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Enormous traditional malware detection methods have been proposed and they are efficient in detecting known malware, however,
these methods usually either are ineffective or have high false positive rate in detecting unknown malware. To improve the performance
in unknown malware detection, many novel methods are presented by introducing and employing software behavior visualization,
Artificial Intelligence, and other popular technologies. Unfortunately, they are still facing the inadequate data utilization and
benchmark dataset lack problems. Therefore, in this paper, we propose an effective malware detection method by utilizing multi-
dimensional software dynamic behavior information. To construct the concrete scheme, we combine a mapping mechanism from key
parameters of software operation to grayscale images with a malware prediction model. In addition, to our knowledge, we constructed
the first publicly accessible software dynamic behavior dataset containing over 800 malicious and 600 non-malicious software behavior
images. Finally, the experiment results show that our method can effectively detect unknow malware and outperforms the existing
comparative baseline schemes in terms of accuracy, precision, and recall.

Index Terms—Unknown Malware Detection, Dynamic Behavioral Information, Software Behavior Image Dataset.

I. INTRODUCTION

RECENTLY, a large number of attackers use unknown
malware to carry out new cyber attacks, causing huge

economic losses to individuals, enterprises and society. In
these information security incidents, unknown malware plays
an important role and has become a key factor threatening
information security. When new cyber attacks are unavoidable,
efficient detection of unknown malware has become a key to
cyber security.

Traditional malware detection method includes feature and
rule-based methods and behavior-based methods [1]-[8]. These
detection methods can detect known malware quickly and
efficiently. In unknown malware detection, these methods are
either ineffective or have a high false positive rate which
hinders analysis.

Besides traditional methods, there are various new meth-
ods emerging, such as heuristic-based detection methods [9]-
[10], deep learning-based detection methods [11]-[17], and
visualization-based detection methods [18]-[26], these mal-
ware detection methods provide new ideas for unknown mal-
ware detection by using deep learning, knowledge reasoning
and other AI technologies. Most of these methods can effec-
tively detect unknown malware, but lack a benchmark dataset.
Existing public dataset present the following challenges: Data
dimension is single. Visualization datasets often contain only
static features which is not conducive to unknown malware
detection. Some datasets have legal restrictions for being
shared.

To solve the above problems, we propose a malware de-
tection method based on multi-dimensional dynamic behavior
information. We build a deep learning model to learn dynamic
features , and use a trained model to detect unknown malware.
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In addition, we construct a dynamic software behavior image
dataset. It extracts multi-dimensional behavior features from
software dynamic reports. We combine dynamic features with
grayscale image conversion technology to form a visualization
dataset.

Our main contributions in this work are as follows:
1) We propose a malware detection method that combines

multi-dimensional dynamic feature extraction with grayscale
image processing technology, use the CNN algorithm to detect
software behavior, aiming to address the inefficient detection
of unknown malware.

2) We construct a multi-dimensional dynamic software
behavior image dataset to solve the problem of lack of
benchmark datasets. Our dataset contains 848 malicious and
619 non-malicious software images converted from dynamic
reports.

3) We conduct experiments to demonstrate the effectiveness
of our scheme. Compared with other traditional solutions, our
proposed method improves the detection accuracy by up to
15.73%.

The rest of this paper is organized as follows. We review
the related work on malware detection methods in Section II
and give a rough overview to our system modules in Section
III. Further, we build the system model according to the
dynamic behavior information preprocess module, behavior
information visualization module, and detection module order
in Section IV. Then, in Section V, we introduce the dynamic
software behavior image dataset and discuss the comparison
experimental results in Section VI. Finally, we conclude this
paper in Section VII.

II. RELATED WORK

In this section, we conduct a detailed investigation and clas-
sification of existing malware detection schemes and datasets.
Then, we present their details and analyze their shortcomings.
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A. Malware Detection Methods

In this part, we first analyze feature and rule-based de-
tection methods and behavior-based methods. In addition to
the two traditional malware detection methods, we choose
some detection methods based on AI technology, such as
heuristic-based malware detection methods, deep learning-
based malware detection methods, and visualization-based
malware detection methods.

