of data without revealing sensitive information.

ITH the rapid development of cloud computing, an

increasing number of enterprises are leveraging cloud
infrastructure for data storage and online analysis [1]. In
this emerging service paradigm, model providers can deploy
pre-trained models on cloud servers, offering inference and
prediction services to clients,thereby delivering significant
benefits and convenience. Among the various machine learn-
ing models, the decision tree model has gained widespread
popularity due to its ease of use, versatility in addressing
both classification and regression tasks, and its ability to
handle diverse data types. It has been successfully applied in
numerous practical domains, such as medical diagnosis [2],
credit risk assessment[3], e-commerce recommendations, and
spam filtering.

However, outsourcing decision tree evaluation [4], [5] to
the cloud raises significant privacy concerns regarding both
the model and the input data. It is crucial that the model
remains confidential and that the model provider does not
have access to the client’s input data. This necessitates the
use of Privacy-preserving Decision Tree Evaluation (PDTE)
techniques to prevent any leakage of information related to
the client’s input or the decision tree itself. If the model
parameters are compromised, an attacker could potentially
reconstruct similar models, thus infringing on the provider’s
intellectual property.Furthermore, if user privacy or prediction
results are exposed, it could not only adversely impact the
user’s personal life but also erode trust in the provider,
ultimately damaging the user-provider relationship [6], [7]. In

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 3, OCTOBER 2025 121

By using Boolean sharing, we ensure that the comparison
process remains secure while minimizing the computa-
tional cost, thereby enhancing the overall efficiency of
the privacy-preserving decision tree inference system.

o We redesign the protocol based on a semi-honest model,
which significantly improves both computational and
communication performance when applied to large deci-
sion trees. This new design not only enhances efficiency
but also maintains a high level of security, outperforming
existing solutions in terms of scalability and resource
utilization.

The rest of this paper is organized as follows: In Section
II, we review the related work. In Section III, we present
preliminaries of this paper, decision tree and cryptographic
primitives. The description of the system model and security
goals is given in Section IV. In Section V, we describe the
model preparing for secure inferences. In Section ??, we give
the security and performance analysis of the scheme proposed.
In Section VII, we present the experimental results. Finally,
the paper is concluded in Section VIII.

II. RELATED WORK

Early research in PDTE focused on utilizing Homomor-
phic Encryption (HE) and Garbled Circuits (GC) to ensure
privacy. Bost et al. [8] represent decision trees as higher-order
polynomials, which were encrypted using the computation-
ally intensive Leveled Full Homomorphic Encryption (LFE)
scheme. Wu et al. [9] proposed a more cost-effective proto-
col, relying exclusively on OT and Additive Homomorphic
Encryption (AHE). However, this approach necessitated the
conversion of the decision tree into a full binary structure to
obscure its topology, resulting in substantial communication
and computational overhead. To mitigate these issues, Tai
et al. [10] introduced a path cost mechanism using AHE,
which improved performance for sparse trees, though it still
incurred a linear cost. Zheng et al. [11] further advanced the
field by proposing a dual-cloud outsourcing scheme based
on additive secret sharing, which replaced Tai’s pure AHE
approach and outsourced the computations to cloud servers.
In their subsequent work [12], they optimized the feature
selection and security comparison modules , reducing both
the communication complexity and the interaction time with
cloud servers.Guo et al. [13] Significant speedup by running
improved nonlinear functions on GPUs. Song et al. [14]
propose L-SecNet, which combines additive secret sharing and
multiplicative secret sharing to design a lightweight secure
comparison protocol, reducing latency caused by comparison
operations in non-linear layers. However, this dual-cloud solu-
tion is limited to complete binary trees and uses virtual nodes
to handle sparse trees, leading to exponentially increasing
computational and communication overhead as the tree depth
Srows.

Several recent studies have sought to reduce the compu-
tational complexity of decision tree protocols to sublinear
levels. Joye and Salehi [15] achieve this by reducing the
number of secure comparisons to d utilizing the DGK protocol
instantiated with AHE [16] for secure comparisons. For a tree

with [layers, the communication cost is O(2d_1), making this
protocol sublinear in computation but still incurring significant
communication overhead. Tueno et al. [17] represent the deci-
sion tree as an array and employed Oblivious Array Indexing
(OAI) to securely select the desired tree node. OAI can be
instantiated using GC, OT, or Oblivious RAM (ORAM). The
first two OALI instances achieve sublinear complexity only for
feature providers, as they require OT protocols to select the
target node from 2¢ possible nodes. However, Using ORAM
leads to a communication cost of O(d*) and requires d?
rounds, resulting in higher communication overhead. Ma et al.
[18] introduced a lightweight protocol in which the tree holder
encrypts the decision tree and sends it to the feature provider.
At each tree layer, an OT protocol and secure comparison are
performed, and the feature provider searches for the next node
within the locally encrypted tree. This design significantly
reduces communication overhead by moving the most costly
selection operation to local computation. However, the feature
provider may gain some information from the memory access
patterns across multiple evaluations. To preserve security, the
decision tree must be re-randomized and re-sent to the feature
provider for each evaluation, resulting in linear communication
and computational complexity.

To further mitigate the communication and computational
overhead in PDTE, some researches have focused on partic-
ipant assumptions, particularly in the context of semi-honest
adversaries. Early works [19], [20], [21], [9] employed HE for
decision tree evaluation, but the associated high computational
and communication costs rendered these approaches impracti-
cal. Tai et al. [10] introduce the concept of path cost to reduce
communication overhead without traversing the entire tree.
Later works [22], [23], [24] further enhanced computational
efficiency, albeit at the cost of some security. Ji et al. [25]
proposed an efficient PDTE approach using Function Secret
Sharing (FSS), based on Distributed Point Functions (DPF)
and Distributed Comparison Functions (DCF). This approach
incorporates OT and Conditional Oblivious Transfer (COT)
protocols, achieving optimal communication complexity. How-
ever, while the protocol ensures security, it introduces signifi-
cant computational overhead. Upon this research, Fu et al. [26]
build prefix parity DICF. This approach significantly reduces
both computational and communication overhead, even in the
presence of a malicious participant.

