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Abstract 

Coronary Heart Disease (CHD) is reported to be one of the world’s deadliest diseases.
Early prediction or detection and diagnosis of the disease can help prevent, cure, and
reduce the damage it could cause. Artificial intelligent techniques such as Machine
Learning and Deep Learning have proven useful for the early detection and prediction
of disease. However, issues of irrelevant and redundant features in open datasets have
contributed to low classification accuracy rates and high misclassification rates. This 
leaves a gap for continuous approaches for smart feature selection and high-performing 
models in the field for better results. This study investigates the impacts of cardiologist-
inspired datasets and PCA dimensionality reduction techniques on the performance of 
CHD prediction. The compared results show that while PCA improves the CHD
prediction accuracy for datasets obtained from cardiologists, there exist no statistically
significant differences in the efficacy of the PCA method for CHD classification when 
applied to open datasets, however, MLP and LSTM offer promising results. The results
further indicated that the effectiveness of expert-based feature selection techniques on
CHD classification is relatively stable when compared with open-source datasets. 
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1. Introduction  

Coronary heart disease (CHD) is a leading cause of death worldwide, and its early 

detection and prediction are crucial for the effective treatment and management of the 

disease [1]. The World Health Organization (2023) reports that in 2016, 

cardiovascular diseases, including CHD, accounted for 31% of all deaths globally, 

with an estimated 17.9 million deaths. CHD is a primary cause of loss of lives globally 

and is more prevalent than other leading causes of death such as cancer, respiratory 

diseases, lower respiratory infections, stroke, diabetes, kidney disease, and suicide. 

Cardiovascular diseases remain a key health concern and addressing CHD is critical 

in reducing the global burden of death and disease. CHD is characterized by the build-

up of plaque in the coronary arteries, which can lead to reduced blood flow to the 

heart and eventually cause a heart attack [3]. The prediction of CHD is challenging 

due to the complex nature of the disease, as well as the presence of multiple risk 

factors, such as age, gender, genetics, lifestyle, and comorbidities [4]. Traditionally, 

CHD risk prediction has been based on classical statistical methods, such as logistic 

regression and decision trees. However, these methods have limitations when dealing 

with large and complex data, and they often rely on the assumption of linear 

relationships between the predictor variables and the outcome. Machine learning (ML) 

approaches have been advocated in recent years as a solution to overcome these 

constraints and increase the accuracy of CHD risk prediction [5]. Deep learning is a 

type of ML that has produced outstanding findings in various fields, such as image 

and speech recognition, natural language processing, and bioinformatics. Deep 

learning models, such as Convolutional Neural Networks (CNNs) and Long-Short 

Term Memory (LSTMs), stand predominantly effective in handling composite and 

huge data. These models are capable of automatically extracting relevant features 

from the data, and they can handle non-sequential relationships between the predictor 

and outcome variables [6]. 

The problem of high dimensionality in machine learning occurs when datasets contain 

vast amounts of data that cannot be easily visualized, a phenomenon known as the 

curse of dimensionality. This can lead to high memory requirements and potential 

overfitting when processing the data. To address this issue, weighting features can be 

used to reduce redundancy and processing time. Various feature engineering and 

selection techniques can also be applied to decrease the dimensionality of the dataset 

by removing unimportant data. The questions guiding the direction of the current 

study are as follows: RQ1: How do expert-based features perform when compared to 

transformed features and existing methods? And RQ2: How do Cardiologists’ CHD 

data compare to the open-source data? Prior studies in disease classification [5], have 

demonstrated that disease prediction models often exhibit low accuracy and high 
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misclassification rates in classification due to the large number of features used in the 

training and classification stages. Similarly, according to Rahim et al. (2021) the 

success of a prediction model is strongly dependent on how effectively the features 

are generated and picked for the models. Therefore, one must be aware of the 

redundant and irrelevant features that result in a higher dimension in datasets (i.e., 

“curse of dimensionality”). To overcome the challenge, extant research [3], [8] have 

used different feature-selection strategies prior to training ML models to increase 

model performance. This study offers the following additions to the CHD and disease 

prediction literature: (1) Expert-based features for CHD predictions are provided; (2) 

We provide an improved prediction model features based on selected smart features 

and primary dataset; (3) We show the effect of dimensionality reduction in the 

datasets used for CHD prediction models. 