1) Feature and Rule-based Malware Detection
Traditional malware detection methods are mainly divided

into two categories: feature and rule-based malware detection
methods and behavior-based malware detection methods. The
feature and rule-based malware detection method can compre-
hensively analyze and detect malware without executing the
software through preset rule conditions. The most represen-
tative one is the signature-based malware detection method.
Signature-based malware detection methods are widely used in
commercial anti-virus. Ma et al. [1] proposed a new malware
detection framework based on detection, genetic algorithm
(GA) and signature generator. The framework builds the
control flow graph of the application and builds an inte-
gration model. Zolkipli et al. [2] proposed a bioinformatics
technique to generate accurate vulnerability-based features
for polymorphic worms. This mode produces more accurate
signatures than other vulnerability-based signature generation
modes. Borojerdi et al. [3] proposed a detection system based
on sequence clustering and alignment. This method mainly
targets polymorphic malware and automatically generates sig-
natures based on malicious behavior. Zheng et al. [4] proposed
DroidAnalytics, a system based on Android malware analysis.
DroidAnalytics can generate signatures for applications and
correlate malware with various malware in the database.
Signature-based malware detection methods perform fast and
efficient in detecting known malware, but are less effective in
detecting unknown malware.

2) Behavior-based Malware Detection
Behavior-based malware detection methods monitor the

execution process of malware, analyze dynamic behavior,
and detect malware based on behavioral characteristics. The
method uses monitoring tools to observe the behavior of
sample program. Wagener et al. [5] proposed an automated
technology for extracting malware behavior from system calls,
using alignment technology to identify similarities. Fukushima
et al. [6] proposed a method that can simultaneously detect un-
known malware and encrypted malware on Windows operating
systems. Chandramohan et al. [7] modeled bounded feature
space behavior, which limits the number of features for de-
tecting malware. This method helps reduce detection overhead.
Das et al. [8] proposed a hardware enhancement architecture
using processors and field programmable gate arrays (FPGAs).
The architecture implements a frequency concentration model
to detect malware. Behavior-based malware detection methods
perform well against unknown malware. However, this type of
method faces the problem of a high rate of false positives.

3) Heuristic-based Malware Detection
Heuristic-based malware detection methods have been

widely used. Ye et al. [9] proposed a correlation classifica-

tion post-processing technology for malware detection. This
technique reduces the number of generated rules by using
rule pruning. Bazrafshan et al. [10] proposed a method that
can detect new malware. This method generates signature-like
labels for suspicious programs. Heuristic detection can be used
to detect known malware, but is less effective at detecting
unknown malware.

4) Deep Learning-based Malware Detection
The idea of deep learning provides a new way of thinking

for unknown malware detection. Dahl et al. [11] proposed
the use of random projection and neural networks for large-
scale malware classification. Simulation experiment results
show that this method performs better in detection effect.
Yuan et al. [12] proposed Droid-Sec, which detects malware
based on deep learning. This method uses a combination
of static and dynamic analysis in the pretraining stage and
backpropagation stage. Kumar et al. [13] proposed a new
multi-task deep learning architecture for malware classifica-
tion and detection. Saxe et al. [14] proposed a deep neural
network malware detection based on two-dimensional binary
program features. Through complementary feature extraction,
deep neural network and score calibration, the accuracy of
malware detection was improved. Saracino et al. [15] pro-
posed MADAM, a multi-level malware detection system based
on Android devices. MADAM simultaneously analyzes and
correlates the characteristics of malware at the four levels of
kernel, application, user and software package to detect and
block malicious behavior. Huang et al. [16] adopted a malware
detection method based on Deep Belief Network to better
characterize Android malicious applications and improve the
effectiveness of detection. Bengio et al. [17] proposed a
method for Android malware detection based on machine
learning algorithms. This method solves the problem of ex-
cessive parameter space in malware detection by using deep
structure learning algorithms. Deep learning has improved the
efficiency of malware detection effectively, but its application
in this area is not mature, and more efficient methods of
integration are still being explored.

5) Visualization-based Malware Detection
Convolutional Neural Networks (CNNs) have become a piv-

