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As smartphones become essential tools for daily activities, security concerns, particularly in mobile payments and personal
privacy, are becoming increasingly critical. Traditional lock screens and password-based authentication systems are vulnerable to
various threats, such as unauthorized access and identity theft. To address these issues, this paper proposes an advanced continuous
authentication method that verifies user identity based on unique screen-touch trajectories. Using machine learning algorithms, the
authentication system analyzes real-time screen-touch trajectories from user interactions with the touchscreen, capturing behavioral
patterns that are highly specific to individual users. This proposed continuous authentication framework enables the system to
authenticate users seamlessly and continuously throughout device usage, ensuring ongoing protection against unauthorized access,
financial fraud, and privacy breaches. Experimental results demonstrate that the Random Forest algorithm outperforms other
methods in terms of recognition accuracy and response efficiency, offering a reliable and scalable solution. The paper also explores
the integration of this authentication approach into existing smartphone security frameworks, showcasing its potential to significantly
enhance network security, particularly in high-risk applications such as mobile payments and personal data access.

Index Terms—Continuous authentication, mobile payments and personal privacy, screen-touch trajectories, smartphone security
frameworks, payment security.

I. INTRODUCTION

W ITH the widespread adoption of smartphones, mobile
payments and personal data security have become

critical concerns in modern society. Traditional password-
based protection methods are increasingly inadequate in the
face of sophisticated, premeditated attacks, particularly in
cases where unauthorized access to personal devices occurs.
To address these challenges, this paper proposes a continuous
authentication system based on screen-touch trajectories. This
system aims to mitigate risks associated with financial fraud
and breaches of personal privacy, especially when lock screen
passwords or payment credentials are compromised [1], [2].
Leveraging machine learning, our system continuously moni-
tors and analyzes users’ touch behavior in real time to verify
the legitimate user, thereby preventing unauthorized access and
financial fraud.

In recent research, user authentication using behavioral
biometrics has gained significant attention. Some studies uti-
lize smartphone sensor data for authentication, while others
explore the use of acoustic fingerprints as a second factor
in multi-factor authentication systems [3]. However, these
approaches often depend on specific hardware configurations
or are vulnerable to attacks. Moreover, many fail to provide
continuous, dynamic identity verification in real-world envi-
ronments [4].

This paper introduces an innovative continuous authenti-
cation method that uses users’ screen-touch trajectories as a
dynamic, context-aware authentication factor [5]. Unlike tradi-
tional methods that rely on static factors such as passwords or
biometrics, our approach capitalizes on the inherent variability
and unpredictability of user behavior. By analyzing touch
trajectories, we generate a constantly evolving authentication
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context, which poses a significant challenge for attackers
attempting to replicate or predict the user’s behavior [6].
This dynamic approach adds a robust layer of security while
aligning with user-friendly practices, avoiding the disruptions
often associated with conventional user-centric authentication
mechanisms. Additionally, it minimizes the need for extra
hardware investments by utilizing existing smartphone sensors
and data analytics capabilities [7].

The main contributions of this paper are as follows:
• We propose a novel continuous authentication method

that combines screen-touch trajectory features to form a
unique feature space, using user behavior patterns as an
authentication factor. This approach provides continuous,
context-aware authentication, enabling the detection of
unauthorized access during user interactions.

• We developed and evaluated several ensemble classi-
fiers, including K-Nearest Neighbors (KNN) [8], Support
Vector Machines (SVM) [9], eXtreme Gradient Boost-
ing (XGBoost) [10], and Random Forest [11] to assess
the legitimacy of user interactions with mobile devices.
Through extensive experimentation, we demonstrate the
effectiveness of our proposed framework in verifying user
authenticity.

II. PROBLEM FORMULATION

A. System Model

In the field of information security, particularly with regard
to personal privacy and asset protection, continuous authen-
tication plays a critical role in environments that require
high levels of privacy. In our system model, we propose
a continuous authentication method based on users’ screen-
touch trajectories to bolster the security of personal devices
against unauthorized access. We hypothesize that users’ touch
trajectories are unique to individuals, similar to signatures or
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Fig. 1. Performance of ensemble classifiers (the weights of the two
classifiers are 0.5)

fingerprints. As such, when a user attempts to unlock their
device or perform payment transactions, the system captures
their screen-touch trajectories and compares them to pre-stored
reference data. If significant deviations are detected, the system
will flag the interaction as potentially unauthorized, triggering
security measures such as locking the device or issuing an
alert.

