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Abstract

This paper introduces a novel hyperparameter design based on extremum seeking (ES)
method to enhance the convergence speed of Extended-Kalman Filter (EKF). ES method
produces a real-time optimization output based on the second-order gradient of performance
function so that the estimation performance of EKF is simultaneously optimized. In
addition to the convergence speed, the proposed hyperparameter reduces the effect of initial
covariance matrices, and improves the accuracy of estimation for the fast changes without
any knowledge about system dynamics. In numerical applications, EKF with and without
the proposed hyperparameter were first used to estimate the unknown parameters of a linear
time-varying system. Second, on a real-time collected data, they were applied for the joint
estimation of velocity and payload mass of a real-time nonlinear servo-system where the
performance improvement is provided almost 30%. Performance measurements are given
in terms of the root-mean squared-error (RMSE) of estimation.
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1. Introduction

Extremum seeking (ES) is a real-time optimization method for static and dynamic systems
such that it does not use any explicit information of problem definition or input-out
characteristics [1, 2]. Although ES was introduced very early, its stability with standard
perturbation was proved in the late 1990s for nonlinear systems. A continuous-time [3] and
discrete-time [4] adaptive control schemes were designed for the control of nonlinear
systems. In addition, ES based constrained optimization was proposed in [5]. An
experimental application of ES method has been presented for the control of microalgae
Scenedesmus obliquus culture in a photobioreactor [6] .

In estimation theory, the accuracy, speed of convergence and stability are the prominent
characteristics of the methods [7]. EKF is one of the conventional methods for nonlinear
systems that can recursively estimate the unmeasurable states and unknown parameters
under noise conditions [8]. With proper design of the parameters, EKF is a fast and accurate
method so that preferable for real-time applications. Recently, model-based EKF has been
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designed for power systems to track power quality [9], and applied for minimization of
covariance matrices for efficient estimation of bilinear systems [10].

On the other hand, recursive estimation methods have some hyperparameters such that
one of them is called “adaptive step-size” determined based on the user experience and grid-
search of an interval. However, this hyperparameter mainly affects the success of estimation
process so that it must be selected properly [11]. In this paper, an adaptive hyperparameter
based on ES optimization is proposed for the state and parameter estimation. The possible
improvement of the hyperparameter is first utilized for the EKF method as a basis for further
studies. Proposed hyperparameter ensures that estimated state and parameters are adapted
to minimize the cost function of estimation process i.e. at the same time, the cost function
of estimation process is collaboratively minimized by EKF and ES dynamics. In numerical
applications, valuable results have been recorded that significantly support the proposed
method.

2. Extended Kalman Filter

EKEF can be designed for the state and parameter estimation of discrete-time nonlinear
systems as follows [8, 7].
1. The system dynamics are

x(n) =f(x(n—1),u(n—1),0(n—1),w(n—1))
¥(n) = h(x(n),(n)

w ‘/V((),Q)

v~ A (0,R)

ey

where f(.) and g(.) are nonlinear differentiable functions, x is the state, 6 is the unknown
parameter vector and u is the input of system. The v and w are normally distributed process
and output noises, respectively, with Q and R the covariance matrices (1).

2. The linearized system dynamics around the current estimate are

Ix(;
Iw;)

ohy;
i
Hid = 5, |5 (n-1).0)

Iv;)

F

ij] = |(fim (n—1),u(n—1),0)

N

ivj] = (fim (nfl),ll(nfl),o)

@

il = |<i[ 7(n=1),0)

where i and j represents the indices for functions and estimations. The following matrices
are used in the time and measurement update dynamics.

Q. =NQN"
3
R. = MRM’ )
3. Time update equations are
£ (n)=f&(n-1),u(n—1),0) A
P~ (n) = F()P(n— F (1) +Q, @
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4. Measurement update equations are

y(n) —=h(x"(n),0)) ©)

where X~ (n),P~(n) are prior estimates and X(n),P(n) are the posterior estimates,
respectively. The initial value of P is based on the estimated initial values of the system.
Finally, state and parameters are estimated (5) with updated matrices.