otal technology in the realm of computer vision, showcasing
remarkable capabilities across various visual tasks. LeCun et
al. [18] played a crucial role in pioneering CNN development,
introducing the groundbreaking LeNet-5 architecture in 1998.
This seminal work laid the foundation for subsequent advance-
ments in image recognition and classification. The introduction
of AlexNet by Krizhevsky et al. [19] in 2012 significantly
propelled the field forward, achieving unprecedented success
in the ImageNet Large Scale Visual Recognition Challenge.
Its deep architecture, comprising multiple convolutional layers,
underscored the effectiveness of CNNs in handling complex
visual data. Following these milestones, more intricate and
deeper CNN architectures have been proposed. The VGGNet,
presented by Simonyan et al. [20] in 2014, introduced a uni-
form architecture with small convolutional filters, emphasizing
the importance of depth in CNNs. Addressing the challenge
of training extremely deep networks, He et al. [21] introduced
residual networks (ResNets) in 2015. ResNets employ residual
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connections to facilitate information flow through the network,
enabling the successful training of models with hundreds
of layers. Furthermore, CNNs have demonstrated excellence
in object detection tasks. The Region-based CNN (R-CNN)
family, introduced by Girshick et al. [22], marked a paradigm
shift by amalgamating region proposal networks with CNNs,
resulting in enhanced object localization and detection ac-
curacy. In this paper, the CNN algorithm is employed for
the binary classification of sample dynamic behavior. Binary
classification implies that the malignancy of a sample is
determined solely by its dynamic behavior.

Now Visualization-based malware detection method is be-
coming more popular among all malware detection methods
due to its ease of use and infrastructure for synthetic images.
This type of method uses image conversion technology to
convert malicious binaries or reports into specific images for
classification and detection. Nataraj et al. [23] proposed a
classification method using standard grayscale image features.
Motivated by the observation that for many malware families,
the images belonging to the same family appear very similar
in layout and texture, this method converts malware binary
files into grayscale images and construct malimg dataset.
Naeem et al. [24] proposed a model for characterizing malware
variants. This model converts malware binary into grayscale
images for detection, which achieves high efficiency and
accuracy. Su et al. [25] proposed a lightweight new method
for detecting DDoS malware in the Internet of Things environ-
ment. This method extracts malware image features and uses
convolutional neural networks to classify. Many methods have
calculated the similarity between different representations of
the malware images to perform the classification, as can see in
Han et al. [26], where the authors converted executable files
into gray-scale images and introduced a similarity technique
based on entropy graphs. Experimental results showed that our
scheme achieves a 97.9% similarity rate. The disadvantage of
existing visualization-based malware detection methods is that
the generated image information is relatively simple, makes it
difficult to comprehensively analyze the characteristics of the
software under test.

B. Public Software Behavior Image Dataset
There is no benchmark dataset for existing malware de-

tection works. Some existing datasets are frequently used in
related work. For example, malimg [23], ember [27], malevis
[28] and so on. Malimg dataset was constructed by the Uni-
versity of California Vision Research Laboratory. This dataset
contains 9339 samples from 25 malware families, which are
obtained through network and Windows operating system
malware mixing experiments. This dataset does not contain
legal code. Ember dataset was built by Hyrum S. et al [27]. It
includes features extracted from 1.1M binaries and represents
the first large public dataset for machine learning malware
detection. Malevis dataset is a corpus containing 26 categories
of byte images, involving a total of 14,226 images. However,
these datasets are mainly converted from static features of
software samples, making it suitable for classifying known
malware and difficult to analyze the dynamic behavior of
software in the system.

III. VMD: VISUALIZABLE MALWARE DETECTION MODEL

The system model introduces the system structure composed
of three parts: dynamic behavior information preprocessing
module, behavior information visualization module and detec-
tion module. The overall system model is shown in Fig.1.

In the system model proposed in this paper, the dynamic
behavior information preprocessing module is responsible for
collecting reports generated by running samples in the sand-
box, formatting the collected reports into standard reports, and
inputting the standard reports into the behavior information
visualization module. The behavioral information visualization
module is responsible for converting the collected reports into
specific grayscale images and submitting the grayscale images
to the detection module. The detection module is responsible
for training detection model and using the pre-trained CNN
classifier to detect collected grayscale images. The execution
steps of the system model are as follows:

In the first step, put the self-constructed sample library into
the pre-configured sandbox for analysis, and put the report
generated after analysis into the dynamic behavior information
preprocessing module for report formatting. The APIs called
by the malware during the execution of the sandbox come from
Windows function libraries. During system execution, how to
detect abnormal API calls in system is the key to malware
detection. Based on this observation, the dynamic behavior
information preprocessing module formats input reports from
the behavior sample library into standard reports through pa-
rameter screening, parameter simplification and deduplication.
The formatted standard report mainly includes important API
parameter information in the original report, which is used to
construct behavioral dataset and perform visual analysis.

