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This paper provides a structured survey of satellite localization from the perspective of active and passive localization. After
distinguishing the functional differences between active and passive localization, the paper focuses on satellite passive localization
and reviews its main measurement mechanisms, including Time of Arrival (TOA), Time Difference of Arrival (TDOA), Frequency
Difference of Arrival (FDOA), Angle of Arrival (AOA), and their joint variants. For each method, we summarize the basic principles,
observation models, localization solution processes, and commonly used accuracy evaluation metrics such as the Cramér-Rao lower
bound and the geometric dilution of precision. We further review parameter estimation techniques for TDOA and FDOA, as well as
representative localization algorithms ranging from grid search and iterative solutions to pseudo-linear closed-form methods, convex
optimization approaches, and emerging learning-based methods. Finally, the paper discusses key challenges in multi-parameter fusion,
complex signal environments, and algorithmic robustness, and outlines future research directions for improving the performance
and practicality of satellite passive localization systems.
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I. INTRODUCTION

CCURATE target localization is pivotal in both military

and civilian systems. In the military domain, precise
localization provides robust support for the deployment of
precision-guided weapons; in the civilian domain, it offers
reliable services and ensures safety for targets [1]-[6]. Based
on the mechanism of interaction between the system and the
target, satellite localization technologies are primarily cate-
gorized into two main types: active localization and passive
localization.

Active localization systems actively transmit signals using
devices such as radar and lasers to detect targets [7], [8],
offering advantages like all-weather operation and high pre-
cision. However, active systems require the transmission of
high-power signals, which makes them prone to revealing their
locations. Consequently, they are susceptible to “soft kills”
from electronic jamming and hard kills” from anti-radiation
missiles, severely compromising system survivability. In con-
trast, passive localization technology localizes targets by in-
tercepting their radiated signals. Since the system itself does
not emit electromagnetic waves, it possesses significant ad-
vantages such as long operating range and high concealment
[9], [10]. This significantly enhances survivability in modern
electronic warfare environments, making it a research hotspot
in the field of electronic reconnaissance.

Passive localization technology is essentially the integration
of localization methods and algorithms. Its implementation
consists of two steps: first, measurement techniques are used
to acquire the parameters of the radiation source and its
signals to select the appropriate localization method; second,
observation models are established to select effective local-
ization algorithms. Recent high-tech regional conflicts have
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demonstrated that passive localization systems have become an
integral component of modern integrated air defense, ground
and maritime strikes, and long-range early warning systems.
They occupy a strategic position in military electronic systems
that increasingly emphasize covert operations.

Currently, passive localization methods primarily include
Angle of Arrival (AOA), Time of Arrival (TOA), Time Dif-
ference of Arrival (TDOA), Frequency Difference of Arrival
(FDOA), and joint information localization [11]-[13]. Com-
pared to ground and airborne platforms, satellite platforms
offer advantages such as broad measurement coverage, high
precision in position and velocity measurement, and strong sig-
nal processing capabilities. In particular, joint TDOA-FDOA
localization using dual-satellite or multi-satellite systems can
mitigate time difference ambiguity and resolve the multi-
solution problem. This significantly improves localization ac-
curacy and has become the dominant technical solution for
satellite-based passive localization.

In recent years, several comprehensive surveys have ap-
peared in the literature covering localization technologies in
various domains, with a primary focus on indoor localization,
active wireless network localization, and specific satellite
localization technologies.

Regarding indoor and wireless network localization, Pandey
and Agrawal provided a classification and evaluation of lo-
calization techniques for wireless networks (such as WLAN
and Ad-hoc networks), focusing on measurement parameters
such as Signal Strength (SS) and TOA [14]. Yassin et al.
investigated theoretical approaches and applications for indoor
localization, analyzing the performance of WLAN, Ultra-
Wideband, and sensor fusion technologies in complex indoor
environments [15]. Laoudias et al. further broadened the scope
by surveying enabling technologies for network localization
and navigation in cellular networks (including 5G), WLANS,
and wireless sensor networks, specifically highlighting auxil-
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iary technologies such as mobility state estimation and indoor
mapping [16].

In the field of satellite and integrated Ground-Air-Space
(GAS) localization, existing research has largely concentrated
on active or infrastructure-based localization services. Kubo
detailed precise positioning technologies for global naviga-
tion satellite systems, covering Real-Time Kinematic (RTK),
Precise Point Positioning (PPP), and PPP-RTK techniques,
and highlighted the centimeter-level augmentation services
of the Japanese Quasi-Zenith satellite system, which falls
under the category of active satellite navigation [17]. With
the development of Low Earth Orbit (LEO) satellites, Prol et
al. conducted a survey on LEO-PNT (Positioning, Navigation,
and Timing). Although they touched upon Doppler localization
using signals of opportunity, the core focus remained on
utilizing LEO constellations to provide PNT services [18].
Furthermore, Sallouha et al., looking at 6G networks, surveyed
radio localization within integrated GAS networks, analyzing
the localization capabilities of GAS base stations acting as
anchors, primarily from the perspective of the evolution of
the communication network architecture [19].