3. Extremum Seeking Optimization Based Hyperparameter Design

Extremum seeking is a very powerful mathematical method so that unknown parameters can
be optimized with very limited information [4]. ES method is here consulted to produce a
prominent parameter that affect all estimation process. For a discrete-time dynamic system,

y(n+1) =f(y(n),u(n)),
12(n) = h(y (),
where y € R” is the state, u(n) € R is the input, J%(n) € R is the nominal cost function.

f:R" xR — R"™ and h : R" — R are smooth functions. The control signal with optimization
variable (1(n)) is

(6)

u(n) = B(x(n),n(n)), ©)
so that the ESO based closed-loop scheme
v(n+1) = f(y(n), B(y(n),n(n)), ®)

has an extremum point parametrized by 7 (n). Following assumptions are made for the
closed-loop ES scheme.
Al. There exists a smooth function / : R — R such that

f(y(n),u(y(n),n(n))) = 0if and only if y(n) = h(I(1n)). ©
A2: There exists n* € R such that

(hol)'(n") =0,

(hol)"(n*) <. (19

It is also assumed that the equilibrium point

y="h(I(n)) has a local maximum at 1) = n*. Finding a local maximum is introduced for the
above system dynamics via optimizing the 1 parameter. Extremum seeking optimization
finds the optimal value of the ) parameter as shown in Figure 1. The parameter update of
the discrete-time stochastic ES [4] is

fi(n+1)=17(n)+epl(n),
Cn+1)=C(n) —ewiS(n)wi(J(n+1) — {(n))sin(v(n+ 1)), an
E(n+1)=_C(n)—ewrl(n)+ewrJ(n+1),
J(n4+1)=J(n)+w(n+1),
where p > 0, w; > 0, wp > 0, € > 0 are design parameters. v(n),n = 1,..., is assumed to

be i.i.d. Gaussian random variable sequence. w(n) is the measurement noise with Gaussian
distribution. The convergence theorem with averaging analysis has been given in [3] for the
ESO of discrete-time dynamic process
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Wnt1

l/)n+1 = f(lpnr u(lpnr nn)) ;
Mn ]n = h(xn) jk‘,

T
€p Wy,
z—1 z—1+ew,

asin(Vpy1) SiN(Vp41)
Figure 1. Discrete ES for a dynamic process.

A 4

The 1(n) variable is the optimization output of the ES scheme where its adaptation
is only based on the information of cost function which is always trying to find a local
maximum with second-order adaptation. We propose to use the 1(n) parameter as an
adaptation term of estimation process that improves the estimation of all variables so called
as “hyperparameter”. The update of state and parameter estimation have been written as a
total estimation process

y(n) =y(n—1)+n(n)Ay, (12)
X(n)

with y(n) = [ b (n)} where 1)(n) is obtained by ES scheme. The cost function of estimation
process for ES scheme is introduced as the square of estimation error with J(n) = —(y(n) —
$(n))?. Note that ES optimization run simultaneously to produce 7 (n) parameter in the
proposed scheme i.e. y(n) is estimated and 1 (n) are optimized at each sample index to
optimize the same cost function. EKF estimation has already dynamics to minimize the
cost function by true estimate of the parameters, but in the proposed method, ES scheme
also try to optimize the same cost function in the embedded form. Therefore, the proposed
hyperparameter improves the general performance of estimation.

4. Application Results

We present the application results to verify the effectiveness of proposed approach. Some of
results are presented due to the limited space. For a quantitative comparison, the

performances are measured in terms of RMSE = \/ T XN (08(n)— 6(n))>.

4.1. Identification of a Time-Varying System

A time-varying discrete-time system [12] has been used for system identification. It has a
nonlinear term but its parameters are linear-in-parameters form as

y(n) = 01y(n— 1)+ Oy(n —2) + O3u(n— 1) + Oqu(n —2)> 4+ v(n) (13)

where v(n) is the process noise with normal distribution. It is assumed that 6, and 64
parameters are randomly changing parameters in time with a probability from a set of
values as 6, € [0.4,0.8,1] and 64 € [0.2,0.3,0.5], respectively. On the other hand, the fixed
parameters are 8; = —0.3 and 63 = 0.1, respectively.
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The input signal have four frequency components to improve the persistent excitation,
and guarantee the convergence of estimated parameters as u(n) = 0.7cos(27n/1000) —
0.3cos(27n/700) + 0.1cos(27n/900) — 0.5cos(27n/800). In addition, the process noise
is formulated as v(n) = 0.5sin(27wn/1000)rand() to further increasing of the persistent
excitation. Table 2 gives the RMSE performances and Figure 2 shows the estimation results.