The above discussion on existing privacy-preserving deci-
sion tree protocols is summarized in Table I. The m in the
table represents the number of nodes in the decision tree,
n represents the length of the incoming feature vector, d
represents the depth of the decision tree, and [represents the
number of bits in the binary representation of the parameter.

III. PRELIMINARIES
A. Decision Tree

Decision tree is a commonly used machine learning al-
gorithm, primarily applied to classification and regression
tasks. Its goal is to build a tree-like structure by recursively
splitting the dataset into smaller, more distinguishable subsets,
composed of decision nodes and leaf nodes. Each decision

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 3, OCTOBER 2025 122

TABLE I
COMPARISON OF EXISTING PRIVACY-PRESERVING DECISION TREE SOLUTIONS

Protocols Comparisons ~ Communication Overhead Rounds Encryption Primitives
Bost[8] [m/2] O(n +m) >6 Leveled-FHE
Wu[9] 24 02% + (n 4+ m)l) 6 AHE, OT
Tai[10] [m/2] O((n +m)l) 4 AHE
Zheng[11] 2d O((n - m)l) l+d SS
Zheng[12] 24 O((n +m)l) logy i+ d SS
Joye[15] d o(d(l + n) + 29) 2d AHE, OT
Tueno[17](OT) d O((n +m)l) 4d SS, OT
Tueno[17](GC) d O((n +m)l) 4d SS, GC, OT
Tueno[17](ORAM) d O(d*7) d? +3d SS, ORAM, GC
Mal[18] d O(dnl) 2d — 1 SS. GC, OT
TABLE II is then sent to the party Py, x is split into two parts:
NOTATION DESCRIPTIONS (x)g =z —r and (z); = r, denote (z) = ((2)o, (x)1).
Notations Definitions o Secret Restore(Rec): The secret shares (x); are merged

N Statistical analysis of secarity parameters to reveal the secret z. P; sends.the (x)1 to & owner Py,
m Number of decision nodes in a decision tree who restores the = by computing () + (z)1, denote
d Depth of decision tree Restore(<;z;>).

d’ Predefined depth of decision tree TN o))

- o Secure Addition: Party P;,7 € {0, 1} holds (x); and (y);

T Decision tree .

= (21,...,an) Feature vector of length n and then P; computes (z); + (y); to obtain shares of

n Number of feature values in the user’s vector <{E + y>i, denote SecAdd(<$>i; <y>l)

Ar Encoding array of decision tree s lication: .

r Index of left child/right child . Secu}re .Mu1t1pl1cat10n. Party Pl. ,i € {0,1} holds tw’o
f Threshold value of node multiplicands (x); and (y);. With the help of Beaver’s
v Index of user feature Triple to achieve secure Multiplication, where the triple
c Predicted value of leaf node . _ . .

y Bit length of default Boolean sharing {u,v,k} satisfies K = wwv, and the triple is shared
Ly Length of decision tree array element between P;. P; computes (d); = (z); — (u); and
4y Bit length of pseudorandom function output <6> - <y> i— <’U> i Then P; Restore d and e. Py compute

node contains an attribute value and a branch, while each leaf
node represents a category or a numerical value.

The construction of a decision tree typically involves select-
ing the optimal attributes to split the dataset, maximizing the
separability of each resulting subset. To achieve this, decision
trees employ various metrics to evaluate attribute importance,
including information gain, Gini impurity, and gain ratio.

In the process of constructing decision trees, several algo-
rithms can be utilized to determine the sequence of decision
nodes and splitting points, including ID3, C4.5, CART, and
others. The primary distinctions among these types of decision
trees lie in their sensitivity to attribute values, which refers to
the degree of variability or uniqueness of a given attribute
across different samples in the dataset.

B. Cryptographic Primitives

We provide a brief overview of the cryptographic primitives
used in SS-PDI and summarize the notations in Table II.

Darithmetic Secret Sharing (ASS)

Specifically, for data © € Z,¢, where Zy denotes a ring
with a modulus of 2¢ agreed upon by the parties, an arithmetic
secret can be decomposed into shares. This decomposition is
represented as (x) = (x)o+(x)1, where (-); signifies the share
held by party P; (i € {0, 1}).

Some basic computation protocols are described as follows:

o Secret Sharing(Shr): The secret x € Zge is owned by

party Py, who generates a random number r € Zge. 1

(2)o = (k)o + e{u)o + d(v)p + de and P; compute
(z)1 = (k)1 + e(u)1 + d{v); to obtain the shares of (z);,
where z satisfy z = zy, denote SecMul({(z);, (y):).

In order for cryptographic primitives to be compatible with
the secure neural network inference, they have to support
arithmetic operations on shared decimal numbers.References
to work in [27], We transform the fixed-point decimal numbers
x and y (with at most £ bits in the fractional part) to integers
by letting 2’ = 2°Fz and /' = 27 y. To perform multiplication
of z and y, we multiply =’ and 3/ to get the product z = 2y’
and truncate the last £ bits of z such that it still has ¢ bits
representing the fractional part.

2)Boolean Secret Sharing(BSS)

Boolean secret sharing (BSS) can be regarded as arithmetic
sharing in Zs in which the addition operation is replaced by the
XOR operation (¢) and multiplication is replaced by the AND
operation. So their corresponding Shr and Rec algorithms can
be defined in a similar manner as the arithmetic sharing.