Despite the summaries provided by existing research on the
aforementioned localization technologies, the primary focus
has been on indoor environments, terrestrial wireless networks,
or active navigation localization based on satellite signals.
Currently, there is a scarcity of systematic surveys dedicated
to Satellite Passive Localization—that is, the use of satellite
platforms to passively detect and localize ground or aerial
emitters. In particular, a complete summary and categorization
of passive localization methods based on TDOA, FDOA, AOA,
and TOA, covering their specific classifications, localization
solution processes, and accuracy assessment frameworks, has
yet to be presented in the literature.

II. BASIC PRINCIPLES OF SATELLITE PASSIVE
LOCALIZATION

This section primarily reviews the fundamental principles
of the main methods for satellite passive localization, in-
cluding Received Signal Strength (RSS), AOA, TOA, TDOA,
FDOA, and hybrid localization methods combining multiple
techniques, as illustrated in Fig. 1. The specific mechanisms
of these methods are detailed in the following sections.

1) RSS

RSS localization is a range-based method that relies on mea-
suring signal energy [20]-[22], as illustrated in Fig. 2. Its core
principle utilizes the path loss model of electromagnetic wave
propagation in free space to estimate the distance d between
the transmitter and the receiver by measuring the received
signal power. According to the Friis transmission equation,
the relationship between the received power P,, transmitted
power P, antenna gains G, G, and carrier wavelength A is
expressed as:

P _ P,GiG\?
N VVSEF
This equation indicates that the signal strength decays as a

function of the square of the distance. Assuming the signal
frequency, transmit power, and antenna gains are known, the

(1

distance d can be estimated by transforming the equation to
obtain the path gain Pg:
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The main advantages of the RSS method are its simple
hardware requirements and the fact that it does not require time
synchronization; it can be implemented using only a power
detector, making it highly suitable for indoor localization in
short-range, line-of-sight environments.

However, in satellite passive localization scenarios, RSS
is rarely used as a standalone localization technique and is
typically employed only as auxiliary information. The primary
reasons are as follows: First, signals undergo severe attenua-
tion over long distances, and signal strength drops sharply as
distance increases, resulting in extremely low distance resolu-
tion at long ranges (such as satellite orbit altitudes). Second,
multipath effects and shadowing in real-world environments
cause significant fluctuations in signal strength, making dis-
tance estimates based on simple path loss models highly
inaccurate. Furthermore, passive localization often targets non-
cooperative sources, where the satellite usually does not know
the target’s initial transmit power P, rendering the direct
calculation of distance using the RSS equation infeasible.
Therefore, while RSS technology is well-suited for indoor or
short-range localization, it struggles to meet the high-precision
requirements of satellite-based ground reconnaissance.

Nevertheless, RSS plays a critical complementary role in
hybrid fusion systems, particularly when primary observables
are insufficient. For example, in geostationary earth orbit sce-
narios, AOA estimates often yield a set of potential locations
(i.e., a line of position) rather than a unique point; in such
cases, integrating RSS measurements provides a necessary
distance constraint to resolve position ambiguity and pinpoint
the target [21]. Additionally, for high-orbit or narrow-beam
interference sources where multi-satellite TDOA is invalid
due to visibility constraints, or where single-satellite Doppler
methods degrade, the rate of change in RSS can be exploited
via data-driven approaches to estimate the distance variation,
thereby effectively supplementing the localization solution
[20].

2) AOCA

AOA localization is a direction-finding-based localization
method [23], [24]. Its core principle involves calculating the
target’s position by measuring the direction angle of the radio
signal arriving at the receiver’s antenna array, utilizing the
principle of triangulation, as illustrated in Fig. 3. The system
uses high-precision directional antennas or antenna arrays to
measure the azimuth and elevation angles of the target signal
relative to the satellite’s coordinate system. Assuming the
target node coordinates are (z,y) and the reference node
(satellite) coordinates are (x;,y;), the line connecting the
target and the reference point forms an angle [3; with the X-
axis. This angle is defined as the angle of arrival:

tan 3; = (y_yZ) . 3)

r — X;
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TABLE I

CLASSIFICATION AND CHARACTERISTICS OF LOCALIZATION METHODS

112

Feature Active Localization

Passive Localization

Target Participation

signal measurement.
Communication Direction Two-way communication.
Signal Source Target actively participates.

