
JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 4, JANUARY 2024 171

L-SecNet: Towards Secure and Lightweight Deep Neural Network
Inference

Anxiao Song1, Jiaxuan Fu1, Xutong Mu1, XingHui Zhu1, and Ke Cheng1

1XIDIAN University 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126

The advances in machine learning technology has promoted its great potential for deep neural network (DNN) inference powered
applications of Internet of Things (IoT), such as facial verification cameras and speech recognition assistants. The current deployment
of these applications also raises serious privacy concerns, especially when sensitive individual information is accessed easily by various
IoT devices. Fortunately, the cryptography-based solutions are able to execute secure inference without infringing the user’s raw
data and the model owner’s proprietary model. However, existing works suffer from impractically high latency and low accuracy,
stemming primarily from the evaluations of the non-linear layers in DNN. In this paper, we propose L-SecNet, a lightweight secure
neural network inference system that provides efficient inference services without sacrificing accuracy and privacy. Specifically, to
reduce latency caused by comparison operations in non-linear layers, we subtly combine additive secret sharing and multiplicative
secret sharing to design a lightweight secure comparison protocol. Further, we approximate the commonly used and time-consuming
activation functions (including Sigmoid and Tanh functions) with the non-linear sin function instead of the linear polynomial
approximation functions in the existing works. In order to maintain low running latency while meeting the requirement of high
accuracy, a secure and lightweight protocol for a sin function is proposed. Our theoretical analysis and empirical experiments
evaluate the security and efficiency of the L-SecNet system. Compared with the state-of-the-art works, L-SecNet saves up to about
80 times bandwidth and about 53 times runtime.

Index Terms—Secure neural network inference, Lightweight comparison, Accurate non-linear Function, Low latency.

I. INTRODUCTION

The rapid advancement in machine learning has fueled the
proliferation of IoT applications, including facial verification
cameras [1] and speech recognition assistants [2]. Due to
resource constraints, users and data owners often outsource
raw user data and deep neural network models to resource-rich
cloud service providers for efficient neural network inference.
However, the raw data contains the user’s personal privacy
information, which raises serious privacy concerns. At the
same time, the private model is also the digital asset of the
model owner, and it also needs to be protected. Therefore,
it is an urgent requirement to ensure the privacy of user data
and models in pushing forward the practices of neural network
inference in IoT.

Recently, there have been growing works on secure neural
network inference [3]–[5] to meet the above pressing demand.
They mainly leverage cryptographic techniques (e.g., Garbled
Circuit [6], Oblivious Transfer [7], Secret Sharing [8] and
other cryptographic knowledge.) to execute network inference
over the encrypted data and model. Unfortunately, these cryp-
tographic works cannot be easily satisfied in the practices since
they involve enormous running latency throughout the whole
online inference phase. In fact, this running latency mainly
stems from the computation in the non-linear layers. In these
layers, they have to consume enormous communication over-
head to support a large number of cryptographic comparison
operations. Especially, with the stacking of non-linear layers in
the neural network architectures, the running latency caused
by comparison operations is further unacceptable for users.

Manuscript received December 15, 2023; revised January 17, 2024. Corre-
sponding author: JiaXuan Fu (email: JiaxuanFu@stu.xidian.edu.cn)

Model User Model Owner

Cloud Servers

Private Model

Inference Result

Sensitive Data

Communications

Fig. 1. Secure network inference system of the powerful network models

Therefore, slow cryptographic non-linear layers have become
the primary obstruction to efficient secure inference services.

A few state-of-the-art works have also sought to study trade-
off solutions in terms of computation and accuracy. They
attempt to replace expensive non-linear layers with cheap
polynomial approximation functions [9]–[11]. Unfortunately,
[12]–[14] works have shown that these approximated polyno-
mial approximation functions result in a loss of the model’s
accuracy since the errors of these approximation functions can
bring about low-distortion outputs of the next layer. Although
the accuracy of cryptographic inference can be improved
by expanding the degree of the approximated polynomial
function, the running latency grows exponentially with the
degree. Therefore, the practical and secure inference service
requires new optimization approaches to reduce the running
latency from non-linear layers while maintaining inference
accuracy.