By integrating behavioral characteristics into the authenti-
cation process, our approach aims to offer a more secure and
reliable protection mechanism for personal devices, effectively
countering increasingly sophisticated security threats. This
method not only strengthens device security but also provides
a solution that does not require additional hardware, aligning
with the practical needs of modern mobile device usage.

B. Threat Model

In this paper, we examine attack scenarios where adversaries
attempt to authenticate by mimicking legitimate user behavior.
For instance, an attacker may try to replicate a user’s screen-
touch trajectories or reduce the number of swipes in an
attempt to evade detection. Such actions could potentially
expose sensitive information, including financial data and
personal details, to the attacker. Our objective is to design
an authentication mechanism with high recognition capabil-
ities and sensitivity, capable of detecting attackers based on
discrepancies in their touch trajectories.

In this model, attackers unknowingly undergo implicit iden-
tity verification during their interactions with the device. The
results of this verification are then reported to the operating
system, which executes the appropriate security response. We
specifically focus on authenticating the legitimate owner of a
smartphone in personal device scenarios, where the device is
typically used exclusively by its owner and not shared.

The following attack scenarios are considered in our threat
model:

• Imitation of Screen-touch Trajectories: An attacker may
observe or record a user’s typical screen interactions and
attempt to replicate their swiping patterns in order to
deceive the authentication system.

• Reduction of Swipe Counts: An attacker may deliberately
minimize the number of swipes to decrease the likeli-
hood of triggering the continuous authentication system,
thereby avoiding detection.

III. CONTINUOUS AUTHENTICATION
FRAMEWORK

The proposed continuous authentication framework, based
on screen-touch trajectories, is designed to enhance the secu-
rity of personal mobile devices. By analyzing users’ behavioral
characteristics, this framework can accurately identify the
legitimate device owner, effectively preventing unauthorized
access and financial fraud [12]. The framework consists of
three primary stages: 1) Feature collection and extraction. 2)
Feature processing and integration. 3) Continuous authentica-
tion. A detailed overview of the framework is presented in
Figure 1.

A. Feature Collection and Extraction

The uniqueness of individual screen-touch behaviors pro-
vides a novel approach to identity authentication. To lever-
age this, we employ Android Debug Bridge (ADB) wireless
technology, in combination with the built-in sensors of smart-
phones, to accurately capture users’ screen-touch trajectories.
When users unlock their phones or perform payment trans-
actions, we collect these trajectory data in real-time through
a computer console, using them as key features for identity
verification.

The data collection process proceeds as follows. First,
ensure that both the smartphone and computer are connected
to the same local area network. Next, on the computer console,
execute the ADB pairing command, input the smartphone’s IP
address, port number, and a preset pairing code to establish a
stable wireless connection. Once the connection is established,
use the ADB shell command to access the phone’s terminal
and execute the getevent -ltr command to capture real-time
event data from the phone, including screen touches, touch
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pressure, and timestamps. Finally, the collected data is orga-
nized and saved into a text file on the computer, which forms
the basis for subsequent feature extraction.

In the feature extraction phase, we focus on the spatiotem-
poral characteristics of the screen-touch trajectories, including
touch coordinates, pressure levels, and timestamps—key ele-
ments that accurately capture the uniqueness of user behavior.
These features are then represented mathematically within
a feature matrix, forming a comprehensive feature set that
encapsulates rich behavioral context. This feature set provides
robust data support for the next steps in the identity authenti-
cation process.