Applicable Scenarios

Target actively transmits signals; receiver locates target via

Target actively transmits signals.

Advantages High precision, good real-time performance, suitable for
dynamic targets.
Applications GPS, BeiDou, Wi-Fi Indoor Localization.

Target does not need to actively transmit signals; receiver

passively receives signals for localization.

One-way communication.

Target participation not required.

Target naturally emits signals or reflects signals.

Target participation not required, suitable for covert

reconnaissance.

Radar Monitoring, Aerospace Target Localization, Radio

Reconnaissance.

Lt el P m

Estimates distance by measuring signal

d Signal Strengtk gth bined with path loss
models

RSS[20]-[22] R

Measures arrival angle; localization via
geometric triangulation

AOA[23], [24] Signal Angle of Arrival

Measures signal propagation time;
calculates position based on geometric
relationships

TOA[25], [26]

Signal Time of Arrival

Measures the time difference of the

TDOA[27]-[29]

Signal Time Difference

signal arriving at different receivers;

Indoor Localization

Radar Surveillance /
Monitoring

GNSS, Radar

Radio Monitoring, Radar
Localization

Simple hardware

No time synchronization
required;
Suitable for long-distance
dynamic targets

High localization accuracy;
Effective multi-satellite
coordination

Does not rely on transmitter-
receiver synchronization;

Severe signal attenuation

Low accuracy (distance-dependent);
High-precision antennas increase
hardware cost and complexity

Requires strict time synchronization;
High hardware complexity

High requirement for time
difference measurement precision

hyperbolic localization

Measures Doppler frequency shift
FDOA[30]-[33] localizati bi

Signal Frequency Difference diff
velocity and location relationships

Satellite / High-speed Target

Suitable for dynamic targets

Higher localization accuracy;
Suitable for detecting high-speed
moving targets;

High concealment (Covertness)

High requirement for frequency

Localization measurement precision

Fig. 1: Classification of Passive Localization Methods.
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Fig. 2: Schematic diagram of Satellite RSS Passive Localiza-
tion.

Geometrically, each measured angle of arrival §; defines a
ray (bearing line) pointing from the satellite to the target.
The target’s position is determined by the intersection of rays
measured by two or more satellites.

The main advantage of this technology is that it does
not require time synchronization, relying solely on angular
information for localization, making it suitable for tracking
long-distance dynamic targets. However, the AOA method has
significant limitations: First, its localization accuracy decreases
significantly with distance (angular errors are amplified over
long ranges). Second, in complex satellite communication

environments, multipath effects can severely interfere with
the accuracy of angle measurements. Finally, to achieve high-
precision angle measurement, satellites must be equipped
with complex directional antenna arrays, which significantly
increases the hardware cost and payload weight of the system.

Fig. 3: Schematic diagram of Satellite AOA Passive Localiza-
tion.

3) TOA

TOA localization is a range-based localization method [25],
[26]. Its core principle involves calculating the target’s position
by measuring the signal propagation time from the source to
the receiver, combined with geometric relationships, as illus-
trated in Fig. 4. The system establishes a distance observation
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equation based on the signal arrival time ¢; recorded by the
satellite, the transmission time to of the target, and the speed
of light c:

dz‘ =C- (ti — to). (4)

Geometrically, this distance defines a sphere centered at the
satellite. The target’s coordinates are determined by the inter-
section of spheres from multiple satellites.

The main advantages of this technology are its high localiza-
tion accuracy and effectiveness in multi-satellite coordination.
However, the limitations of the TOA method are also signif-
icant: it requires strict time synchronization to ensure that ¢,
and t; share the same time reference, and the system often
entails high hardware complexity. Particularly in satellite pas-
sive localization scenarios targeting non-cooperative sources,
the core requirement of “strict time synchronization” cannot be
met (since the transmission time t( of a non-cooperative target
is unknown). Therefore, pure TOA methods are generally
not directly applicable and are often converted into a TDOA
framework to eliminate time synchronization errors.
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Fig. 4: Schematic diagram of Satellite TOA Passive Localiza-
tion.

4) TDOA

Given that the TOA localization method requires strict time
synchronization between the radiation source and the receiver,
which is extremely difficult to achieve in satellite passive
localization for non-cooperative targets, the TDOA technique
is widely adopted to overcome this limitation [27]-[29]. The
core idea of the TDOA method is to eliminate the unknown
signal transmission time parameter by measuring the time
difference of the same signal arriving at different satellites,
thereby achieving precise localization without requiring syn-
chronization between the transmitter and receiver, as illustrated
in Fig. 5.