This study uses deep learning models for CHD prediction. We compare the 

performance of different deep learning models, including CNN, MLP, and LSTMs, 

with statistically dimensionality-improved methods, such as Principal Component 

Analysis (PCA). The study will be based on a diverse dataset that includes various 

demographic, lifestyle, and clinical variables collected from cardiologists, as well as 

laboratory test results and open-source data. We utilize a clinical dataset of which the 

features are carefully selected based on advice received from cardiologists and 

compare the results with open datasets. For the open dataset that has redundant and 

irrelevant features as described in the literature, we use the dimensionality reduction 

method of feature selection to transform the data for appropriate features for better 

prediction. The results of this study will provide valuable insights into the potential 

of deep learning models for CHD risk prediction, and they will help to inform clinical 

decision-making and improve the early detection and management of CHD. The study 

will also contribute to the development of more accurate and efficient CHD risk 

prediction tools, which will ultimately lead to better health outcomes for patients. In 

the next section, we provide a comprehensive overview of the existing literature on 

CHD risk prediction. We then describe the methods and materials used in this study, 

including the data sources, the pre-processing steps, the deep learning models used, 

and the evaluation metrics. Finally, we will present the results, discussions and the 

consequences for clinical practice and impending studies. 

2. Related Work 

In this section, we survey the state-of-the-art in heart disease prediction, emphasizing 

the significance of this problem. Accurate prediction of heart disease risk is vital, not 

only for the medical profession but also for individuals. Early detection of risk factors 

through prediction can raise awareness and promote preventative measures, 
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ultimately leading to better health outcomes. We, therefore, review the various 

techniques and models that researchers have employed to predict heart disease and 

present a comprehensive impression of the present status of the field. Katarya and 

Kumar (2020) conducted a comparative study and analysis of machine learning 

techniques for predicting heart diseases. The authors evaluated algorithms such as 

Naïve Bayes, Neural Networks, and Decision Trees and found that the model 

performance can be impacted by the number of features used. The researchers also 

developed a prototype system which leveraged data mining methods to make 

predictions. The prototype considered various heart disease factors and used 

classification matrices to assess the accuracy of the predictions. The model has the 

potential to provide cost-effective training and learning opportunities for medical 

students. Another study used Artificial Neural Network (ANN) as a classification 

algorithm. The authors utilized Principal Component Analysis (PCA) and chi-square 

as feature subset selection methods for classifying heart disease. The findings 

indicated a 96.2% accuracy rate when ANN with PCA and chi-square were utilized, 

compared to an accuracy of 87.3% using J48, and 77.4% using Naive Bayes. Using a 

Convolutional Neural Network (CNN) technique, Dutta et al. (2019) evaluated the 

efficiency of the CNN model compared to traditional machine learning algorithms 

and found that it outperformed other methods in terms of accuracy and computation 

time. The proposed CNN model effectively predicted CHD and could potentially be 

used for early detection and diagnosis. A most recent review by Kutiame et al. (2022) 

focused on the application of ML algorithms in the prediction of CHD. Deep neural 

networks were poorly represented in the literature. The best-performing algorithms 

identified in the study were Deep Neural Network (DNN), Logistic Regression (LR), 

K-Nearest Neighbors (KNN), Support Vector Machine (SVM), boosting algorithms, 

and K-Means. It is worth noting that most of the empirical articles reviewed did not 

mention the use of dimensionality reduction techniques which is a promising aspect 

of machine learning.  

Although CHD prediction using ML systems is studied extensively, several 

challenges persist unresolved. The use of the expert-based feature and clinical dataset 

is limited [5], [11], [12]. Such data should be employed in future studies to strengthen 

the approach to predicting real-world CHDs. Data-based features for CHD prediction 

have limitations such as missing data, lack of relevant information, and varying 

quality of data in EHRs. These limitations can affect the accuracy of CHD predictions. 

Cardiologists' assessments are a valuable source of information for predicting CHD 

due to their expertise and personalized approach. Cardiologists have extensive 

training in diagnosing and treating heart disease and take into account the patient's 

complete medical history, overall health, and specific symptoms when making a 
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prediction. The use of dimensionality reduction techniques on CHD datasets is an 

area that has received relatively limited attention in the literature. Dimensionality 

reduction techniques, such as principal component analysis (PCA) and linear 

discriminant analysis (LDA), can be used to reduce the complexity of CHD datasets 

by transforming high-dimensional data into a lower-dimensional representation. This 

can have several benefits for CHD prediction, including improving the interpretability 

and visualization of the data, reducing noise and outliers, and improving the 

performance of predictive models. The gap in the field is that there is limited research 

[13], [14] that has specifically investigated the use of dimensionality reduction 

techniques on CHD datasets. There is a need for more systematic evaluations of the 

potential benefits of using these techniques on CHD datasets, and a need to determine 

the optimal methods for using these techniques to improve CHD prediction accuracy. 

Furthermore, there is a need to consider the potential limitations and drawbacks of 

using these techniques, such as the loss of information, and to determine the trade-

offs between the benefits and limitations. 