To address the above issues, we propose a lightweight
secure neural network inference system, L-SecNet, which can

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 4, JANUARY 2024 172

provide efficient inference services on sensitive data without
sacrificing accuracy and privacy. As shown in Fig. 1, the user
and the model owner firstly encrypt their own sensitive data
and private model by the secret sharing technique, respectively.
Secondly, the two cloud servers stitch the protocols of any
layer in the neural network automatically and sequentially
to obtain the entire computation of secure inference. And
the computation only runs on the servers, which frees the
resource of the user and model owner during the online
inference phase. Finally, the produced result of the two servers
is distributed to users in secret sharing. Besides, we ensure
that the activation functions of non-linear layers are fast and
accurate expressions without decreasing accuracy and com-
promising privacy. For ReLU and max-pooling in non-linear
layers, we design a lightweight secure comparison protocol
based on the combination of multiplicative secret sharing and
additive secret sharing to reduce running latency. To maintain
high accuracy with the requirement of low running latency,
we design new approximation functions based on the non-
linear sin function to replace Sigmoid and Tanh in the non-
linear layers, rather than the linear polynomial approximation
functions in the existing works. Accordingly, we present a
lightweight secure protocol of the sin function to realize these
approximation functions. We demonstrate the security and
efficiency of L-SecNet system from theoretical analysis and
empirical experiments.

Our contributions can be summarized as follows:

• We propose a lightweight and secure inference system, L-
SecNet, which can protect privacy data for both user and
model owner. L-SecNet implements all secure protocols
of neural network layers based on additive secret sharing
technology and automatically stitches the protocols of any
layer to obtain the whole secure computation process of
any neural network.

• For ReLU and max-pooling in non-linear layers, we
design a lightweight secure comparison protocol by using
multiplicative secret sharing and additive secret sharing in
combination. The protocol reduces enormous overheads
of communication and computation.

• For maintaining high accuracy of inference, we adopt
the non-linear sin to approximate Sigmoid and Tanh in
the non-linear layers, instead of the linear polynomial
approximation functions. Furthermore, we devise a new
lightweight secure protocol of the sin function to achieve
the secure approximation of activation functions, which
reduces the running latency of cryptographic inference.

• The security and efficiency of L-SecNet are demonstrated
by the theoretical analysis and empirical experiments.
Compared with the prior works, L-SecNet can reduce up
to about 80× bandwidth and 53× computation cost in
the online inference phase.

The remainder of this paper is organized as follows. In
Section II, we briefly review some relevant preliminaries. Then
we introduce the system workflow and threat model along
with the design goal in Section III. We describe the secure
comparison protocols in Section IV and the privacy-preserving
protocols of network inference in Section V, followed by

their security analysis in Section VI. Next, The performance
evaluation is given in Section VII. Finally, we review related
works in Section VIII and this paper is concluded in Section
IX.

II. RELATED WORKS

Secure neural network inference has remarkable potential in
many applications and has attracted more and more attention.
CryptoNets [15] proposed by Gilad-Bachrach et al. was the
first secure neural network, using homomorphic encryption
technology in 2016. However, its practicality is limited by
enormous running latency. SecureML [9] was the first work
based on Secure MultiParty Computation (SMC) technology
for secure training and inference. However, this work is still
inefficient and can only support very simple models.

Therefore, more and more researchers have begun to study
the low-running latency systems of secure neural network
inference systems. Liu et al. [16] proposed an oblivious
neural network prediction system, MiniONN, based on SPDZ
protocol. Demmler et al. [17] proposed a hybrid learning
framework, ABY, which uses Yao’s GC, boolean secret sharing
and arithmetic secret sharing to implement the nonlinear and
the linear operations of SMC. Furthermore, Arpita et al.
[18] presented a improved mixed-protocol with secure two-
party computation, ABY2, an optimization of ABY. Juvekar
et al. [19] designed Gazelle framework with the optimized
HE for linear layers and GC for non-linear layers. Yet, they
introduce expensive cryptographic primitives to support the
secure comparisons required in nonlinear layers, and it has
been proved that their efficiency has not been greatly improved
in deep neural networks [20]. In recent years, some studies
have tried to design a compromise solution to approximate the
nonlinear functions into the linear crypto-friendly polynomials,
reducing running latency. Pratyush Mishra et al. [10] proposed
a cryptographic neural networks inference service system,
DELPHI, with selective quadratic approximation activations.
Qian Lou et al. [20] proposed a secure and fast inference
system for the neural network, SAFENet, with multiple degree
and layer-wise mixed precision polynomials. Although these
solutions speed up the inference services, they lead to a decline
in inference accuracy. Especially for complex neural networks,
replacing the nonlinear layer will significantly reduce the
accuracy of their solutions.