In the following step, the standard reports in the behavioral
dataset are input into the behavioral information visualization
module for visualization operations. Each standard report
is processed into a two-dimensional matrix through a text
matrixing operation. By converting each row of a standard
report into a binary string, all binary strings in each report
are combined into a two-dimensional matrix. Based on the
intention of visual analysis of data, the behavioral information
visualization module needs to convert the generated two-
dimensional matrix into a grayscale image, and each element
in the two-dimensional matrix corresponds to a pixel in the
image, realizing the transformation from standard reports to
grayscale images.

Finally, the detection module needs to collect the grayscale
images generated in the previous step, and uses the predefined
CNN model to train and test. In the convolutional layer,
extracting features of each grayscale image, then after being
processed of the pooling layer and the connection layer,
achieving the goal of training grayscale images. Use the
trained CNN model to detect unknown classified samples
on the test set to verify the effectiveness of this method in
detecting unknown malware.

After using the dynamic behavior information preprocessing
module, behavior information visualization module and detec-
tion module processing dynamic behavior reports, experiment
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Fig. 1: Malware Detection Model Overview

results verify that the method proposed in this paper can detect
malware more accurately.

IV. VMD SCHEME DESIGN

In this section, we first construct a dynamic behavior
preprocess module to extract features from dynamic reports.
Secondly, in behavior information module, we transfer dy-
namic features into grayscale images. Finally, we train a CNN
model which classify malware and goodware. The detialed
process is as follow.

A. Dynamic Behavior Information Preprocess Module

Report Standardization: Original dynamic behavior report
is JSON structure. This paper extract important information
from original report and convert to prescribed report for later
use. This experiment converts dynamic behavior report to a
intermediate report containing all the behaviors of the malware
sample run in Cuckoo Sandbox. In intermediate report, each
line represents an API call, and can be divided into three
parts. The first part represents the API type and corresponds
to the category field in the original report. The second part
of the dynamic behavior report represents the API name. The
rest includes relevant parameters during the call, such as path
parameters, etc.

# pid 3060 tid 2980
registry NtOpenKey"HKEY LOCAL MACHINE"
file GetFileAttributesW 4294967295 
"C:\\Windows\\SYSTEM32\\MSCOREE.DLL.local" 
"C:\\Windows\\System32\\MSCOREE.DLL.local"
synchronisation NtCreateMutant 0 ""
synchronisation GetSystemTimeAsFileTime
registry NtOpenKey "HKEY_LOCAL_MACHINE"
registry NtOpenKeyEx "HKEY_LOCAL_MACHINE\\Software\\Microsoft\\Windows 
NT\\CurrentVersion\\Diagnostics" 0
system LdrLoadDll "ADVAPI32" 0 "ADVAPI32.dll" 0
system LdrGetProcedureAddress 0 "ADVAPI32" "RegOpenKeyExW"

Fig. 2: Textual report

As shown in Fig.2, the first line of the document indicates
process identification number (PID) and thread identification
number (TID). In the operating system, PID is used as a
unique identifier for a process, and TID is used to identify
individual threads in the process. The second line of the
document contains API information. It includes three parts:

API type, where the first API type is ”registry”; API name, in
this case ”NtOpenKey”; several important parameters related
to the API, for example, in the second line of Fig.2, the root
key is designated ”HKEY LOCAL MACHINE” and contains
system-related information about the local computer, including
hardware and operating system details, security data, and the
computer’s software settings.

In our experiments, model needs to be trained on standard
reports. After extensive experiments, we found that the scheme
performs better without considering redundant parameter in-
formation. In the formatted report method of this paper, it is
necessary to delete the extra parameters except the API type
and API name before formatting reports. After deleting the
extra parameters, we deduplicate processed reports. We treat
adjacent repeated API calls as one record because adjacent
duplicate API calls in the report are actually Cuckoo Sandbox
calling some duplicate APIs in different guests. A large
amount of researches show that these repeated API calls don’t
improve the efficiency of detecting unknown malware, but
consume a lot of computer resources. After above steps, the
original report transformed into standard report, as shown in
Fig.3.

B. Behavior Information Visualization Module

Text Matrix: By design, each dynamic behavior is repre-
sented as a separate line in a standard report indicating the
API type and API name associated with it. Treating each line
in the standard report as a single unit, all dynamic behav-
ior logs are traversed to compile a comprehensive lexicon
of all observed dynamic behaviors. Establishing a mapping
relationship between dynamic behaviors and tag IDs, assigning
a unique numerical identifier to each word in the vocabulary.
This mapping helps associate specific tags with corresponding
dynamic behaviors. In standard reports, in addition to the
behaviors identified in dynamic reports, there may be other
behavior that is difficult to be characterized. For this type of
behavior, a category labeled ”Unknown” has been added to
the word. This classification helps capture unknown behaviors
and effectively classify them for later analysis. Fig.4 shows an
example showing the vocabulary generated from two standard
reports.