3. Materials and Methods 

3.1. Data Description 

As mentioned earlier, this study employs datasets from primary (cardiologists) and 

secondary sources to draw comparative conclusions between experts and academia. 

The primary dataset consisted of Clinical information on coronary heart disease 

patients obtained from the c located in Accra, Ghana. The dataset contained 9090 

samples of which 8171 are CHD patients and 919 were without the disease. The 

obtained information includes the following attributes; blood pressure, chest pain type, 

age, fasting blood sugar, sex, maximum heart rate achieved, age, serum cholesterol in 

mg/dl, smoking status, and resting blood pressure. According to the experts, the 

clinical variables were assessed as predictors of CHD. The dataset given had a target 

column that categorized into two classes: 1 meant the presence of heart disease and 0 

indicated the absence of heart disease. The important risk factors that were analyzed 

in this dataset were displayed in Table 1, which included various risk factors and their 

respective values along with their encoded values enclosed in brackets. These 

encoded values were used as input to the proposed framework, and the risk factors 

were determined based on expert opinions. Some of these risk factors were also 

commonly known by the general public. 

The secondary dataset used for our investigation is the “Heart Disease Health 

Indicators Dataset (HDI)” which was obtained from Kaggle (a machine learning 

dataset repository). The dataset is a cleaned version made available from the 

Behavioural Risk Factor Surveillance System 2015 (BRFSS 2015) dataset. The 
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Behavioral Risk Factor Surveillance System (BRFSS) is a telephone survey system 

in the United States that collects data on health-related risk behaviors, chronic health 

conditions, and use of preventive services among U.S. residents. It was established in 

1984 with 15 states and now collects data in all 50 states, the District of Columbia, 

and three U.S. territories. With over 400,000 adult interviews conducted annually, it 

is the largest continuously conducted health survey system globally. The extensive 

data covers various factors, including Age, Environment and Occupation, Family 

History and Genetics, Lifestyle Habits, Other Medical Conditions, Race or Ethnicity, 

and Sex, providing clinicians with information to diagnose coronary heart disease. 

The version of BRFSS adopted for this study includes CHD predictive variables, 

which aids in diagnosing suspected patients before carrying out bloodwork for 

detection. The study's sample size comprises 22 attributes and 253,680 instances. 

Table 1 Datasets and corresponding encodings for the primary and secondary dataset 
 

Clinical Dataset Open Dataset 

SNo. Risk Factors Values Risk Factors Values 

1 Sex Male (1), Female (0) Sex Male (1), Female (0) 

2 Age (years) 20-34 (−2), 35–50 (−1), 51–60 (0), 
61-79 (1), >79 (2) 

Age  20-34 (−2), 35–50 (−1), 51–60 (0), 
61-79 (1), >79 (2) 

3 Blood 
Cholesterol 

Below 200 mg/dL - Low (−1) 
200–239 mg/dL - Normal (0) 
240 mg/dL and above - High (1) 

CholCheck "Below 200 mg/dL - Low (−1) 
200–239 mg/dL - Normal (0) 
240 mg/dL and above - High (1)” 

4 Blood 
Pressure 

“Below 120 mm Hg- Low (−1) 
120–139 mm Hg- Normal (0) 
Above 139 mm Hg- High (1)” 

HighBP “Below 120 mm Hg- Low (−1) 
120–139 mm Hg- Normal (0) 
Above 139 mm Hg- High (1)” 

5 Hereditary Family Member diagnosed with HD -
Yes (1) Otherwise –No (0) 

Income Family Member diagnosed with HD -Yes
(1) Otherwise –No (0) 

6 Smoking Yes (1) or No (0) Smoker Yes (1) or No (0) 

7 Alcohol Intake Yes (1) or No (0) HvyAlcoholConsump Yes (1) or No (0) 

8 Physical Activity Low (−1), Normal (0) or High (1) PhysActivity Low (−1), Normal (0) or High (1) 

9 Diabetes Yes (1) or No (0) Diabetes Yes (1) or No (0) 

10 Diet Poor (−1), Normal (0) or Good (1) Fruits Poor (−1), Normal (0) or Good (1) 

11 Obesity Yes (1) or No (0) High BMI Yes (1) or No (0) 

12 Stress Yes (1) or No (0) HighChol Yes (1) or No (0) 

13   AnyHealthcare Yes (1) or No (0) 

14   NoDocbcCost Yes (1) or No (0) 

15   GenHlth Yes (1) or No (0) 

16   MentHlth Yes (1) or No (0) 
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Clinical Dataset Open Dataset 

SNo. Risk Factors Values Risk Factors Values 

17   PhysHlth Yes (1) or No (0) 

18   DiffWalk Yes (1) or No (0) 

19   Veggies Yes (1) or No (0) 

20   Stroke Yes (1) or No (0) 

21   Education Yes (1) or No (0) 

Output Heart Disease Yes (1) or No (0) Output (heart disease) Yes (1) or No (0) 