A typical three-satellite TDOA localization system consists
of one master satellite (S7) and two adjacent satellites (Sa, Ss3).
In a spatial Cartesian coordinate system, let the position of
the target source be T = (w,y,2)7, and the coordinates of
the three satellites be s; = (z;,9;,2;)T (j = 1,2,3). Based
on the propagation of signals at the speed of light ¢, the
time difference of arrival T"DOA;; between the i-th adjacent
satellite and the master satellite can be converted into a range

difference r;q:
ri1==¢C- TDOAM =7r;—7T1 (Z = 2, 3), (5)

where r; and r; represent the geometric distances from the
target to the ¢-th adjacent satellite and the master satellite,

respectively. Generally, the distance r; for any satellite j is
explicitly defined as r; = ||s; — T||.

In three-dimensional geometric resolution, each TDOA
measurement (i.e., range differences ro; and r3;) defines a
hyperboloid of revolution with the master satellite and the
corresponding adjacent satellite as foci, denoted as ¢; and cao,
respectively. To uniquely determine the target’s position, the
Earth’s surface is often utilized as an additional constraint.
Typically, the Earth ellipsoid equation (e.g., #2/a? +y*/a® +
22/b? = 1) is introduced as an elevation constraint surface.
The intersections of these two hyperboloids with the Earth’s
surface form two curves, l; and [. Solving the system of
equations essentially involves finding the intersection points
of these curves. Typically, the curves [y and [ intersect at two
points, 71" and T7. Here, point 7" represents the true position of
the target, while point 77 is a false (or ambiguous) solution.
It is worth noting that as the satellites move and the obser-
vation geometry changes, the solution for the true position 7'
remains stable and convergent, whereas the false solution 77 is
typically divergent and unstable. This characteristic allows for
the elimination of the ambiguous solution through multiple
observations or prior information, thereby determining the
unique position of the target.

Fig. 5: Schematic diagram of Satellite TDOA Passive Local-
ization.

5) FDOA

FDOA localization, also known as Doppler localization, is a
method that utilizes the Doppler frequency shift effect caused
by the relative motion between satellites and a ground radiation
source [30]-[33]. As satellites travel at high speeds in orbit,
the received signal frequency shifts due to the radial velocity
component. The core principle of the FDOA method is to
measure the frequency difference (Doppler difference) of the
same signal arriving at different satellites, thereby determining
the velocity vector and position information of the target
relative to the satellites, as illustrated in Fig. 6.

A typical three-satellite FDOA localization system uses
three LEO satellites to passively monitor the same target.
Assuming the position coordinate of the stationary ground
source T is [x,y,2]T, and the position and velocity of the
i-th satellite are s; and v;, respectively. According to the
Doppler principle, the Doppler frequency f4, received by the i-
th satellite is related to the carrier frequency f, and the relative
radial velocity:

fo (si=T) v;

fo, =2 2 2
¢ s =T

(6)
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By subtracting the Doppler frequencies received by two satel-
lites (e.g., an adjacent satellite and the master satellite), an
FDOA observation equation is obtained. Geometrically, each
FDOA measurement defines a rotating iso-frequency differ-
ence surface. By combining multiple FDOA equations with
the Earth’s surface equation as a constraint, the intersection
of these surfaces converges to a single point, which is the
estimated position of the target 7.

The main advantage of the FDOA method is that its local-
ization accuracy improves with the increase of the target’s or
satellite’s speed, making it highly suitable for localizing high-
speed moving targets or using LEO satellites. Additionally,
this method does not require time synchronization and pos-
sesses strong concealment and anti-interference capabilities.
However, FDOA technology also has limitations: it requires
extremely high precision in frequency measurement, and its
performance is highly dependent on the relative geometric
motion between the satellite and the target. If the target is
stationary or moving slowly, or if the satellite’s trajectory
relative to the target is unfavorable (e.g., small radial velocity
component), the localization accuracy will degrade signifi-
cantly. Typically, FDOA is combined with TDOA methods to
achieve complementary advantages and improve localization
accuracy in complex scenarios.

NS

Fig. 6: Schematic diagram of Satellite FDOA Passive Local-
ization.

6) Principles of Joint Localization Methods

In satellite passive localization systems, the single TDOA
method is prone to time difference ambiguity or multiple
solutions due to satellite geometry constraints, while relying
solely on the FDOA method requires extremely high frequency
measurement precision and is sensitive to the target’s motion
state. To overcome the limitations of single-mode systems,
the joint TDOA and FDOA localization technique is widely
adopted in academia [34]-[37]. This method utilizes multiple
satellites (e.g., a three-satellite system) to simultaneously mea-
sure both time difference of arrival and frequency difference of
Arrival. By increasing the number of independent observation
equations, this approach not only effectively resolves the ambi-
guity problem but also significantly improves the localization
accuracy and robustness of the system in complex environ-
ments, making it particularly suitable for precise localization
of high-dynamic targets.