B. Feature Processing and Combination

After preprocessing the payment and privacy experiment
data, we extracted a five-dimensional feature matrix from the
raw data. Specifically, four key features were extracted from
the experimental data, each containing M data points. These
features are:

• The set of X-axis coordinates of touch points
{X1X2 · · ·XM}

• The set of Y-axis coordinates of touch points
{Y1Y2 · · ·YM}

• The set of touch timestamps {T1T2 · · ·TM}
• The set of touch pressure values {Pr1Pr2 · · ·PrM}
Using the X and Y coordinates of the M touch points, we

calculated the slide trajectory lengths between adjacent points
using the Euclidean distance formula. Specifically, for each
pair of consecutive points (Xn, Yn) and (Xn+1, Yn+1), the
length of screen-touch trajectory Dn is given by

Dn =
√
(Xn −Xn+1)2 + (Yn − Yn+1)2. (1)

This process generates the set of slide trajectory lengths
{D1D2 · · ·DM−1}. From this, we can compute the average
length of screen-touch trajectory D̄ as

D̄ =

∑M−1
n=1 Dn

M − 1
. (2)

Additionally, the maximum and minimum lengths of screen-
touch trajectories in this set are denoted as max(D) and min(D)
, respectively.

Next, using the timestamps of adjacent touch points and
their corresponding lengths of screen-touch trajectories, we
calculate the speed of each length of screen-touch trajectory.
Assuming the touch time of the previous point is Tn, the touch
time of the current point is Tn+1, and the length of screen-
touch trajectory is Dn, the speed Spn is given by

Spn =
Dn

(Tn+1 − Tn)
. (3)

This produces the set of length of screen-touch trajectory
speeds {Sp1Sp2 · · ·SpM−1}, and the average speed S̄p is
calculated as

S̄p =

∑M−1
n=1 Spn
M − 1

. (4)

Finally, the average touch pressure P̄ r is calculated by
averaging the set of touch pressure values

P̄ r =

∑M
n=1Prn
M

. (5)

This results in a five-dimensional feature matrix containing
the following features: D̄, min(D), max(D), S̄p, and P̄ r.

To construct a combined feature space for training, we
introduce Sn, a feature space containing N samples. Here, Fa

represents the features extracted from the payment experiment,
and Fb represents the features extracted from the privacy
experiment. The combined feature space is represented as

SN = {[Fa1 , Fb1 ] , [Fa2 , Fb2 ] , · · · , [FaN
, FbN ]} . (6)

As shown in Equation (6), the two domain feature sets of
size (5,N) are merged to form a feature matrix of size (10,N).
This process preserves a relatively small feature dimension
while maintaining the integrity of the environmental features,
providing effective input for subsequent model training.

C. Classifier Training

In smartphone systems, user authentication mechanisms can
be viewed as classification tasks. To accurately distinguish
legitimate user behavior or perform other classification tasks,
we employ four widely used training methods: KNN, SVM,
XGBoost, and Random Forest. Each of these methods is
used to construct a classification model based on screen-touch
trajectories.

For the feature matrix described above, we define SN

as the feature space containing N samples. Each sample
consists of features from both the payment experiment Fa

and the privacy experiment Fb , represented as SN =
{[Fa1 , Fb1 ] , [Fa2 , Fb2 ] , · · · , [FaN

, FbN ]} .
To train the classification models, we extract a subset Sm

containing m samples from SN , where m is an integer between
1 and N , represented as

SN = {[Fa1 , Fb1 ] , [Fa2 , Fb2 ] , · · · , [Fam , Fbm ]} . (7)

1) K-Nearest Neighbors: KNN is an instance-based learn-
ing algorithm that classifies a sample based on the
majority vote of its k closest neighbors in the feature
space. For a new sample q, its feature vector is a 10-
dimensional vector, matching the dimensionality of the
feature matrix rows. The Euclidean distance E (p, q)
between q and a sample p in Sm is calculated using

E (p, q) =

√√√√ 10∑
i=1

(pi − qi)
2 (8)

where pi and qi are the feature values of samples p
and q respectively. After computing the distances, the k
closest samples are selected, and the most frequent label
among them is assigned to q. If the label for legitimate
users is most frequent, q is classified as a legitimate user;
otherwise, it is assigned to another category.