3.2. Data Pre-processing 

Initially, the medical data is preprocessed in two ways, namely missing value removal 

and data normalisation. The data value, most of which were continuous variables (e.g., 

age, income, BP, etc.,) were further transformed for the classification task. The 

tabular data assisted in the efficient detection of patterns related to heart diseases. The 

research paper introduced a successful approach for recognizing and classifying CHD 

in clinical and open datasets. The technique involves several preprocessing steps, 

including eliminating missing values and normalizing the clinical dataset. The next 

step is to reduce the dataset's dimensionality by applying the PCA method to select 

the best features. To achieve better improve classification accuracy and reduce 

processing complexity, we utilized the ranker method technique in conjunction with 

PCA to produce the most significant set of features. In the end, four processed datasets 

(datasets transformed with PCA) were used for this study. Data used for the analysis 

consisted of Original CHD data collected from the Korle Bu Teaching Hospital based 

on features provided by cardiologists; a transformed version of the Korle Bu data 

using PCA; an HDI dataset from Kaggle; and a transformed version of the HDI 

dataset from Kaggle. 

The main focus of this study was to investigate the impact smart feature selection 

techniques have on the performance of CHD prediction. Dimensionality reduction is 

chosen for this objective. Dimension reduction transforms the data from a high-

dimensional state to a low one without compromising the originality of the original 

dataset [15]. Dimensionality reduction is used for boosting prediction performance, 

and reducing computational resource requirements, and time. In this study, we chose 

the principal component analysis method of dimensionality reduction [16]. 

3.3. Principal Component Analysis 

The principal component analysis is a popular dimensionality reduction technique. 

Using linear procedures, PCA decreases the scale of raw data by putting it into a 
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smaller space [17]. To evaluate a data set, PCA requires multiple processes, including 

computing the linear combination, determining the eigenvectors and eigenvalues 

from the covariance matrix, and selecting eigenvectors according to the size of their 

associated eigenvalues [16]. Once the eigenvectors have been selected and ranked 

based on their eigenvalues, the top eigenvectors are considered the principal 

components of the dataset. The initial dimensionality of the dataset limits the number 

of principle components that may be produced by PCA, which means that the 

maximum number of principal components cannot be greater than the amount of 

variables or features in the dataset. Ideally, increasing the number of features should 

improve or lead to better predictive performance [18]. However, in practice, a large 

number of features affect the performance of machine learning algorithms [15]. PCA 

is used to increase the performance of the models by getting rid of correlated variables 

that do not affect the models [3]. 

4. Prediction Technique 

CHD prediction is a classification problem. The objective of our predictive model is 

to classify patients according to whether they may have CHD or not. In this study, 

three deep learning algorithms namely; Convolutional Neural Network (CNN), Long-

Short-Term (LSTM), and Multilayer Perceptron (MLP) are employed for this task. 

These algorithms are further discussed in the next subsection. 

5. Deep Learning Algorithms Applied 

5.1. Multilayer Perceptron (MLP) 

Multilayer Perceptron (MLP) is considered a basic form of deep learning. Deep 

learning refers to a subfield of machine learning that utilizes deep neural networks, 

typically with many hidden layers, to model complex patterns in data. A Multilayer 

Perceptron (MLP) is a type of feedforward artificial neural network. It is comprised 

of one or more hidden layers of neurons connected to an input layer and an output 

layer, where the data flows in only one direction, from input to output, without 

looping back. The MLP's hyperparameters, namely the number of hidden layers and 

hidden neurons, play a crucial role in the model's performance and must be selected 

with care [19]. Cross-validation techniques are commonly employed to determine the 

optimal values for these hyperparameters. Additionally, activation functions (f) are 

used for the hidden and output neurons in MLP networks. For a binary classification 

problem, the sigmoid activation function is often used, as it maps the output to a 

probability between 0 and 1, representing the confidence of the positive class. In the 

hidden layers, ReLU is often a preferred activation function due to its simplicity, 

efficiency, and ease of implementation [20]. MLPs can be used for various tasks such 
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as classification, regression, and clustering. They are trained using a supervised 

learning approach and their weights are adjusted during the training process to 

minimize the prediction error. The basic building block of an MLP is the artificial 

neuron or perceptron, which receives inputs, weights them, and applies an activation 

function to produce an output. The formula for a single neuron is given by: y = 

activation (Σw_i * x_i + b) where x_i are the inputs, w_i are the weights, b is the bias, 