A typical three-satellite joint localization system constructs
a set of joint observation equations by receiving signals from a
ground radiation source 7' = [z, y, z]7. Assuming the position
vectors of satellites ¢ and j are s;, s; and their velocity vectors

are v;, v;, respectively. The joint localization model solves for
the target position by combining the TDOA range difference
equation and the FDOA velocity difference equation. The core
system of joint equations can be simplified as follows:

)

{nj=c~TD0Au:n&—~nw—mj—T

Fij = £ FDOA; = Sl &zl

lls: =Tl lls; =Tl

where c is the speed of light, fj is the carrier frequency, and
I - || denotes the Euclidean norm. Geometrically, the TDOA
measurement defines a hyperboloid of revolution, while the
FDOA measurement defines a rotating iso-frequency differ-
ence surface. By introducing the Earth ellipsoid equation as an
elevation constraint, the joint solution of the above nonlinear
equation system yields the unique intersection point of the
iso-time-difference hyperboloid, the iso-frequency-difference
surface, and the Earth’s surface, thereby achieving high-
precision 3D localization of the target 7.

Pure TDOA localization suffers from severe accuracy degra-
dation or even solution failure when the baseline is short or
the target lies near the baseline extension. Although AOA
localization requires only a single station for direction finding,
its ranging capability is weak and heavily affected by distance.
The joint AOA-TDOA localization technique fuses angle and
time difference information to achieve superior performance
through complementary advantages, making it particularly
suitable for scenarios with few stations, such as single or
dual-satellite systems [38]. Taking a two-station system as an
example, assuming the coordinates of the master station S;
and the slave station S5 are known, the time difference of
arrival of the signal from target T = [z,v,2]7 is 7, and the
angle of arrival measured by the master station is 8. The joint
localization model can be expressed as:

8
tan 3 = 75:51 ®

¥m=64=ﬂm—ﬂhﬂm—Tl

This system combines the hyperbolic equation (determined by
TDOA) and the ray equation (determined by AOA), where
their intersection yields the estimated position of the target.
This method not only avoids the strict baseline length re-
quirements of pure TDOA but also effectively improves the
low accuracy of pure direction-finding localization in lateral
regions.

For high-maneuvering or non-radially moving targets, pure
FDOA localization exhibits large errors when the target’s
motion direction is perpendicular to the observation base-
line, whereas AOA localization is insensitive to this issue.
Joint AOA-FDOA localization combines Doppler frequency
difference and angle of arrival information to achieve higher
precision localization and tracking of moving targets [39],
[40]. Assuming the velocity vectors of receivers S7, Sy are
known, the received frequency difference is fy, and the angle
of arrival measured by the master station is 5. The joint
localization equation system is as follows:

_ fo . [(s2=T)va
{fd— c ( s

— YY1
tanﬂ = e—er

(sl—T)‘vl)
lls1—T1|

€))
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Geometrically, FDOA defines an iso-frequency difference sur-
face, and AOA defines an azimuth plane. The intersection
of these surfaces with the Earth’s surface determines the
target’s position. By exploiting the mobility of observation
stations and the enhanced observability of the target, this
method effectively resolves the accuracy divergence problem
of single-mode localization systems under specific geometric
configurations.

III. PERFORMANCE METRICS FOR LOCALIZATION
ACCURACY ANALYSIS

In practical satellite passive localization systems, due to
the influence of measurement noise, system biases, and ge-
ometric configuration, the estimated target position inevitably
deviates from the true position. To quantitatively evaluate the
performance of localization algorithms, metrics such as Bias,
Root Mean Square Error (RMSE), Cramér-Rao Lower Bound
(CRLB), and Geometric Dilution of Precision (GDOP) are
commonly employed.

1) Bias

Bias is used to measure the accuracy of the localization
estimation algorithm, reflecting the deviation between the ex-
pected value of the estimate and the true value. Assuming the
true position of the target is T = [z, v, 2]T, and the estimated
position obtained from the n-th Monte Carlo simulation is
T (for a total of N simulations), the bias of the estimator
is defined as the difference between the expectation of the
estimate and the true position:

1N
Bias(T) = E[T] - T~ > (@™ -

n=1

(10)

When N approaches infinity, if Bias = 0, the estimator is
called unbiased. In practical systems, a non-zero bias typically
indicates the presence of systematic errors in the observation
data or inherent bias in the algorithm itself.