The functionality of B2A protocol (for boolean sharing to
arithmetic sharing conversion) takes boolean shares as input
and gives out arithmetic shares of the same value as output.
We refer the readers to [28] for details of Boolean sharing and
B2A protocol.

IV. SYSTEM OVERVIEW

In this section, we describe the overall framework of the
system, the types of participants and the roles each plays.
The entire system contains the following four entities:

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 3, OCTOBER 2025 123

e Client (C): Client C shares its feature vector information
through arithmetic secret sharing to generate a pair of
messages (X)p and (X);, which are respectively sent to
cloud servers Sy and S7 without disclosing any messages
to other entities.

o Model Provider (P): P represents its trained decision tree
model T as an array Ap and also performs additive secret
sharing to generate a pair of messages [Ar|o and[Ar];,
which are respectively sent to Sy and S; before entering
the offline state.

o Cloud Server (Sy): Sy is an honest-but-curious partic-
ipant with powerful storage and computing capabilities.
Which means that while Sy strictly follows the protocol,
it may attempt to infer private information of other parties
during the execution process. Sy receives the decision tree
model from the model provider and the feature vector
from the client. It interacts with another cloud server to
perform secure outsourcing of task computation.

e Cloud Server (57): S; is an honest-but-curious partic-
ipant with powerful storage and computing capabilities,
and has the same role as Sj.

The entire system consists of the model provider, the client
(C), and two cloud servers(Sy, S1). The model provider (P)
deploys its model onto the two cloud servers using secret shar-
ing, ensuring that the model remains confidential. Similarly,
the client also secret shares owned data and sends it to the
two cloud servers. These two cloud servers form a dual-cloud
outsourcing system, where they interact with each other to
process the data uploaded by the client. Finally, each cloud
server returns the processed results, which are in the form of
secret shares, to the client. This architecture ensures that both
the model and the client’s data remain secure throughout the
entire process, with no party having full access to the sensitive
information.

V. METHODS

In this section, we will introduce the system runtime process
is divided into four phases, and each phase of both severs’
execution of the action and the results of the phase run,
respectively.

A. Prepare Phase

The classification model represented by the decision tree,
denoted as T, is structured as a tree comprising a root node,
internal nodes, and leaf nodes. Each internal node contains a
threshold value ¢, indices for the left and right child nodes, ¢
and r, respectively, and a corresponding feature vector index v.
The structure of the root node and internal nodes is identical.
In contrast, the leaf node stores the prediction result ¢ of the
decision tree. The nodes are sequentially numbered starting
from the root node, and are labeled from left to right, layer
by layer, with vy representing the root node. The decision tree

T is represented as an array Ay = [Ap[0],..., Ap[m — 1]],
where m denotes the total number of nodes. The nodes are
indexed as T, where v € {0, 1, ..., m—1}. The user provides

a feature vector X = (zg,...,Zn—1), where n is the number

of feature values in the user’s vector, and the elements are
denoted as X,, where v € {0,1,...,n —1}.

The improved structure of the decision tree, as compared to
the traditional one, is illustrated in Fig. 1. In this enhanced
structure, the left and right child node indices of the leaf
nodes both point to themselves. This modification keeps the
number of comparison operations required constant, hiding
the access patterns. Specifically, the number of comparison
operations for all prediction outcomes is solely dependent
on the depth of the decision tree. As a result, attackers are
unable to infer the structure of the decision tree based on
the number of comparison operations. The decision tree is
encoded in an array format, with nodes numbered in depth-
first traversal order, as shown in Fig. 2. The tree is composed
of five data items: 1) node threshold ¢; 2) left child index /;
3) right child index r; 4) feature vector ID v; and 5) predicted
label c. In the figure, the symbol A represents any assignable
value, while % denotes a random value selected from the range
[0,1,...,n — 1], where n is the number of feature values in
the user’s feature vector.

B. Feature Selection Phase

This section involves two rounds of feature selection: one
for selecting the client feature vector array and another for
selecting the decision tree array. First, we discuss the selection
of the feature vector array. Upon receiving the shared client
feature vectors, the cloud server performs secure feature
selection by securing the feature vector array and generating
secret shares for the corresponding feature values based on the
feature ID in the root node of the decision tree. To facilitate the
selection of the feature vector array, a secure feature selection
function is designed, which takes as input the shared secret
shares of the client feature vector X and the feature ID (Z),
and outputs the selected shared shares (X[Z]). This process is
denoted as Feg(Zo, Z1) — ((X[Z])o, (X[Z))1)-

To achieve the selection of the client feature vector array,
our scheme employs the Secure Feature Selection Protocol
SFS, utilizing 1-out-of-n OT [17] during the feature selection
phase. We also designs a secure feature selection scheme under
a dual-cloud architecture, as described in Algorithm 1. Each
cloud server S, (b € {0,1}) first generates a random value
rp, then shifts the index of the vecotr (X), by sharing the
corresponding share [Z],, and exports a new vector {E;}, =
Ty ®Xp[i+[Z], (mod m)], after performing an XOR operation
with the random value 7;. This new array is then sent to the
other cloud server for XOR calculation, resulting in the target
shared value. For instance, taking receiver S7 as an example,
the new array {E;}¢ is received. Since only Sy knows the
index value for the array shift and the new array is masked
by the random value r, receiver S; cannot retrieve the value
of the other share of the array, ensuring the security of the
process.

C. Security Comparison Phase

In the dual-cloud model, feature selection algorithms are
independently applied to the user feature vector X and the
decision tree array Ap. When the feature selection target

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 3, OCTOBER 2025 124

Algorithm 1 Selection of feature vector

Require: Sy, input (Z);, b € {0,1}
Output: S, output (X[Z]),, b € {0,1}
1: Initialize array length n; index bit length /; and array item
bit length ,,.
So and Sy run B2A to convert (Z) to [Z] € Zy,;
for each S, execute do
Ty < 2o,
{Ei}v =10 ® Xpli + [Z]s(mod n)] i€ [0,n);
Sp and S(y41) moa2 call 1-out-of-n OT function Fy;:
Sy input {E;}, and S(y41)mod2 obtaining 7, @
X(b+1) ’rrwdQ[I]
<X[I]>b — 1D T'(b41) mod 2 @ X(b+1)mod2[I];
9: Sp output (X[Z])

NN AR

®

Fig. 1.