Σ denotes the sum over all inputs, and activation is the activation function [19]. MLP 

can handle large datasets with a high number of input features, making it suitable for 

problems with high-dimensional data, such as CAD prediction, where numerous 

medical parameters can be used as input features. MLP can learn complex 

representations of the data through multiple hidden layers, allowing it to capture 

intricate patterns in the data that are relevant to CAD prediction. However, the 

performance of MLP for any prediction is also dependent on the quality and 

representativeness of the data, the choice of hyperparameters, and the architecture of 

the network. Therefore, careful consideration of these factors is important for 

achieving good performance with MLP in CAD prediction. 

5.2. Convolutional Neural Network (CNN) 

Convolutional Neural Networks (CNNs) are a deep learning neural network category 

that is frequently utilized in computer vision jobs, like image categorization, 

identifying objects, and semantic segmentation [21]. They are designed to 

automatically and adaptively learn hierarchical representations of image features, 

from edges and textures to object parts and entire objects. The fundamental 

framework of CNN includes several layers, which comprise convolutional layers, 

activation layers like ReLU, pooling layers, and fully connected layers. In the 

convolutional layer, a set of filters, also known as kernels, are used to detect specific 

features in the input image [22]. The filters are slid across the image in a process 

known as convolution, producing a set of feature maps that capture the presence of 

different features in the image. The function of the pooling layer is to decrease the 

spatial dimensions of the feature maps while still preserving the crucial information. 

This helps to reduce the computational cost of processing the data and also reduces 

overfitting by removing some of the less important information. The fully connected 

layer, also known as the dense layer, is used to make the final prediction based on the 

feature maps produced by the previous layers [23]. In image classification tasks, this 

layer outputs a probability distribution over the possible classes, and the class with 

the highest probability is the final prediction. 

5.3. Long-Short-Term-Memory (LSTM) 

LSTM make predictions based on sequential data, such as time series data, natural 
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language processing, and speech recognition. The primary advantage of LSTMs over 

traditional RNNs is their ability to effectively learn and retain long-term dependencies 

in sequential data [24]. LSTMs have a memory unit that can retain information over 

a longer period, which helps to prevent the vanishing gradient problem faced by 

traditional RNNs. LSTMs achieve this by using gates, which control the flow of 

information into and out of the memory unit. The input gate regulates the information 

that is added to the memory unit, the forget gate determines which information to 

discard, and the output gate decides which information to output. A typical LSTM 

network consists of a series of LSTM cells, each of which contains an input gate, a 

forget gate, a memory cell, and an output gate. The input to the LSTM network is fed 

through these cells, and the outputs from one cell are used as inputs to the next. The 

hidden state and cell state are updated based on the input, forget, and output gate 

values, and are passed on to the next cell. The finalized network is generated based 

on the hidden state of the last cell. This structure allows the LSTM network to 

maintain a memory of past inputs, which is crucial for processing sequential data. The 

gates in the cells allow the network to regulate the flow of information, effectively 

deciding what information to retain and what information to discard over time [24]. 

6. Model Construction 

In this section, the model utilized for the experiment is outlined. The design of the 

model can be visualized in Figure 1. The steps involved in the experiment can be 

summarized as follows: In this study, we explored the use of a Convolutional Neural 

Network (CNN) for a classification task involving numerical data. To this end, we 

first preprocessed the numerical data to ensure it was in the appropriate format for use 

with a neural network. Specifically, we standardized the input features to have zero 

mean and unit variance. This step is important as it can improve the convergence and 

stability of the network during training, as well as its generalization performance. 

Next, we designed the architecture of CNN for numerical data. Unlike the architecture 

used for image data, which typically includes convolutional and pooling layers, the 

architecture for numerical data consisted of a series of fully connected layers. Further 

information on the hyperparameter tuning is presented in table 2. For MLP the 

numerical dataset was loaded into Weka and divided into training and test sets. The 

features were standardized to have zero mean and unit variance. 

The architecture of the MLP was set as follows: (a) input layers with neurons equal 

to the number of features in the dataset, (b) two hidden layers with 128 and 64 neurons, 

respectively, and ReLU activation, (c) a dropout layer with a rate of 0.3 to reduce 

overfitting, (d) A layer at the output stage that uses softmax activation and has the 

same number of neurons as the number of classes present in the dataset. The model 
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was trained using the Stochastic Gradient Descent optimization algorithm with a 

learning rate of 0.01 and a batch size of 128 for 200 epochs. The architecture of the 

LSTM was set as follows: (a) an input layer with the number of neurons equal to the 

number of features in the dataset, (b) an LSTM layer with 128 neurons, (c) a dropout 

layer with a rate of 0.2 to reduce overfitting, (d) a fully connected layer with 64 

neurons and ReLU activation. The model was trained using the Adam optimization 

algorithm with a learning rate of 0.005 and a batch size of 64 for 100 epochs. Further 

details on the parameter tunings of the models are shown in table 2. 