2) Support Vector Machine: SVM classifies by finding the
optimal separating hyperplane with the largest margin
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in the feature space Sm. The separating hyperplane is
defined by the linear equation

ξTx+ s = 0 (9)

where ξ is the normal vector determining the hyper-
plane’s direction, and s is the displacement term that
determines the hyperplane’s distance from the origin.
The objective of SVM is to maximize the margin γ
between different classes, defined by

γ =
2

||ξ||
. (10)

To achieve this, we minimize the squared norm of the
normal vector

−||ξ||2

2
. (11)

While ensuring the constraints

yi(ξ
Tx+ s) ≥ 1, for i = 1, 2, . . . ,m. (12)

To ensure all samples are correctly classified.
Where yi is the label of sample i, and x is a sample in
Sm. The support vectors are those closest to the hyper-
plane and play a key role in determining its position.
Through optimization techniques such as the Lagrange
multiplier method or Sequential Minimal Optimization
(SMO), we can find the optimal hyperplane (ξ∗, s∗).
Once trained, SVM classifies new samples by evaluating

ξ∗Tx+ s∗ = 0. (13)

A positive result indicates class +1, while a negative
result indicates class 1.

3) eXtreme Gradient Boosting: XGBoost is a gradient
boosting framework that builds an ensemble of decision
trees (CART trees) in an iterative manner. The objective
function for XGBoost is defined as

L (φ) =

n∑
i=1

l (yi, ŷi) + (fi) (14)

where l (yi, ŷi) is the loss function, and (fi) is a regular-
ization term that prevents overfitting. In each iteration,
XGBoost calculates the prediction residuals and builds a
new tree to correct these residuals, refining the model’s
prediction. The prediction for a new sample is the sum
of the outputs of all decision trees in the ensemble.
XGBoost optimizes the objective function using second-
order Taylor expansion and differentiation to find the
optimal decision tree structure and leaf predictions,
minimizing the loss function until a stopping criterion is
met, such as reaching the maximum number of iterations
or achieving no improvement.

4) Random Forest: Random Forest is an ensemble learning
method that constructs multiple decision trees to im-
prove classification accuracy and robustness. It generates
multiple bootstrap samples from the original dataset SN ,
with each sample having the same number of instances
as the original dataset. These subsets, referred to as ”out-
of-bag” samples, are used to train individual decision
trees.

For each tree, Random Forest randomly selects a subset
of features at each node and identifies the best split.
The tree is grown until a stopping criterion, such as the
maximum depth or the minimum number of samples,
is met. After all trees are trained, predictions for new
samples are made through a majority voting mechanism
for classification tasks, or by averaging the outputs of
all trees for regression tasks.
Random Forest also uses out-of-bag samples for per-
formance evaluation, eliminating the need for separate
cross-validation and thus enhancing efficiency.

D. Sensitivity of Classifier Weights

The decision-making process for user authentication can
be expressed by Equation (15). Given a user with a claimed
identity I and their associated feature set [Fa, Fb], our au-
thentication system utilizes an ensemble classifier H [13]. The
decision rule is defined as follows

H (I, [fan, ffi]) ∈

ϖ1, if ω1P1 (C1 ([fa, fb]))+
ω2P2 (C2 ([fa, fb])) ≥ θ

ϖ2, otherwise
(15)

where θ is a predefined threshold. P1() and P2() are the
outputs (probabilities) of classifiers C1 and C2 , respectively.
Here, ω1 corresponds to the scenario where the claimed
identity is valid (legitimate user), and ω2 corresponds to the
scenario where the identity is invalid (attacker). Additionally,
ω1 and ω2 are weights that satisfy the constraint ω1+ω2 = 1.

IV. EXPERIMENT AND ANALYSIS

A. Data Acquisition and Performance Metrics

To evaluate the performance of our proposed authentication
mechanism under real-world smartphone usage conditions, we
employed a data collection strategy that incorporates both
positive and negative samples. Positive samples refer to data
generated by the legitimate user during authorized operations,
while negative samples are generated by unauthorized users
attempting to perform similar tasks.As presented in Table I.