Improvement of Decision Tree Data Structure.

M is the user feature vector (v), the dual-cloud executes
FX. ., yielding Boolean shares (X[v])o and (X[v]);. When M
corresponds to the decision tree, the dual-cloud executes Fg‘l} g
based on the index (v), resulting in Boolean shares (Ar[Z])o
and (Ar[Z]);. Since Ar[Z] — t||l||r||v]||c, the dual-cloud only
needs to compare the node thresholds during the comparison
phase. Specifically, the node thresholds ([t])o and ([t]); are
derived from parsing the Boolean shares.

After this process, cloud servers Sy and S; each hold
secret shares of the feature vector (X[v]) and the decision
node (Ar[Z]), respectively. Subsequently, the two clouds need
to securely compare (Ar[Z]) with the corresponding (X[v]).
f (Ar[Z]) < (X[v]), the comparison result b is set to I;
otherwise, b is set to 0. Existing schemes [8], [9], [29] typi-
cally rely on expensive obfuscation circuits or homomorphic
encryption to perform secure size comparisons. To reduce the
computational overhead of these comparisons, this chapter’s
solution employs a binary representation of values, converting
the size comparison operation into a Most Significant Bit
(MSB) operation.

Specifically, this work adopts a privacy-preserving compar-
ison method based on Boolean sharing [30]. The basic princi-
ple involves utilizing the classic Goldreich-Micali-Wigderson
(GMW) protocol to determine the Boolean circuit that facil-
itates the comparison operation. This circuit is constructed
using the fixed-length (length ¢;) Boolean shared attribute
values (X[v]) and node thresholds ([t]). The protocol specifies
the operations that each server (Sy or S;) must perform.
Throughout the execution of the circuit, no complex cipher-

idx t 1 T v c
0 t 1 2 2 0
1 A 1 1 * i
2 b 3 4 1 0
3 A 3 3 * ©
4 A 4 4 * c.
Fig. 2. Decision Tree Array Encoding.
<X[v]> <t>;
Me
| NP
rq__@_(% T: C): r=0
>
m"m""&&;ﬁ 77777 A<t APpo<te
L1
r r r
SV

Fig. 3. Comparison Boolean Circuit.

text operations are involved, which significantly enhances the
efficiency of the secure comparison. As shown in Fig. 3, when
implementing comparison operation with boolean circuit, two
operations are involved: "XOR” operation & and "AND”
operation ®. Based on the above comparison circuit and the
dissimilarity and sum operations in the context of Boolean
sharing, Algorithm 2 shows the process of implementing a
secure comparison between cloud servers Sy and S; based on
their own Boolean sharing shares.

Algorithm 2 Privacy-preserving boolean comparison

Require: Cloud server Sy inputs (X[v])o,(t)o.auxiliary bit r;
Cloud serverS; inputs (X[v])1, (¢)1 and 71, where 7o &
r = 0.

Output: S obtains the comparison result (b)g, S; obtains

(b

1: for each ¢ € [1,4;] do
2 Soiro = (10 @ (X[v])o,i) ® (10 D (t)o,i) B T0;
3 Sury = (r1 & (X[v])o) @ (r1 @ (t)1,0) ® s
4: Sy obtains(b)o < 703
5. Sy obtains(b); <+ ri;

D. Evaluation Phase

After the secure comparison calculation, the dual-cloud
servers obtain the shared comparison result (b);. This compar-
ison result determines whether the decision node selects the
left or right child node as the next decision node. Specifically,
the next index is computed using the Equation 1.

{T) < (D +(B) - (D) + (r)) (1

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 3, OCTOBER 2025 125

where if b = 1, the next index (Z) is set to (I); if b = 0,
the index is set to (r).

The entire prediction result generation process follows Al-
gorithm 3. The loop is iterated d times, and during each
iteration, the servers Sy and Sp call the function F S,)S to
obtain the secret shares of X[v], then perform the secure
comparison process to compute the comparison result b. The
comparison result (b) is then used by Sy and S; to determine
the next decision tree index (Z). Following this, Sy and S,
call the function F' é?g) based on the new index (Z) to obtain
(Ar[Z]), and finally parse (c) as the prediction result (r).

Due to the design of the self-loop in the leaf nodes of the
binary tree, when the loop reaches a leaf node, it executes
a self-loop that points to itself. Thus, (r) becomes the final
target result. Moreover, the self-loop design hides the number
of comparison operations, ensuring that all prediction results
are only revealed after d iterations. The client C obtains the
secret shares (r)q and (r); from Sy and S7, and computes the
final prediction result.

Algorithm 3 Prediction Result Generation
Require: Ar[0]
Output: S, obtains comparison result (r);
1: Sp and S; share Ap[0] and jointly parse (Ar[0]) into
OO ()]
2: for each b € {0,1} do
3 Sy sends (Ewval, (v)p) to Fggs, Sy share (X[v])p;
4: Sy, perform secure comparison (b)y, <— (X[v])p > (€)p;
5 Sy calculate the index of the next decision node
(o < (Do + (bo) - (Do + (r)s);

6: Sy sends (Ewal, (I)) to Fé’;g), S, jointly share
(Ar[Z])v;

7. Parse (O)[[(D[[(r)[[(v}[[{c) + Ar[Z]y;

8: (rYp « (C)ps

9: Sp obtain the shared result (r);.