2) RMSE

RMSE is the most commonly used metric for measuring
localization precision, comprehensively reflecting both the
dispersion (variance) and the deviation (bias) of the estimates.
RMSE is defined as the square root of the expected squared
difference between the estimated value and the true value:

N
. " 1 .
RMSE(T) =/ E[|T — T|?] = | — T — T2
(T) 1l I1%] N;ll 1%,
an
where || - || denotes the Euclidean norm. A smaller RMSE

indicates that the localization result is closer to the true
position, implying better algorithm performance.

3) CRLB

The CRLB provides a theoretical minimum lower bound for
the variance of any unbiased estimator, serving as a crucial
benchmark for evaluating the performance of localization al-
gorithms. For any unbiased estimator T, its covariance matrix
Cj. satisfies the following inequality:

C;=E(T-T)(T-T)"1>J71(T), (12

where J(T) is the Fisher Information Matrix (FIM), defined as
the negative expectation of the second-order partial derivative
of the log-likelihood function of the observation data with
respect to the parameter to be estimated (i.e., the target position
T):

OTIOTT (13)

IT) = —F {32 1np(z|T)}
Here, p(z|T) is the joint probability density function of the
observation vector z. The FIM reflects the amount of informa-
tion about the target position contained in the observation data.
The CRLB corresponds to the trace of the inverse of the FIM,
i.e., CRLB = tr(J~1). If the variance of an estimator reaches
the CRLB, it is termed a minimum variance unbiased estimator
or an efficient estimator. In the design and analysis of satellite
localization systems, CRLB is frequently used to predict the
highest theoretically achievable localization precision under
specific noise levels and geometric configurations.

4) GDOP

While CRLB provides the theoretical limit of precision, in
engineering practice, GDOP is often introduced to intuitively
describe the amplification effect of satellite geometric distri-
bution on localization errors. GDOP is defined as the square
root of the ratio of the trace of the localization error covariance
matrix to the measurement error variance. In three-dimensional
localization, GDOP can be expressed as:

\Jo2+ 05 + 02
GDOP= *—— ———| (14)

Omeas

2 2 2
0,0

where o3, 0,, 07 are the estimation variance components of
the target in the x,y, z directions, respectively, and o,,¢qs 1S
the equivalent standard deviation of the measurement error. A
smaller GDOP value indicates a better geometric configuration
of the satellites relative to the target, making the localization
error less prone to amplification. Conversely, if the satellites
are nearly collinear, the GDOP value will increase sharply,

leading to severe degradation of localization accuracy.

IV. PARAMETER ESTIMATION TECHNIQUES FOR
SATELLITE PASSIVE LOCALIZATION

Passive localization technology is essentially the deep inte-
gration of localization mechanisms and calculation algorithms.
Specifically, achieving high-precision passive localization gen-
erally involves two critical steps: first, utilizing measurement
techniques to extract observables (such as TDOA and FDOA)
from the intercepted radiation source signals as accurately as
possible; second, establishing mathematical models based on
these observables and selecting effective algorithms to calcu-
late the target’s position. Among these, the precise estimation
of the TDOA and FDOA between received signals is the
primary prerequisite for realizing target source localization,
as the estimation accuracy directly determines the accuracy of
the final localization result [41], [42].

For the joint estimation of TDOA and FDOA parameters,
traditional classic methods are mainly based on the cross
ambiguity function. For narrowband signals, the narrowband
cross ambiguity function serves as a maximum likelihood
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estimator, and its RMSE can approach the CRLB under high
Signal-to-Noise Ratio (SNR) conditions. Specific implemen-
tation algorithms include the second-order time-domain cross-
ambiguity algorithm and the second-order frequency-domain
cross-ambiguity algorithm. While the time-domain algorithm
is intuitive, its computational load increases dramatically with
signal length. In contrast, the frequency-domain algorithm
converts time-domain convolution into frequency-domain mul-
tiplication via Fourier transform, effectively reducing com-
putational complexity, making it a widely used method in
engineering applications [13], [43]-[45]. To further reduce
computational load, Stein proposed a two-step search method
(coarse estimation followed by fine estimation), significantly
improving efficiency [46].

However, for wideband signals, the Doppler effect manifests
as a time-scale stretching or compression of the signal rather
than a simple frequency shift. In this case, the Wideband
Cross Ambiguity Function (WBCAF) is required to jointly
estimate the time difference and Scale Difference [47]-[49].
Calculating the WBCAF poses a significant computational
challenge due to the need to stretch the signal at various
scales. For discrete signals with unknown analytical forms,
traditional resampling methods (interpolation and decimation)
are computationally expensive. To address this, researchers
have proposed methods based on the Wavelet Transform,
utilizing the scaling properties of wavelet basis functions
to approximate signal scaling, or leveraging cross-wavelet
transform properties to reduce computation. Ho K.C. et al.
proposed a fast scaling algorithm for discrete signals, which
solved some computational issues but still required calculating
the full WBCAF [50]. Additionally, some scholars proposed
reconstructing continuous signals using the Sinc function and
solving for the peak using Newton’s iteration method. This
approach has low computational cost but is sensitive to initial
values and prone to converging to local maxima under low
SNR [51].