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 1, FEBRUARY 2024 15

system GetKeyState 90
system GetKeyState 92
system GetKeyState 94
misc GetCursorPos 515 347
misc GetCursorPos 515 347
misc GetCursorPos 515 347
system SetErrorMode 59281
file GetFileAttributesW 3563372461 “mshtml.dll"
system SetErrorMode 59287
system LdrLoadDll "mshtml.dll" "mshtml" 0
ole ColnitializeEx 2
system NtDuplicateObject 0 5861 5861 2
system NtClose
system NtClose

system GetKeyState
system GetKeyState
system GetKeyState
misc GetCursorPos
misc GetCursorPos
misc GetCursorPos
system SetErrorMode
file GetFileAttributesW
system SetErrorMode
system LdrLoadDll
ole ColnitializeEx
system NtDuplicateObject
system NtClose
system NtClose

system GetKeyState
misc GetCursorPos
system SetErrorMode
file GetFileAttributesW
system SetErrorMode
system LdrLoadDll
ole ColnitializeEx
system NtDuplicateObject
system NtClose

Parameter Extraction

Remove Redundancy

Fig. 3: Report Formatting Process
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Fig. 4: Word Bank Example

This step converts the entire report into a two-dimensional
matrix by converting each row into a one-dimensional matrix.
In order to realize the matrix representation of text, each word
in the vocabulary is represented as a vector of length 300, and
the vector length can be adjusted. Word vectors are randomly
initialized and updated continuously during training. For each
sample, the lexicon converts the dynamic behavior into the
corresponding id sequence, uses a vector to represent each id
sequence in the lexicon, and converts the sample into a two-
dimensional matrix through this method. The process is shown
in Fig.5. It is important to specify a maximum word size during
conversion to ensure that all matrices are of consistent size.
In case of insufficient sample length, the end of the matrix is
padded with zeros. For samples that are too long to handle,
this paper uses a direct truncation method to process them.

Behavior Visualization: The visualization process involves
converting the dynamic behavior signature file into a grayscale
image, where different areas in the grayscale image corre-
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Fig. 5: Transform Example

spond to specific parts of the dynamic behavior signature
file structure. This visualization technique aims to capture
similarities in the dynamic behavior exhibited by malware. By
representing dynamic behavioral feature files as images, the
malware classification and detection problem is transformed
into an image classification problem. This paper uses an
improved B2M algorithm to convert dynamic behavior feature
files into grayscale images [29]. The algorithm follows a
specific sequence of steps, as illustrated below:

Behavioral
Information

01010101010101

Binary
String

Binary
Matrix

Image

Fig. 6: Behavior Information Visualization

Read the dynamic behavior feature file in binary mode,
interpreting each byte as an 8-bit unit. Ensure that each
unit’s value is within the valid pixel range of 0 to 255,
corresponding to the grayscale spectrum where 0 represents
black and 255 represents white. Treat each unit as a pixel
value for a grayscale image. Process the file size to create
a square image with equal width and height, forming a two-
dimensional array of pixel values.

The resulting image is a square grayscale representation
with pixel intensities ranging from 0 to 255. Fig.7 illustrates
an example of the generated image.

Fig. 7: Image Example

Given the various sizes of the generated dynamic behavior
feature files, it is imperative to perform feature extraction
and other necessary tasks. Standardization requires resizing
all images to ensure uniformity. Only after completing the
normalization operation and ensuring identical image sizes,
does feature extraction become meaningful as input for the
network. This paper employs the bilinear interpolation algo-
rithm for consistent adjustment of image sizes.
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C. Detection Module

Numerous studies have leveraged machine learning algo-
rithms to discern the dynamic behaviors feature of samples,
showcasing the superior efficiency of such algorithms over
manual analyses. Konrad Rieck et al. [30] proposed an in-
cremental approach for behavior-based analysis. This method
utilizes the relative order of APIs in the sample as eigenvectors
and employs an approximation for clustering and classification
algorithms to detect malware samples. Radu et al. [31] applied
the random forest algorithm for detecting malicious dynamic
behavior, extracting 68-dimensional feature vectors based on
API call information and classifying four types of malicious
samples. Ivan et al. [32] conducted a comparative analysis
on a sample library of 470 samples using KNN, Naive Bayes,
SVM, J48, and MLP. However, the reliability of their approach
is challenging to ensure.