VI. THEORETICAL ANALYSIS

In this section, we first analyze the security of our proposed
protocols, and then analyze their computation cost and com-
munication overhead.

A. Security Analysis

In this chapter, the participants are all assumed to be
semi-honest. If the scheme is secure under the semi-honest
model, the participants are only able to access the data and
public parameters specified by the protocol during the secure
outsourcing of the decision tree, and they cannot infer any
arbitrary messages related to the original inputs. The security
of the system is analyzed in three distinct scenarios, each
corresponding to a semi-honest attacker capturing one of the
parties: P, C, or S.

When the model provider P is the attacker,since P only
provides the secret sharing of the decision tree to the cloud
server and does not receive any messages during the protocol
execution, the attacker P does not gain access to any additional

information. This confirms the security of the scheme in this
scenario.

When the client C' is the attacker, the client C' only
provides the secret-shared values of the feature vector X and
receives the two shares of the prediction results, (r)o and
(ry1. The client does not participate in the decision-making
process of the prediction, and as a result, does not obtain any
additional information beyond what is explicitly shared. Thus,
the security of the scheme is maintained even in the presence
of a client adversary.

When the cloud service provider S is the attacker, the roles
of the two cloud servers, Sy and Si, are symmetric. It is
assumed that the two cloud servers are not colluding, and
therefore, this section analyzes the case where only a single
cloud server, Sy, is the attacker. The inputs and outputs of the
cloud servers are related to the secret sharing of data, and the
security of additive secret sharing ensures that the shared data
remains random and protected. The interaction between the
cloud servers at different stages of the protocol is analyzed as
follows:

1) Preparation Phase: The feature vector and decision tree
array are abstracted into a message M. Cloud server S
holds the secret-shared value M, and applies a random
function F'(sko,Z) to obtain My[Z] @ F(sko,Z). Cloud
server S receives this perturbed value and cannot decrypt
it to obtain the original plaintext. Cloud server S; then
adds M;[Z] ® F(sk1,Z) to the received perturbed value
and sends the result back to Sy. Since the final plaintext
is obscured by the random values, cloud server S is also
unable to retrieve the original data.

2) Feature Selection Phase: By the relevant results in [31].
it is known that if the function F' is a secure pseudo-
random function, then the oblivious selection protocol in
Algorithm 1 can securely compute the function Fél\o/[;
in the hybrid model (Fip,f, Fpre) under the ‘honestly
curious’ adversary model.

3) Secure Comparison Phase: The secure comparison phase
utilizes Boolean sharing-based privacy comparison. The
‘iso-operation’ of the secure comparison circuit is exe-
cuted locally on the cloud server without any interaction.
The other operations, which involve interaction between
the two cloud servers, are securely executed via the
BMT triplet protocol [32], ensuring the integrity and
confidentiality of the comparison process.

4) Evaluation Phase In the evaluation phase, the cloud server
only receives the secret-shared values of the predicted
results. A single shared value is effectively a random
value for the cloud server, and thus, it cannot infer
the prediction. Two shared values must be combined to
recover the final result, ensuring the security of this phase.

B. Performance Analysis

Let n be the number of attributes of the feature vector, [be
the number of binary bits per feature value, d be the depth of
the decision tree, m be the number of nodes in the decision
tree, OT represent the inadvertent transmission protocol, MT
represent the number of Beaver’s multiplicative triples, SS

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 3, OCTOBER 2025 126

denote secret sharing, and 7 denote the number of rounds
to execute the pseudo-random function (PRF). This section
analyzes the scheme proposed in this section in four phases:

o Preparation Phase: In the preparation phase, m decision
nodes are secret-shared, with 5 mt plaintexts containing
their respective subscript random values. These values
must be dissociated to obtain the secret text C (the 5
items include the node threshold, left child index, right
child index, etc.). Each of these items consists of binary
bits. The overhead in this phase can be handled offline
by the user, so we focus only on the online overhead
required when the user initiates a query.

o Selection Phase: In the selection phase, a decision node
and the corresponding user feature vector need to be
selected for comparison. For feature vector selection,
the 1-out-of-n OT function is used. This requires the
sender to transmit the entire user feature array of size
nl to the receiver. Additionally, the selection of the
decision tree node involves generating 5¢ random values
for interaction. Therefore, the communication complexity
of the selection phase is O((n + 5m)¥).

o Comparison Phase: In the comparison phase, a compari-
son operation requires [multiplications. To achieve this,
[Beaver’s multiplicative triples are needed for secure
multiplication.

« Evaluation Phase: In the evaluation phase, the prediction
results are represented in the form of secret sharing. Only
a single secret recovery operation is required at the end
of the phase.

Table III compares the overhead of each phase in the
proposed scheme with the schemes from the literature [12]
and [31]. Since the above analysis pertains to a single process,
the final complexity must be multiplied by the number of
comparisons d.

Compared to the scheme in the literature [12], our approach
requires fewer comparisons. In comparison with the scheme in
[31], our scheme utilizes the GMW protocol [33] to complete
the comparison circuit, while the GC protocol is used in [31].
However, the communication overhead in [31] is O(dnl),
which is smaller than that in our scheme. This is because the
scheme in [31] is based on a Client-Server (CS) architecture,
where the decision tree is held by a single participant, and
the communication overhead is only dependent on the 1-
out-of-n OT function. Nonetheless, due to the differences
in architecture, the complexity of the selection phase in our
scheme is still acceptable.

VII. EXPERIMENT
A. Implementation and Experimental Setup

This paper evaluates the efficiency of the scheme presented
in this section using C++. The implementation of the secret
sharing technique is based on the ABY framework library
[34], while the SFS protocol is implemented using Floram
[35]. The LowMC technique is utilized to instantiate the
PRF function and the ASS and SMPC (Secure Multi-Party
Computing, a cryptographic protocol that enables multiple
parties to collaboratively compute a function over their private

inputs with no party gains any information about the others’
inputs beyond what is revealed by the output) related code
implementation is referenced from NssMPClib [36]. In the
experiment, the computational security parameter is set to
k = 128, and the statistical security parameter is set to A = 40.
The algorithm used in constructing decision trees is CART.