2
o
= = .Estimated 0,
1r7= ~=~a.
1
0
1 L L L L .
0 2 4 6 8 10
Time [s]
o
Oy
= = .Estimated 0,
1t
I
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(a) EKF based parameter estimation.
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(b) ES-EKF based parameter estimation.

Hyperparameter

Time [s]

(c) Hyperparameter of ES-EKF.

Figure 2. Time varying system identification.

Accurate values of the parameters are obtained in a short-time under process noise.
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Figure 3. Setup of the nonlinear servo system.

4.2. Payload and Velocity Estimation of a Servo System

Servo systems are the most common actuators in the industry. In environments where these
systems are changing in time, the control of servo systems might be troublesome. Therefore,
payload estimation has important place for the accurate control. The dynamics of a nonlinear
servo system shown in Figure 3 are given as

xl = X2,
—K2 — bR, Ly . K
Xy = ";{sz — gTsm(xl Yymy, + RT,JM’ (14)
y =X,

where x| is the angular position in radians, and x; is the angular velocity in rad/sec of the
payload, respectively. The payload mass value my is physically unknown and piecewise-
constant in time. The parameters of servo system are listed in Table 1. Euler method is used
for discretization due to the continuous-time dynamics of the nonlinear servo system. The
angular position is assumed to be measured output whereas the velocity and payload mass
value are estimated by discrete EKF and ES-EKEF, respectively. In the estimation, unknown
payload is considered as an external parameter and its change with respect to time is written
as X3 = 0. We add normally distributed artificial noises w and v to the third state and output
measurement with the variances Q = 10~! and R = 1073, respectively. For the estimation,
the linearized system matrices are given as

0 1 0
2
F= —gLTmcos()él))€3 ;K%;;’R’" —gLT"’sin(J?l) 5
0 0 0 (13
H=[1 0 0

First, the data is collected when a simple feedback controller is applied to stabilize the
payload position at /2 where the variation of payload causes an abrupt change of the input
voltage and velocity of the payload, respectively. Figure 4 presents the application results
on the data where the velocity and payload value are accurately estimated with the help
of proposed hyperparameter. The ES based hyperparameter converges to an optimal value.
RMSE value of payload estimation is here improved as 30% seen Table 2. Although the
nonlinear servo system is estimated in [13], the estimation performance of EKF has been
improved in this study.
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Figure 4. ES-EKF estimation results with real-time collected data.

Table 1. Parameters of the servo system.

K,, Electromotive force constant 0.0536 N m/A
b Damping coefficient (viscous friction) 3 x 107 kg/s
R,,  Electric resistance 9.5
J Moment of inertia of rotor and disk 1.91 x 10~* kg m?
g Acceleration due to gravity 9.81 m/s?
L, Payload distance from the center 0.042 m
my,  Unknown payload 0—150 gr
Table 2. RMSE performances.
System L
Method Idenfification Method Servo System Estimation
0 0 Velocity | Payload
2 4 [rad/sec] | [grams]
EKF 0.211 | 0.134 | EKF 0.70 7.51
ES-EKF | 0.174 | 0.071 | ES-EKF 0.59 5.21

5. Conclusion

This paper focused on a hyperparameter design to improve the speed and accuracy of the
estimation. The proposed hyperparameter is the output of extreme seeking method where it
optimizes the estimation process in an embedded form. Numerical results with and without
designed hyperparameter have been compared where a satisfactory level of enhancement
is provided. Resulting that fast convergence of the estimations have been obtained for the
applications of discrete-time time-varying system identification and joint velocity/payload
estimation of a nonlinear servo system, respectively. As a conclusion, the advantage of
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proposed hyperparameter can be used with other methods for various estimation problems
in future.
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