Table 2 Models and their Parameter Tuning techniques 

Model Parameters 
CNN hidden_layer_size = a, activation = ‘relu’, gate activation = ‘sigmoid, 

learning_rate = ‘0.3 momentum = 0.2, number of epoch= 10, 
batchsize=100 

LSTM hidden_layer_size = a, activation = ‘relu’, gate activation = ‘sigmoid, 
learning_rate = ‘0.3 momentum = 0.2, number of epoch= 10, 
batchsize=100 

MLP hidden_layer_size = a, activation = ‘relu’ learning rate = ‘0.3 
momentum = 0.2 optimizer = ‘adam’, batchsize=100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Model construction architecture 
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7. Performance Measures 

Table 2 shows the performance measures utilized to assess the efficacy of the 

suggested technique. The accuracy of the proposed deep learning models is defined 

as the correct prediction of the instances. True positives (TP) are positive instances 

that are accurately classified as positive, while false negatives (FN) are positive 

instances that are incorrectly labelled as negative. False positive (FP) refers to cases 

in which there is no disease but the result is projected to be positive. True negative 

(TN) refers to negative cases in which the disease does not exist in the individual. 

Accuracy = (TP+TN)/(TP+TN+FP+FN). Precision defines what proportion of 

positive predictions were correct. The formula TP/(TP+FP) is used to determine 

precision. Recall is a measure of the proportion of true positive (TP) cases that are 

correctly identified by the model out of all actual positive (TP + FN) cases. In other 

words, it is the ratio of the number of correctly identified positive cases to the tot. The 

formular TP/(TP+FN) is used for computing recall. F1-score also syndicates precision 

and recalls into a single measure. Mathematically it is computed as F1-score = 2 * 

(precision * recall) / (precision + recall). 

8. Results 

The study used two different methods to analyze datasets, involving the application 

of various deep learning algorithms and PCA to compare differences. The first 

method directly classified the normal dataset obtained from the Korle-Bu Teaching 

Hospital and the HDI open dataset, while the second method involved feature 

selection and did not involve outlier detection. The results were promising, and in the 

second method, the dataset was normalized to account for outliers and feature 

selection. The study presents tables and figures that display the various results, which 

are discussed in the discussion section of the report. 

Table 3 KORLEBU-DATA ORIGNAL ANALYSIS WITHOUT PCA 

Model Accuracy TP  FP Prec Rec F-Mea. MCC ROC  PRC  

CNN 87.86 0.879 0.769 0.848 0.879 0.86 0.151 0.728 0.875 

LSTM 89.802 0.898 0.893 0.839 0.898 0.852 0.031 0.764 0.89 

MLP 89.3179 0.893 0.854 0.844 0.893 0.857 0.094 0.732 0.882 

Table 4 KORLEBU-DATA ANALYSIS WITH PCA 

Model Accuracy TP  FP Prec Rec F-Mea. MCC ROC  PRC  

CNN 89.714 0.897 0.886 0.841 0.897 0.853 0.05 0.76 0.889 

LSTM 89.802 0.898 0.897 0.825 0.898 0.851 0.008 0.764 0.889 

MLP 89.923 0.899 0.891 0.871 0.899 0.853 0.065 0.756 0.889 
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Table 5 OPEN-DATA ORIGINAL ANALYSIS WITHOUT PCA 

Model Accuracy TP  FP Prec Rec F-Mea. MCC ROC  PRC  

CNN 91.7001 0.917 0.869 0.882 0.917 0.886 0.131 0.56 0.863 

LSTM 91.6857 0.917 0.853 0.884 0.917 0.888 0.153 0.787 0.916 

MLP 91.9004 0.919 0.862 0.891 0.919 0.888 0.162 0.772 0.913 

Table 6 OPEN-DATA ANALYSIS WITH PCA 

Model Accuracy TP  FP Prec Rec F-Mea. MCC ROC  PRC  

CNN 90.7985 0.908 0.756 0.884 0.908 0.893 0.213 0.785 0.914 

LSTM 92.0149 0.92 0.878 0.901 0.92 0.887 0.158 0.793 0.919 

MLP 91.929 0.919 0.87 0.893 0.919 0.887 0.155 0.783 0.916 

In every classification model, the confusion matrix offers two types of errors, which 