The experiment is conducted within a Docker container on
an Ubuntu 18.04 system. Two containers, simulating two cloud
servers, are configured with AMD EPYC Milan processors and
run on a Tencent Cloud virtual machine with 4GB of RAM.
Two network environments are simulated: a local area network
(LAN) and a wide area network (WAN).

In the LAN environment, the Sy and S; server instances
are deployed within the same server room. In the WAN
environment, the Sy and S; server instances are located in
Beijing Area 2 and Guangzhou Area 6, respectively. To mea-
sure the network performance, we use the ‘ping’ command to
evaluate network latency and the ‘iperf” command to measure
the network bandwidth under both network conditions. The
network latency and bandwidth values are summarized in the
TABLE IV.

The experiments were conducted using five publicly avail-
able datasets from UCI (University of California Irvine) [37]:
Heart-disease, Credit-screening, Breast-cancer, Housing, and
Spambase. These datasets are used to evaluate the performance
of the proposed scheme. The focus of the experiments is
on three key characteristics of the datasets: feature vector
dimension n, decision tree depth d, and number of decision
nodes m, as shown in TABLE V.

B. Performance Evaluation

In this section, we experiment with the five datasets men-
tioned above and compare the results against similar schemes
from the literature, namely [12] and [11], which focus on
decision trees based on dual-cloud architectures. Specifically,
[12] targets optimizing decision trees over wide-area networks
(WAN), while [11] evaluates secure decision trees in a local-
area network (LAN) environment. Since [12] was tested solely
in a WAN setup, and [11] was tested in a standalone environ-
ment, the results from both schemes are shown in the table
for comparison.

All three schemes—SS-PDI, [12], and [11]—are based on
a dual-cloud architecture, where both the client and the cloud
server go offline after the initial data transmission to the cloud
server. As a result, the computational overhead during the
offline phase is similar across all schemes. Therefore, only
the running time of the inference phase, executed on the cloud
server, is considered. TABLE VI presents a comparison of the
computational overhead of the SS-PDI scheme in both LAN
and WAN network environments, relative to the schemes in
[11] and [12].

The comparison results reveal that in the LAN network
environment, the computational overhead of our scheme is
higher than that of the scheme from [11] for the first four
datasets. However, for the ‘deep and sparse’ Spambase dataset,
the proposed scheme outperforms the [11] protocol, with
the latter being 3.98 times faster in terms of computational

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 3, OCTOBER 2025 127

TABLE III
SS-PDI PERFORMANCE COMPARISON

Scheme Number of comparisons Selection phase Comparison phase ~ Evaluation phase =~ Communication rounds
Scheme in [12] 24 m(1)OT O(m2' - MT) m-SS (logy I + 5)d
n
Scheme in [31] d O(dnl) dGC SS (3rp +5)d
Our scheme d O(d(n + 5m)l) Oo(dl - MT) SS Brp +34+10)d

TABLE IV
TEST NETWORK ENVIRONMENT
Network Evironment Delay Bandwidth
LAN 1-3ms 1Gbps
WAN 60-80ms 4Mbps
TABLE V

RELEVANT FEATURES OF THE DECISION TREE DATASET

Dataset d m n
Heart-disease 3 5 13
Credit-screening 4 5 15

Breast-cancer 8 12 9
Housing 13 192 13
Spambase 17 | 58 | 17

overhead. However, in the WAN network environment, our
scheme exhibits an overhead that is approximately the same
as in the LAN, significantly lower than that in [12]. This
demonstrates the strong stability of our scheme, as it main-
tains consistent performance across different network envi-
ronments, unlike previous works where the overhead may
increase substantially in a wide area network. This stability
highlights the robustness of our privacy-preserving approach,
making it well-suited for real-world deployment in diverse
network conditions. Additionally, our scheme exhibits a much
smoother runtime variation across different datasets, which is
attributable to our strict adherence to privacy-preserving rule
design protocols that effectively obscure data access patterns.
This ensures that the computational overhead remains more
consistent, regardless of dataset characteristics.Since both [11]
and [12] were proposed by Zheng et al., these two protocols
will be collectively referred to as the ‘Zheng protocol’ in the
subsequent analysis.

In our opinion, There are two main shortcomings in the
Zheng’s protocol:

1) The protocol requires execution under the assumption of a
complete binary tree. If this assumption is violated, there
is a security risk where the tree structure could potentially
be inferred based on the number of comparisons.

2) The protocol involves comparing all decision nodes, with
the comparison process requiring the execution of m
instances of Fi_ou¢—of—n OT operations.

In the case of the Spambase dataset, with a feature vector
size n = 57 and decision tree depth d = 17, the decision tree is
extended to a complete binary tree, resulting in an exponential
increase in query time. In contrast, the scheme proposed in this
section only requires d comparisons, making it more suitable
for sparse binary trees and resulting in a lower computational
overhead than the Zheng protocol for the ”deep and sparse”

Spambase dataset.

We also compared it to other programs, as shown in TABLE
VII. The evaluation is conducted against the existing solution
proposed by Doerner et al. [38]. The results, as shown in
Table VII, encompass three distinct phases: Security Feature
Selection, Security Node Comparison, and Secure Inference
Generation. For each phase, we compare the runtimes of both
the SS-PDI solution and the approach presented by Doerner
et al. across several widely used datasets.