With the increasingly complex electromagnetic environment
and higher requirements for real-time performance, traditional
parameter estimation technologies have continuously evolved.
To improve estimation performance in non-Gaussian noise
or interference environments, researchers have introduced the
fourth-order maximum likelihood estimation algorithm, which
utilizes higher-order statistics to suppress Gaussian back-
ground noise. Although it has high computational complexity,
it significantly improves estimation accuracy. For wideband
linear frequency modulated signals, Sharif et al. utilized
the ridge feature of the ambiguity function to propose a
method of searching for peaks along the ridge, simplifying
the two-dimensional search into a one-dimensional search
[52]. Furthermore, estimation algorithms based on the Frac-
tional Fourier Transform have been proposed. By exploiting
the energy concentration characteristics of signals in specific
fractional domains, TDOA and FDOA are jointly estimated by
solving a system of equations, significantly improving compu-
tational efficiency while maintaining accuracy [53]-[56]. The
computational complexity comparison of various methods is
shown in Table II, where IV represents the signal length, N
represents the time delay search range, and a represents the

frequency search range. As can be observed, the second-order
frequency-domain cross-ambiguity algorithm is currently the
method with the lowest computational complexity for TDOA-
FDOA parameter estimation under conventional conditions.

In recent years, with the rapid development of artificial
intelligence, intelligent algorithms have increasingly emerged
in the field of passive localization. In the parameter esti-
mation stage, researchers utilize deep learning networks to
train “clutter libraries” for efficient clutter suppression [57],
[58] and leverage the powerful feature extraction capabilities
of neural networks to perceive weak signal features within
large batches of data [59]. Additionally, data-driven intelligent
methods are gradually demonstrating advantages over tradi-
tional model-driven approaches in signal transform domain
processing and parameter estimation search optimization [60]—
[62]. These studies indicate that combining advanced signal
processing with artificial intelligence to optimize algorithms
for different signal types and environmental characteristics is
a key pathway to enhancing the overall performance of satellite
passive localization systems.

V. RESEARCH ON PASSIVE LOCALIZATION SOLVING
ALGORITHMS

After obtaining observables such as TDOA, FDOA, or AOA
through parameter estimation, establishing and solving the sys-
tem of localization equations is the key step to realizing target
localization. Since these observation equations are typically
highly nonlinear, traditional solving algorithms are mainly
categorized into three types: grid search, iterative methods, and
analytical methods (closed-form solutions). The Grid Search
method obtains a global optimal solution by discretizing the
area of interest and searching for the point with the minimum
error, but it suffers from massive computational load and is
limited by grid resolution.

Iterative algorithms linearize the nonlinear equations and it-
eratively solve them, offering high local convergence accuracy.
Classic representatives include the Taylor Series Expansion
and the Gauss-Newton method [63]-[67]. However, iterative
methods are typically extremely sensitive to the selection
of initial values; a large deviation in the initial guess can
lead to convergence to local optima or even divergence. To
address this issue, Maja Rosic et al. proposed an improved
strategy that combines a Hybrid Genetic Algorithm with the
Newton-Raphson method. This approach leverages the strong
global search capability of the genetic algorithm to provide
high-quality initial values, followed by the Newton-Raphson
method for fine-tuning. This combination ensures global con-
vergence while achieving higher localization accuracy than the
traditional Least Squares method [68].

Analytical methods attempt to convert nonlinear equations
into pseudo-linear ones by introducing auxiliary variables,
thereby allowing direct solution using least squares. The Chan
algorithm and the two-stage weighted least squares are clas-
sic representatives, which can approach CRLB in low-noise
environments but degrade significantly under high noise [69].
Furthermore, to address non-convex optimization problems,
relaxation algorithms based on semi-definite programming
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TABLE II

COMPUTATIONAL COMPLEXITY OF TDOA-FDOA JOINT ESTIMATION ALGORITHMS

Algorithm

Computational Complexity

Second-order time-domain cross-ambiguity algorithm
Second-order frequency-domain cross-ambiguity algorithm
Fourth-order maximum likelihood estimation algorithm

Second-order frequency-domain cross-correlation

NNp (4 +logy N)
2N (2 1 log, N)

5

2o (6 + logy N)

NN,
452 (24 logy N)

have been widely studied, offering good global convergence
while maintaining computational efficiency [70]-[74].