is false positive and false negatives. A good model should have smaller or zero values 

for these two types of errors. A higher value for these predicted values leads to 

misclassification of the predictive model. True positive (TP) indicates the number of 

samples that were correctly predicted as having CHD. False negative (FN) indicates 

the number of samples that the model predicted as not having CHD but were actually 

positive. A high FN count implies that the model is not able to identify CHD patients 

correctly. False positive (FP) indicates the number of samples that the model 

predicted as having CHD but were actually negative. A high FP count implies that 

the model is predicting CHD for samples that do not have CHD. For a CHD prediction 

model, a high TP count is considered good, as it indicates that the model is correctly 

identifying patients with CHD. A low FN count is also considered good, as it means 

that the model is not missing any CHD cases. On the other hand, a low FP count is 

considered good, as it means that the model is not making false predictions of CHD 

in healthy individuals. From figure 2 in the Korle Bu dataset, given the sample size 

of 9090, true positive (TP) count of 8141, false negative (FN) count of 905, false 

positive (FP) count of 30, and true negative (TN) count of 14. In this case, the model 

has correctly predicted 8141 samples as having CHD. From figure 3, the LSTM 

correctly classified 8166 of the instances as healthy and not having CHD and 8 

instances as CHD patients. In figure 7, the PCA_CNN model built on the Korlebu 

hospital data has a higher value for false positives. The PCA_ LSTM MODEL built 

on the korlebu data in figure 5 achieved the worst false negatives as it incorrectly 

classified 913 instances of CHD patients as having no CHD. Generally, from figures 

4, 6, 8, 9, 10, 11, 12, and 13, the models achieved a relatively good count of FPs, FNs, 

TN, and TP. 
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Figure 2. ORIGINAL KORLEBU DATA: CNN MODEL 

 

 

 

 

 

 

 

Figure 3. ORIGINAL KORLEBU DATA: LSTM MODEL 

 

 

 

 

 

 

 

 

Figure 4. ORIGINAL KORLEBU DATA: MLP MODEL 
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Figure 5. KORLEBU DATA: PCA_ LSTM MODEL 

 

 

 

 

 

 

 

 

Figure 6. KORLEBU DATA: PCA_ MLP MODEL 

 

 

 

 

 

 

 

 

Figure 7. KORLEBU DATA: PCA_ CNN MODEL 
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Figure 8. Original Open Data_ CNN MODEL 

 

 

 

 

 

 

 

 

Figure 9. Original Open Data_ LSTM MODE 

 

 

 

 

 

 

 

 

Figure 10. Original Open Data_ MLP MODEL 
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Figure 11. PCA Open Data_ LSTM MODEL 

 

 

 

 

 

 

 

 

Figure 12. PCA Open Data_ MLP MODEL 

 

 

 

 

 

 

 

 

 

Figure 13. PCA Open Data_ CNN MODEL 
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Figure 14. Performance of Original Open data vs PCA version 

 

 

 

 

 

 

 

 

Figure 15. Performance of Original Korlebu data vs PCA version 

 

 

 

 

 

 

 

Figure 16. Performance of Original Korlebu vs Open data 
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Figure 17. Performance of PCA Version of Korlebu and PCA Open data 

9. Discussion 

A modern approach to solving classification problems involves the use of artificial 

intelligence for intelligent data processing. This is achieved by solving optimization 

tasks. This research suggests that deep learning can be used to create a highly accurate 

and effective model for predicting CHD which has been seen in existing studies [25], 

[26]. The study aimed to achieve two objectives. The first objective was to investigate 

the impact of datasets obtained from cardiologists and open-source datasets on the 

accuracy of diagnosing coronary heart disease (CHD). The second objective was to 

compare the effectiveness of using PCA as a method to reduce spatial dimensions to 

assess the accuracy of CHD diagnosis. The achieved results present detailed insights 

worthy of discussion. For the dataset obtained from cardiologists, the results show 

that when PCA was not applied, the LSTM model had the highest accuracy (89.802%), 

true positive rate (0.898), and recall (0.852) among the three models, followed by the 

MLP model with an accuracy of 89.3179%, true positive rate of 0.893, and recall of 

0.857. The CNN model had the lowest accuracy (87.86%), true positive rate (0.879), 

and recall (0.86) among the three models. The precision of the models ranged from 

0.844 to 0.848, indicating that the models had relatively high precision in their 

diagnostic predictions. The F-measure scores ranged from 0.86 to 0.852, indicating 

that the models had reasonably good performance in terms of balancing precision and 

recall. The MCC scores ranged from 0.031 to 0.151, suggesting that the models had 

a moderate to weak correlation with the ground truth. The ROC area and PRC area 

values ranged from 0.728 to 0.764 and 0.875 to 0.882, respectively. These values 

indicate the overall performance of the models in terms of balancing the true positive 

rate and false positive rate and how well they rank the positive samples, respectively. 