Similar to the previous experimental results, the improve-
ment in execution efficiency of SS-PDI on general datasets is
not significant However, on deep and sparse datasets, SS-PDI
demonstrates a significant advantage over traditional schemes.
This advantage arises from the scheme’s ability to handle
sparse decision trees more efficiently, leading to reduced
computational overhead. Furthermore, our privacy-preserving
scheme is simpler compared to previous work, offering an
elegant solution that minimizes the complexity of operations
while maintaining strong security guarantees.

Overall, the comparison highlights the trade-off between
security and performance. While the SS-PDI solution incurs
higher runtime costs in certain phases, its enhanced security
features could make it a more suitable choice for sensitive
applications, where secure computation is paramount. The
results also suggest areas for future optimization, particularly
in reducing the runtime in the Security Feature Selection and
Security Node Comparison phases without compromising the
security guarantees.

VIII. CONCLUSION

In this paper, we address the problem that existing security
outsourcing decision tree inference services cannot balance
security and computational efficiency in large decision trees, a
privacy decision tree inference scheme based on secret sharing
in a dual cloud architecture is proposed. Using oblivious
transfer and secret sharing techniques, the feature selection
module is improved to reduce the number of feature selections,
and the computational overhead and communication overhead
of feature selection sublinearity are achieved. Based on the
binary tree characteristics, the decision tree parent and child
nodes are packed and stored in a cluster of two-dimensional
arrays to reduce the number of times to perform decision tree
SOS from d times to d/q times. A secure comparison circuit
is designed using Boolean sharing to reduce the overhead of
secure comparison. In the semi-honest threat environment, the
security of the system when the model provider, client, and
cloud server are the attackers is analyzed, and the experimental
analysis proves that the scheme in this section has smaller

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 3, OCTOBER 2025

TABLE VI
COMPUTATIONAL OVERHEAD OF SS-PDI SCHEME COMPARED WITH RELATED SCHEMES

128

Net type Scheme Heart-disease ~ Credit-screening ~ Breast-cancer ~ Housing Spambase
LAN Scheme in [11] 0.0013 0.0029 0.0034 0.132 6.7
SS-PDI 0.724 0.781 0.932 1.425 1.681
WAN Scheme in [12] 1.21 1.37 1.45 3.33 27.07
SS-PDI 0.862 0.926 1.238 1.410 16.02
TABLE VII

COMPARISON OF RUNTIME OF SS-PDI SOLUTION FOR DIFFERENT PHASES OF CLOUD SERVER EXECUTION IN WAN NETWORK ENVIRONMENT

Security Feature Selection

Security Node Comparison

Secure Inference Generation

Dataset
Scheme in [38] SS-PDI Scheme in [38] SS-PDI Scheme in [38]
Heart-disease 0.527 0.413 0.529 0.214 0.154
Credit-screening 0.529 0.435 0.53 0.257 0.306
Breast-cancer 0.533 0.517 0.532 0.305 0.383
Housing 0.91 0.662 1.735 0.352 0.69
Spambase 21.006 11.994 4.281 5.540 1.785
computational overhead and communication overhead when [13] C. Guo, K. Cheng, J. Fu, R. Fan, Z. Chang, Z. Zhang, and A. Song,
executing decision tree inference for large decision trees, “Gfs-cnn: A gpu-friendly secure computgtion platform for convqlutipnal
. neural networks,” Journal of Networking and Network Applications,
which satisfies the basic requirements of secure decision tree vol. 3, no. 2, pp. 66-72, 2023.
inference. [14] A.Song, J. Fu, X. Mu, X. Zhu, and K. Cheng, “L-secnet: Towards secure
and lightweight deep neural network inference,” Journal of Networking
and Network Applications, vol. 3, no. 4, pp. 171-181, 2024.
REFERENCES [15] M. Joye and F. Salehi, “Private yet efficient decision tree evaluation,” in
Data and Applications Security and Privacy XXXII: 32nd Annual IFIP

[1] M. M. Sadeeq, N. M. Abdulkareem, S. R. Zeebaree, D. M. Ahmed, A. S. WG I]._? Conference, DBSec 2018, Bergamo, Italy, July 16-18, 2018,
Sami, and R. R. Zebari, “Iot and cloud computing issues, challenges and Proceedzr:gs 32, 2018} pp. 243-259. . w .
opportunities: A review,” Qubahan Academic Journal, vol. 1, no. 2, pp. (6] 1. Dam.gard, M. Qelsler, a_md M Krmgaarq, Efﬁc1§nt and secure
1-7, 2021. comparison for on-line auctions,” in Information Security and Privacy:

[2] J. Liang, Z. Qin, S. Xiao, L. Ou, and X. Lin, “Efficient and secure 12th Australasian Conference, 2007, pp. 41.6430"‘ . .
decision tree classification for cloud-assisted online diagnosis services,” [17] A. Tueno, E. Kerschbaum, and S. ,I’(atzenbelgser, Private evaluation of
IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 4, decision tr.ees using sublinear cost,” Proceedings on Privacy Enhancing
pp. 16321644, 2019. Technologies, vol. 1, 2019.

[3] B. W. Yap, S. H. Ong, and N. H. M. Husain, “Using data mining to [18] J.P.Ma, R. K. Tai, Y. Zhap, e}nd S. S'. Chow, “Let’s stri'de bl@ndfolded
improve assessment of credit worthiness via credit scoring models,” in a forest: Sublinear multi-client decision trees evaluation.” in NDSS,
Expert Systems with Applications, vol. 38, no. 10, pp. 13274-13283, 2021.

2011. [19] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning

[4] Z. Xu, L. Zhao, W. Liang, O. F. Rana, P. Zhou, Q. Xia, W. Xu, and classification over encrypted data,” Cryptology ePrint Archive, 2014.
G. Wu, “Energy-aware inference offloading for dnn-driven applications ~ [20] Y. Ishai and A. Paskin, “Evaluating branching programs on encrypted
in mobile edge clouds,” IEEE Transactions on Parallel and Distributed data,” in Theory of Cryptography Conference. Springer, 2007, pp. 575—
Systems, vol. 32, no. 4, pp. 799-814, 2020. 594.