In recent years, with the rise of artificial intelligence, utiliz-
ing neural networks to address difficulties in localization solv-
ing has become a new research hotspot [75]-[79]. Traditional
solving methods often struggle when facing complex nonlinear
equation systems or large measurement errors, whereas deep
learning models demonstrate powerful capabilities in nonlinear
fitting and feature extraction. Wu et al. pioneered the training
of reciprocal neural networks to directly solve the localization
problem of exogenous sources, bypassing complex mathemati-
cal derivations [80]. Addressing common issues such as asyn-
chronization and multipath effects in TDOA measurements,
scholars have designed long short-term memory networks to
process sequential measurement data to reduce error impact
[81], or employed Auto Encoders (AE) for data preprocessing
to recover lost information and improve accuracy [82]. In
more complex Direct Localization systems, neural networks
have been used to design cost functions, effectively solving
the immense computational challenge of constructing complex
signal models in traditional methods [83]. These data-driven
intelligent algorithms provide novel solutions for enhancing
the robustness and accuracy of satellite passive localization in
complex dynamic environments.

VI. CHALLENGES AND FUTURE DIRECTIONS

Although significant progress has been made in satellite
passive localization technologies, numerous challenges remain
when facing increasingly complex electromagnetic environ-
ments and higher precision requirements. Future research
directions primarily focus on the following four aspects:

1. Deep Integration of Multi-Source Hybrid Localization
Technologies: Current research often focuses on the
combination of TDOA and FDOA. Future work should
further explore the potential of combining more diverse
localization techniques. For instance, introducing auxil-
iary information such as AOA, phase rate of change,
or RSS can exploit the complementarity of different
mechanisms. This helps to overcome the limitations of
single techniques and improves system robustness and
accuracy, especially in scenarios with few satellites or
poor observation conditions.

2. Synergy of Heterogeneous Constellations and Geometry
Optimization: With the rise of LEO mega-constellations,
research should expand beyond satellite networking at
a single orbital altitude. Future studies should deeply
investigate the cooperative localization mechanism of

heterogeneous orbits (High, Medium, and Low Earth
Orbits), analyze the quantitative impact of increasing the
number of satellites on localization gain, and summarize
how to maximize localization efficiency by optimizing
the geometric configuration of satellites (i.e., reducing
the GDOP).

3. Advanced Signal Processing and Coherent Source Mit-
igation: In practical applications, signal detection and
parameter estimation face the challenge of high compu-
tational complexity. In particular, coherent signals caused
by multipath effects or interference can lead to rank defi-
ciency in traditional algorithms (such as subspace-based
algorithms), causing a sharp decline in performance or
even failure. Recent Al-based approaches, such as Con-
volutional Neural Network-Long Short-Term Memory ar-
chitectures for signal decorrelation [84] and multi-sensor
fusion strategies integrating Extended Kalman Filter with
Recurrent Neural Network [85], have shown effectiveness
in mitigating coherent interference. Therefore, there is
an urgent need to further integrate these low-complexity
Al-driven algorithms into satellite passive localization
systems.

4. Deepening the Application of Artificial Intelligence: Tra-
ditional model-driven algorithms encounter bottlenecks
when dealing with non-linear and non-Gaussian noise
environments. Future work should further explore data-
driven approaches, especially the application of intelli-
gent algorithms based on Deep Learning in passive local-
ization. Learning-based frameworks [86] and deep learn-
ing models for TDOA-based asynchronous localization
[81] have demonstrated superior capability in handling
measurement errors and eliminating manual parameter
tuning. Leveraging the powerful feature extraction and
fitting capabilities of artificial intelligence can effectively
solve the problems of parameter estimation and position
calculation in complex dynamic scenarios.

VII. CONCLUSION

This paper presented an organized review of satellite local-
ization with an emphasis on passive methods. We first clar-
ified the distinction between active and passive localization,
highlighting the unique applicability of passive techniques in
covert or non-cooperative scenarios. The fundamental prin-
ciples and geometric models of TOA, TDOA, FDOA, AOA,
and joint localization methods were summarized, together with
a unified accuracy evaluation framework. Parameter estima-
tion techniques and major localization algorithms were also
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reviewed, including iterative solvers, pseudo-linear methods,
convex relaxations, and emerging learning-based approaches.

Despite substantial progress, challenges remain in multi-
source information fusion, signal processing under complex
environments, and designing robust and efficient solvers for
highly nonlinear localization equations. Future research should
focus on developing hybrid localization architectures, improv-
ing robustness against environmental and measurement uncer-
tainties, and exploring interpretable learning-based models that
complement traditional geometric methods. Advancing these
directions will be essential for achieving higher precision,
improved reliability, and better scalability in satellite passive
localization systems.
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