Experiment 1: Payment Operations.
In the first experiment, we focused on simulating payment

operations. We invited 10 different individuals to attempt
unauthorized access on the same mobile phone. These individ-
uals were asked to perform 20 sets of payment-related tasks,
such as attempting fraudulent transactions. The data collected
from these attempts formed Subset 1. These samples represent
negative data generated by unauthorized users.Meanwhile,
one target user (the legitimate user) conducted 200 sets of
legitimate payment operations, interacting with the payment
application on the phone. These interactions involved perform-
ing real, authorized payment transactions. The data from these
operations was collected as Subset 2, representing positive data
for the legitimate user.

Experiment 2: Privacy-Related Operations.
In the second experiment, the same 10 individuals were

tasked with performing privacy-related operations on the mo-
bile phone, such as attempting to access or modify personal
information that did not belong to them. Each of the 10
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TABLE I: MAIN EXPERIMENT DATASETS

Dataset Name Feature Domain Subjects Data Acquisition

Dataset 1 Payment
400 data files

(200 from legal users; 200 from illegal users;
Both performing the same tasks)

Subset 1:
200 sets of data collected from legal users via
smartphone.
Subset 2:
200 sets of data collected from illegal users via
smartphone.

Dataset 2 Privacy
400 data files

(200 from legal users; 200 from illegal users;
Both performing the same tasks)

Subset 1:
200 sets of data collected from legal users via
smartphone.
Subset 2:
200 sets of data collected from illegal users via
smartphone.

unauthorized users again performed 20 sets of such tasks,
resulting in Subset 3, representing negative data generated by
unauthorized users in the context of privacy violations. The
target user then conducted 200 sets of privacy-related tasks on
the phone, including accessing their personal data, modifying
settings, and interacting with private information on the device.
This data formed Subset 4, representing positive data from the
legitimate user in the privacy domain.

To ensure the validity of the results, we conducted thorough
statistical analysis on the collected data. The analysis included
the following steps:

1) Data Preprocessing: The raw touch trajectory data were
cleaned to remove inconsistencies or noise. This in-
volved normalizing touch coordinates, pressure values,
and timestamps across all datasets to ensure uniformity.

2) Feature Extraction: Features such as touch coordinates,
pressure levels, trajectory length, and timestamps were
extracted for each sample. These features were used
to construct the feature matrix for each dataset, repre-
senting user behavior in both the payment and privacy
contexts.

3) Cross-Validation: To evaluate the generalization perfor-
mance of the authentication mechanism, we performed
k-fold cross-validation, where the dataset was split into
k subsets. Each subset was used for testing, while the
remaining subsets were used for training. This procedure
was repeated for each fold to minimize overfitting.

4) Performance Metrics: The following performance met-
rics were used to assess the effectiveness of the authen-
tication mechanism:

• Accuracy: The proportion of correctly classified
samples (both positive and negative) out of the total
samples.

• Precision: The proportion of true positive samples
among all samples classified as positive.

• Recall: The proportion of true positive samples
among all actual positive samples.

5) ROC Curve and AUC: The Receiver Operating Char-
acteristic (ROC) curve was used to evaluate the per-
formance of our authentication mechanism. It plots the
trade-off between the True Positive Rate (TPR), also
known as sensitivity, and the False Positive Rate (FPR),
also known as 1-specificity, at various classification

thresholds. The TPR is calculated as

TPR =
TP

(TP + FN)
(16)

where TP is the number of true positives, and FN is
the number of false negatives. The FPR is calculated
as

FPR =
FP

(FP + FN)
(17)

where FP is the number of false positives, and TN
is the number of true negatives. The ROC curve visu-
alizes the performance of the classifier across different
thresholds, showing how well it distinguishes between
legitimate and unauthorized users.
The Area Under the Curve (AUC) is a single scalar value
that quantifies the overall performance of the classifier.
It is the area under the ROC curve, which ranges from 0
to 1. A value of 1 indicates perfect classification, while
a value of 0.5 indicates random guessing. The higher
the AUC, the better the classifier is at distinguishing
between legitimate users and attackers.

In total, 800 data samples were collected across both exper-
iments, with 400 positive samples (from the legitimate user)
and 400 negative samples (from unauthorized users). These
samples were used to evaluate the authentication mechanism’s
performance using various classification models. The results
were analyzed using standard metrics such as accuracy, pre-
cision, recall, and AUC to determine the effectiveness of the
proposed authentication approach.