The aforementioned methodologies entail manual analysis
for feature vector extraction, employing traditional machine
learning algorithms for classification. In this paper, we employ
the Convolutional Neural Network (CNN) algorithm to detect
malicious dynamic behavior in samples, drawing inspiration
from CNN applications in image processing. A notable feature
of this method lies in its elimination of the need for manual
feature vector extraction. Instead, the algorithm autonomously
learns specific features based on the inherent dynamic behavior
information within the samples.

The method proposed in this paper involves training a deep
learning model using samples from known classes to detect
new and unidentified malware during testing. Convolutional
Neural Networks (CNNs) exhibit advantages over alternative
algorithms in image classification. In general, the fundamental
structure of a CNN comprises two layers, the first being
the feature extraction layer. Each neuron’s input is connected
to the local receptive field of the preceding layer to extract
local features. Following the extraction of local features, their
positional relationships with other features are determined.
The second layer is the feature mapping layer, characterized
by multiple feature maps within each network computation
layer. Each feature map can be visualized as a plane, where
all neurons within the plane share identical weights. The
feature map structure incorporates the sigmoid function with
a compact influence function kernel serving as the activation
function, promoting displacement invariance. The sharing of
weights among neurons on the mapping surface effectively
minimizes the number of free parameters in the network. This
study utilizes three convolution kernels of varying lengths (3,
4, 5). The width of the convolution kernel matches the length
of the word vector. Following the convolution operation, the
original grayscale image is transformed into a column vector,
akin to the N-Gram algorithm. The use of a convolution kernel
of length 3 extracts features from three adjacent dynamic
behaviors. Multiple convolution kernels are applied at each
scale, with two convolution kernels per scale. A total of 128
convolution kernels are employed in this paper. Subsequent
to convolution, max pooling is applied to each convolution
result, yielding the maximum value in the column vector.
Each column vector is reduced to a 1x1 value. The maximum

values corresponding to all convolution kernel results are
concatenated to form a fully connected layer. The third step
involves utilizing the softmax function for binary classification
processing. The constructed CNN model is shown in Fig.8.

Image matrix
7×5

3 region sizes:(3,4,5)
2 filters for each region

sizes
totally 6 filters

Convolution

2 feature
maps for

each region 
size

Activation function

1-max
Pooling

6 univariate vectors
concatenated together

to form a single
feature vector

2 classes

Softmax function
Regularization

In this layer

Fig. 8: CNN model

V. THE CONSTRUCTION OF MULTI-DIMENSIONAL
DYNAMIC BEHAVIOR IMAGE DATASET

There are usually many problems in obtaining malicious
samples. Malicious samples shared by public websites such
as VirusShare [33], VirusTotal are protected by copyright
law and are prohibited from being shared. For inexperienced
malware related workers, there are also security risks for
them that do not take security measures to save malicious
samples. Considering of the legality of sharing malicious
samples and the security of saving malicious samples, this
paper chooses Malwarebazaar sample library as the source of
malicious samples. Malwarebazaar encrypts and packages all
malicious samples into a compressed package named hash
value; after downloading and obtaining the corresponding
password, the compressed package can be decompressed. This
operation ensures the uniqueness of the malicious samples
and the security of acquisition. Malwarebazaar sample library
uploads newly discovered types of malicious samples every
day, making the sample library rich in sample types and real-
time. Malwarebazaar also collects and packages daily and
weekly malicious samples, and provides calling APIs interface,
which improves the convenience of malware-related workers
using data. In addition, obtaining malicious samples online
usually requires complex registration and review processes,
but Malwarebazaar eliminates this step and has no restrictions
on downloads for all users.

We compare the commonly used malware visualization
dataset with the self-built dataset, as shown in Table I.

Sample selection forms the foundational data for model
training and testing. While public datasets are easy to access,
concerns related to privacy leakage may arise due to various
feature extraction methods. Additionally, the large volume of
data in public datasets, coupled with a mix of data types,
poses challenges in effective filtering. Considering the inherent
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TABLE I: Public Malware Datasets Comparison

Name Size(GB) Feature Type

Malimg 1.09 Static

Ember 9.38 Static

MalwVis(300*300) 2.91 Static

Our dataset 0.53 Dynamic

issues with public datasets, this paper opts to design and
construct a behavioral dataset.