Solomon Kutiame et al. 
 

 

DOI: 10.33969/AIS.2024060102 30 Journal of Artificial Intelligence and Systems 

 

The updated results provided in the second set of data after applying PCA are shown 

in table 3. The results show that the accuracy of all three models improved compared 

to the previous results when PCA was not applied. The MLP model had the highest 

accuracy (89.923%), followed by the LSTM model (89.802%) and the CNN model 

(89.714%). The true positive rate for all three models remains relatively high, ranging 

from 0.897 to 0.899. The false positive rate for all models has decreased compared to 

the previous results, with rates ranging from 0.886 to 0.891. The precision of the 

models ranges from 0.825 to 0.871, indicating that the models have reasonably high 

precision in their diagnostic predictions. The F-measure scores range from 0.853 to 

0.899, indicating that the models have good performance in terms of balancing 

precision and recall. The MCC scores range from 0.008 to 0.065, indicating that the 

models have a low to moderate correlation with the ground truth. The ROC area and 

PRC area values are similar for all three models, ranging from 0.756 to 0.764 and 

0.889 for both measures, respectively. In sum, applying PCA relatively improved the 

accuracy of all three models, with the MLP model showing the highest accuracy and 

precision. These findings suggest that using PCA as a dimensionality reduction 

technique can be an effective way to improve the accuracy of CHD diagnosis using 

deep learning models. However, it's important to note that the effectiveness of PCA, 

as with any dimensionality reduction technique, depends on the specific 

characteristics of the dataset and the machine learning models used. Therefore, it's 

important to evaluate the impact of dimensionality reduction techniques on model 

performance on a case-by-case or database. Applying PCA to the open dataset used 

to predict CHD had a negative impact on the accuracy of the CNN model but had no 

significant impact on the accuracy of the LSTM and MLP models. The accuracy of 

the CNN model decreased from 91.7% to 90.8% when PCA was applied, while the 

accuracy of the LSTM and MLP models remained relatively stable, ranging from 91.9% 

to 92.0%. Additionally, the other performance metrics were also relatively stable 

across the two sets of results for the LSTM and MLP models. However, the CNN 

model had a slightly lower TP Rate and a higher FP Rate when PCA was applied, 

which may have contributed to the decrease in accuracy.  

Conversely, it has been proven in the prior literature [10], [27] that the PCA 

dimensionality reduction method is efficient in improving the accuracy of diagnosing 

various types of diseases. In the current study, no statistically significant differences 

were found in the efficacy of the PCA method for CHD classification. The results 

also indicate that the selected features/terms by cardiologists (experts) did not 

outperform the performance demonstrated when the open dataset and the PCA 

extracted feature model. The evaluation metrics used in the study revealed only minor 

discrepancies of the models in terms of performance. This further supports the 
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conclusions drawn in previous studies. Consequently, based on the results presented 

in this research, it can be inferred that: The effectiveness of expert-based features on 

CHD prediction is relatively stable when compared with open-source datasets. 

10. Conclusion 

The study aimed to achieve two objectives. The first objective was to investigate the 

impact of datasets obtained from cardiologists and open-source datasets on the 

accuracy of diagnosing coronary heart disease (CHD). The second objective was to 

compare the effectiveness of using PCA as a dimensionality reduction technique to 

assess the accuracy of CHD diagnosis. The results show that PCA improves the CHD 

prediction accuracy for datasets obtained from cardiologists. The effectiveness of 

expert-based feature selection techniques on CHD classification is relatively stable 

when compared with open-source datasets. Applying PCA to the open dataset used to 

predict CHD had a negative impact on the accuracy of the CNN model but had no 

significant impact on the accuracy of the LSTM and MLP models. The current study 

suggests there is no statistically significant impact on the efficacy of the PCA method 

for CHD classification, however, MLP and LSTM offer promising results. The 

limitation of the findings could sample size of datasets utilized in this study. 

Consequently, the findings indicated that, given a sufficiently enough population of 

training data, it is possible to get a very accurate prediction of CHD using PCA with 

datasets received from cardiologists. Sophisticated machine-learning algorithms were 

critical in dealing with the noise, redundancy, heterogeneity, and nonlinearity of 

disease prediction. Furthermore, expert-based CHD data received from cardiologists 

revealed new features useful for prediction. Our findings emphasize the significance 

of collecting large amounts of data from cardiologists in order to make reliable CHD 

forecasts. 
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