B. Performance Analysis of Individual Classifiers

We combine data from both the payment and privacy
experiments, processing and merging the datasets to create a
feature set of 400 attributes, comprising 200 positive and 200
negative samples. Seventy percent of the samples are allocated
to the training set, with the remaining thirty percent used for
testing. Four classifiers—KNN, SVM, XGBoost, and Random
Forest, are applied to evaluate performance on the test set. The
corresponding ROC curves, which clearly depict the TPR on
the y-axis and the FPR on the x-axis, are shown in Figure 2.

As illustrated, SVM and KNN show comparatively lower
classification performance, each achieving an AUC of 0.849.
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In contrast, Random Forest outperforms XGBoost, with re-
spective AUC values of 0.974 and 0.944, establishing Random
Forest as the most effective classifier in this study.

Fig. 2. Performance of classifiers SVM, Random Forest, KNN, XGBoost

C. Performance Analysis of Ensemble Classifiers

We combined data from both the payment and privacy
experiments, processing and merging the datasets to create a
comprehensive feature set. Utilizing these data, we evaluated
the performance of various machine learning algorithms, in-
cluding SVM, Random Forest, KNN, and XGBoost, as well
as their combinations. The ROC curves generated from these
evaluations, which clearly depict the TPR against the FPR,
are presented in the accompanying Figure 3. Each point on
the ROC curves represents a specific model, with the AUC
serving as a metric of classification performance.

In the Figure 3, the x-axis represents the FPR and the y-
axis represents the TPR. As illustrated, the ensemble classifier
combining Random Forest and KNN achieved the best clas-
sification performance, with an AUC of 0.9660. This aligns
with the individual classifier results, where Random Forest
and KNN, when used in combination, outperformed the other
classifiers.

D. Sensitivity to Classifier Weights

The experiments conducted in Sections IV-B and IV-
C demonstrate that the best classification performance is
achieved through the weighted combination of Random Forest
and KNN. To further investigate the optimal results, we
compared classifier performance across different values of ω4

within the range [0,1]. To minimize result fluctuations for
specific weights, we conducted 10 trials for each ω4 value,
averaged the outcomes, and present the results in Figure 4.

Fig. 3. Performance of ensemble classifiers (the weights of the two
classifiers are 0.5)

As shown in Figure 4, the x-axis represents the weight
assigned to the Random Forest classifier (ω1), ranging from 0
to 1. Consequently, the weight assigned to the KNN classifier
(ω4) decreases from 1 to 0 as ω1 increases. The y-axis indicates
the AUC values, ranging from approximately 0.86 to 0.98.
When ω4 = 0.2 (i.e., ω1 = 0.8), the decision results exhibit
significant fluctuations. However, when ω4 = 0.8 (i.e., ω1 =
0.2), the ensemble classifier combining Random Forest and
KNN performs the best, with a stable AUC of 0.9776. This
performance is superior to that of either Random Forest or
KNN as standalone classifiers.

Fig. 4. The weight allocation of classifiers impacts the performance of the
ensemble classifier Random Forest +KNN



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 3, DECEMBER 2024 108

V. CONCLUSION

This paper presents a continuous authentication system
based on screen touch trajectories to strengthen smartphone
security, with a particular focus on safeguarding mobile pay-
ments and personal privacy. By addressing the limitations of
traditional lock screens and password-based authentication,
our approach analyzes user behavior in real time to verify
device ownership, effectively preventing unauthorized access
and financial fraud. Using machine learning algorithms, the
system captures unique swipe patterns, triggering security
measures when detecting suspicious behavior. Experimental
results show that the Random Forest classifier outperforms
other models in both accuracy and response time.

Additionally, we explore integrating this continuous au-
thentication system within smartphone security frameworks to
enhance broader network protection. A key innovation of this
study lies in applying biometric identification techniques to
the analysis of the trajectory of the touchscreen, providing an
added layer of security for mobile payments. By continuously
monitoring screen-touch behavior, our system ensures secure
access without compromising user experience.
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