The construction process is as follows: In the first step,
1559 malware samples were downloaded from the Malware-
Bazaar sample library, and 1150 benign software samples
were collected from other open-source platforms to manually
construct the sample library. In the subsequent step, these
samples were subjected to Cuckoo Sandbox for execution, and
dynamic behavior reports generated within Cuckoo Sandbox
were collected. The third step involved filtering the report files
in the behavioral dataset, removing those that did not meet the
established standards. The original report files were employed
for the construction of the behavioral dataset. As illustrated in
Fig.9.

"call":{
"category":"process",
"status":1,
"stacktrace":[],
"api":"NtProtectVirtualMemory",
"return_value":0,
"arguments":{

"process_identifier":1148,
"stack_dep_bypass":0,
"stack_pivoted":0,
"heap_dep_bypass":0,
"length":4096,
"protection":64,
"process_handle":"0xffffffff",
"base_address":"0x744a1000"

},
"time":1701836019.515875,
"tid":1820,
"flags":{

"protection":"PAGE_EXECUTE_READWRITE"
}

},
"pid":1148,
"type":"call",
"cid":50

report.json

info
signatures

intelmq、target
irma

suricate、virustotal

resubmit、static
snort

behavior

debug、misp

strings、network、metadata

sysmon

Fig. 9: Original Report Example

Cuckoo Sandbox is an automated malware analysis system
that can detect malware behavior and generate dynamic behav-
ior reports under isolation conditions, ensuring safe execution
and independent analysis of malicious code samples. The
structure of Cuckoo Sandbox is shown in Fig.10.

Host

Guest1

Guest2

Guest3

Internet

Fig. 10: Cuckoo Sandbox Structure

The criteria for selecting reports are delineated as follows:

Diversity: Reports encompassing a broad spectrum of cat-
egories are chosen. It is imperative for behavioral datasets
to exhibit diversity across various types of malware, thereby
enhancing the demonstration of the efficacy of detection
endeavors.

Complexity: The chosen reports should exhibit complexity
and involve multiple steps. Within the sample library, certain
malicious samples feature simplistic attack steps and lack
substantial contextual information. Such reports hold little
significance for subsequent analysis. Ultimately, 848 malware
reports and 619 non-malware reports were selected to con-
struct the behavioral dataset.

VI. EXPERIMENTAL RESULTS AND EVALUATIONS

In this section, we first introduce experimental hardware
and software. Then, we make comparative experiments. The
detialed process is as follow.

A. Experimental Environment

The hardware setup comprises a PC equipped with an
Intel® Core™ i7-9750H CPU, a GeForce RTX 2080 GPU,
and 16GB RAM. The experimental sandbox environment is
configured as follows: the virtual machine runs on Ubuntu
16.04 LTS, while the sandbox operating system is Windows
7 Professional. Common software is installed, and for data
processing and model construction, PyCharm is utilized. The
programming language employed is Python, and the primary
operating system is Windows 10. The training set and test set
data split is maintained at a ratio of 8 to 2.

B. Performance Comparison

To analyze our scheme better, we conduct comparative
experiments against other malware detection methods. In this
experiment, we employ the comparative experimental method
of sample gradient increment to assess the performance of
Long Short-Term Memory (LSTM), CNN-LSTM [34], and
our previous work using the self-constructed sample library.
LSTM represents a neural network architecture utilizing fully
connected layers for comparison. CNN-LSTM is a deep learn-
ing method based on LSTM. Our prior work [35] proposed a
visual malware detection model and a concrete scheme based
on multi-dimensional dynamic behaviors, encompassing API
and network operation information. The comparison results
are illustrated in Fig.11.

As illustrated in Fig.11, the detection accuracy of the four
methods exhibits fluctuations with various sample numbers.
Both LSTM and CNN-LSTM display a rising trend after
the sample size surpasses 200 and 400. Our previous work
performs relatively stable. Conversely, the accuracy of the
proposed solution hovers around 97.5% after the sample size
exceeds 200. Throughout the experiment, it was observed that,
when the sample size is below 600, factors such as the richness
and relevance of contextual information may lead to significant
fluctuations in the accuracy rate. To mitigate the impact of
sample variations on the experiment, this study conducted
multiple random sample selections in the early stage of small
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Fig. 11: Four Methods Accuracy

Fig. 12: Four Methods Accuracy with Sample Size Smaller
than 600

samples. The average accuracy from multiple random repeated
tests under small sample conditions is shown in Fig.12.