[5] H. Ye, X. Zhang, Z. Huang7 G. Chen, and D. Chen, “Hybriddnn; A [21] L. Liu, J. Su, R. Chen, J. Chen, G. Sun, and J. Li, “Secure and fast
framework for high-performance hybrid dnn accelerator design and im- decision tree evaluation on outsourced cloud data,” in Machine Learning
plementation,” in 2020 57th ACM/IEEE Design Automation Conference for Cyber Security: Second International Conference, 2019, pp. 361—
(DAC), 2020, pp. 1-6. 377.

[6] H. Tabrizchi and M. Kuchaki Rafsanjani, “A survey on security chal- [22] M. De Cock, R. Dowsley, C. Horst, R. Katti, A. C. Nascimento,
lenges in cloud computing: issues, threats, and solutions,” The journal W.-S. Poon, and S. Truex, “Efficient and private scoring of decision
of supercomputing, vol. 76, no. 12, pp. 9493-9532, 2020. trees, support vector machines and logistic regression models based

[71 A.Masood, D. S. Lakew, and S. Cho, “Security and privacy challenges in on pre-computation,” [EEE Transactions on Dependable and Secure
connected vehicular cloud computing,” IEEE Communications Surveys Computing, vol. 16, no. 2, pp. 217-230, 2017.

& Tutorials, vol. 22, no. 4, pp. 2725-2764, 2020. [23] G. Kiss, M. Naderpour, J. Liu, N. Asokan, and T. Schneider, “Sok:

[8] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning Modular and efficient private decision tree evaluation,” Proceedings on
classification over encrypted data,” Cryptology ePrint Archive, 2014. Privacy Enhancing Technologies, vol. 2, 2019.

[9] D. J. Wu, T. Feng, M. Naehrig, and K. Lauter, “Privately evaluating [24] Y. Zheng, H. Duan, and C. Wang, “Towards secure and efficient
decision trees and random forests,” Cryptology ePrint Archive, 2015. outsourcing of machine learning classification,” in Computer Security—

[10] R. K. Tai, J. P. Ma, Y. Zhao, and S. S. Chow, “Privacy-preserving ESORICS 2019: 24th European Symposium on Research in Computer
decision trees evaluation via linear functions,” in Computer Security— Security, Luxembourg, September 23-27, 2019, Proceedings, Part I 24.
ESORICS 2017: 22nd European Symposium on Research in Computer Springer, 2019, pp. 22-40.

Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part Il ~ [25] K. Ji, B. Zhang, T. Lu, L. Li, and K. Ren, “Uc secure private
22, 2017, pp. 494-512. branching program and decision tree evaluation,” IEEE Transactions

[11] Y. Zheng, H. Duan, C. Wang, R. Wang, and S. Nepal, “Securely and on Dependable and Secure Computing, vol. 20, no. 4, pp. 28362848,
efficiently outsourcing decision tree inference,” IEEE Transactions on 2022.

Dependable and Secure Computing, vol. 19, no. 3, pp. 1841-1855,2020. [26] J. Fu, K. Cheng, Y. Xia, A. Song, Q. Li, and Y. Shen, “Private decision

[12]

Y. Zheng, C. Wang, R. Wang, H. Duan, and S. Nepal, “Optimizing secure
decision tree inference outsourcing,” IEEE Transactions on Dependable
and Secure Computing, 2022.

tree evaluation with malicious security via function secret sharing,” in
European Symposium on Research in Computer Security. Springer,
2024, pp. 310-330.

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 3, OCTOBER 2025 129

[27] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in 2017 IEEE symposium on security and
privacy (SP), 2017, pp. 19-38.

[28] D. Demmler, T. Schneider, and M. Zohner, “Aby-a framework for
efficient mixed-protocol secure two-party computation.” in NDSS, 2015.

[29] S. S. Sathya, P. Vepakomma, R. Raskar, R. Ramachandra, and S. Bhat-
tacharya, “A review of homomorphic encryption libraries for secure
computation,” arXiv preprint arXiv:1812.02428, 2018.

[30] L. Ma, J. Peng, Q. Pei, and H. Zhu, “Efficient decision tree privacy
classification service protocol,” Journal On Communications, vol. 42,
no. 8, pp. 80-89, 2021.

[31] J. Bai, X. Song, S. Cui, E.-C. Chang, and G. Russello, “Scalable private
decision tree evaluation with sublinear communication,” in Proceedings
of the 2022 ACM on Asia Conference on Computer and Communications
Security, 2022, pp. 843-857.

[32] P. Pullonen et al., “Actively secure two-party computation: Efficient
beaver triple generation,” Instructor, 2013.

[33] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game, or a completeness theorem for protocols with honest majority,” in
Providing Sound Foundations for Cryptography: On the Work of Shafi
Goldwasser and Silvio Micali, 2019, pp. 307-328.

[34] T. S. Daniel Demmler and M. Zohner. A framework for efficient
mixed-protocol secure two-party computation. [Online]. Available:
https://github.com/encryptogroup/ABY

[35] J. Doerner and abhi shelat. Jack doerner and abhi shelat. [Online].
Available: https://gitlab.com/neucrypt/floram

[36] Q. L. Yuheng Xia and J. F. et.al, accessed: Apr 23, 2024. [Online].
Available: https://github.com/XidianNSS/NssMPClib

[37] D. G. Aldrich. Uci machine learning repository: Data sets. [Online].
Available: https://archive.ics.uci.edu/ml/index.php

[38] J. Doerner and A. Shelat, “Scaling oram for secure computation,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 523-535.