As depicted in Fig.12, it is evident that, when the sample
size is below 600, the proposed solution in this paper gen-
erally outperforms the three compared methods. With further
expansion of the sample size, the intrinsic properties of the
sample cease to be the primary factor affecting experimental
performance. The subsequent table presents the experimental
results of the four methods on the self-constructed sample
library.

As observed in Table II, the accuracy, precision, and re-
call rate of the proposed method surpass those of the three
compared methods. Through experimental analysis, the overall
superiority of the solution presented in this paper may be
attributed to the chosen text preprocessing approach. Unlike
other detection methods that rely on the feature representation
of input data, the good performance of this paper’s solution is
contingent on a robust text preprocessing solution. Inadequate
feature extraction processes or inappropriate feature selection
may lead to a less accurate model in detecting malware.
The subsequent table illustrates the performance of the four
methods across different sample sizes.

Precision denotes the ratio of true positive samples to all de-
tected positive samples, while recall signifies the proportion of
detected positives among all potential positive samples. These
two metrics provide insights into the model’s performance
from different perspectives. As depicted in Table III, when
the sample size is below 400, the accuracy of this method

TABLE II: Experiment Results

Method Accuracy Precision Recall

LSTM 81.08% 81.16% 80.11%

CNN-LSTM 84.37% 84.51% 86.32%

Our Previous Work 89.75% 98.08% 84.30%

VMD 96.81% 95.93% 97.17%

is lower than that of CNN-LSTM. Additionally, when the
sample size is below 200, the accuracy of this method is lower
than that of LSTM. While the overall trend of our previous
method is relatively stable, its accuracy, precision, and recall
are inferior to the method proposed in this paper. However, the
recall rate of this method generally outperforms the other two
methods in the experiment. This experiment also investigates
the performance of the four methods in detecting unknown
malware. The behavioral dataset is partitioned into a training
set and a test set in a 4:1 ratio. The experimental results are
presented in the following table.

TABLE III: Experimental Data of Four Methods at Different
Sample Size

Method Samples Accuracy Precision Recall

100 79.73% 82.36% 84.83%
200 78.20% 81.10% 79.80%
400 81.83% 79.59% 81.35%

LSTM 600 85.67% 86.31% 85.67%
800 85.37% 85.92% 84.68%
1000 85.10% 85.23% 85.11%
1200 85.92% 86.16% 80.18%

100 82.04% 81.02% 81.08%
200 82.52% 82.87% 84.00%
400 84.92% 83.77% 87.63%

LSTM-CNN 600 91.00% 91.76% 90.97%
800 88.63% 89.00% 88.61%
1000 88.59% 88.80% 86.72%
1200 87.67% 87.86% 86.32%

100 88.89% 83.33% 90.91%
200 86.49% 93.33% 87.50%
400 87.50% 92.75% 74.36%

Previous work 600 91.73% 97.96% 81.36%
800 91.72% 92.50% 91.36%
1000 91.15% 95.83% 83.13%
1200 91.34% 98.06% 84.67%

100 94.00% 89.21% 100.00%
200 96.79% 95.33% 99.00%
400 96.81% 96.44% 98.19%

VMD 600 95.83% 99.28% 92.33%
800 99.63% 99.50% 99.75%
1000 97.21% 94.87% 99.80%
1200 97.08% 94.63% 99.83%

As evident from Table IV, the accuracy and recall rate of
this method surpass those of the other three methods, although
the accuracy exhibits a decline. Upon analysis of the accuracy
decline, it may be attributed to the similarity in the types of
APIs called by some benign and malicious software when the
dataset is small, leading to model misjudgments. Nevertheless,
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the overall performance of this method tends to outperform the
three compared methods.

TABLE IV: Unknown Malware Test Result

Method Accuracy Precision Recall

LSTM 79.10% 79.59% 79.21%

CNN-LSTM 80.77% 81.27% 80.81%

Our Previous Work 83.90% 84.92% 88.43%

VMD 84.45% 79.45% 98.05%

VII. CONCLUSION
In this paper, we constructed a visual malware detection

model that integrates multi-dimensional dynamic behavioral
information with deep learning. First, we processed our sam-
ples dynamic behavior as grayscale images, used image feature
descriptor to characterize malware. Then, we trained our mod-
els to classify malware and goodware. However, in the current
work, we only focus on binary classification. It should consider
expanding the number of label assortments and samples to
facilitate multi-classification experiments in the future work.
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