Different from the above works, we design a new secure
comparison protocol to reduce running latency produced by
comparison in the nonlinear layers. Besides, we first intro-
duce the nonlinear sin function to approximate the activation
functions in the nonlinear layers and design a new lightweight
secure protocol of sin function to implement these approx-
imation functions, reducing running latency while retaining
inference accuracy.

III. PRELIMINARY

In this section, we review the cryptographic primitives of
additive secret sharing [8]. For the sake of readability, Table
I summarizes the notations used in our work.

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 4, JANUARY 2024 173

Model

𝑺𝟎

𝑺𝟏
SecReLU

SecConv

SecMaxPool

SecSigmoid

SecAdd

SecMul

SecIntMSB

SecFloatMSB

𝑓 0
Secure Protocol

𝑓 1

𝑥 0

𝑥 1

𝑚 0

𝑚 1

Rose

𝑥

𝑓

Data

𝑚
Result

①

①

①

② ②

③

①

Fig. 2. Workflow of L-SecNet system: the user and model owner firstly send secret-sharing ⟨x⟩ and ⟨m⟩ into S0 and S1, respectively. Next, S0 and S1

allow secure two-party computation protocols to ⟨f⟩ = ⟨m(x)⟩. Finally, user computes the inference result f = ⟨f⟩0 + ⟨f⟩1.

TABLE I
NOTATION DESCRIPTIONS

Notations Definitions

⟨x⟩ = (⟨x⟩0, ⟨x⟩1) 2-out-of-2 additive secret sharing of x
⟨x⟩i Secret sharing of x is held by Si for i ∈ {0, 1}
⟨f⟩ Secret sharing result of object function f
m Neural network of model owner.
⟨m⟩i Secret sharing of m is held by Si for i ∈ {0, 1}.

A. Additive secret sharing

In the additive secret sharing technique, all values are secret
shares between two servers such that the addition of two secret
shares yields the true value. In the following, we provide a
concise overview of the secure addition and multiplication
protocol in the additive secret sharing technique.

1) Secure Addition
In the secure addition protocol, the objective function is

f(x, y) = x+ y. Given the secret shares ⟨x⟩, ⟨y⟩, each server
Si performs ⟨f⟩i = ⟨x⟩i+⟨y⟩i locally and individually without
interaction with each other, and outputs the secret-sharing
the result ⟨f⟩i. Obviously, we have f(x, y) = ⟨f⟩0 + ⟨f⟩1
from two secure computation parties. Besides, if the objective
function is f(x, c) = x + c and c is a constant value, Si

performs ⟨f⟩i = i × c + ⟨x⟩i, and outputs the secert-sharing
result ⟨f⟩i.

2) Secure Multiplication
In the secure multiplication (SecMul) protocol, the objective

function f(x, y) = x × y is computed without leaking any
privacy data x and y. In the protocol, Beaver’s multiplication
triples of the form {a = ⟨a⟩0 + ⟨a⟩1, b = ⟨b⟩0 + ⟨b⟩1, c =
a× b = ⟨c⟩0 + ⟨c⟩0} firstly are constructed by using Beaver’s

triplet [21] technology in the offline stage. Secondly, each
server Si masks the privacy input ⟨u⟩i = ⟨x⟩i − ⟨a⟩i and
⟨e⟩i = ⟨y⟩i − ⟨b⟩i and sends them into S1−i. Thirdly, the two
servers reconstruct u = ⟨u⟩0 + ⟨u⟩1 and e = ⟨e⟩0 + ⟨e⟩1.
Finally, each server Si computes ⟨f⟩i = i × e × u + e ×
⟨a⟩i+u×⟨b⟩i+⟨c⟩i and outputs ⟨f⟩i. If x, y, a, b and c are in
the field of Z2, the addition and multiplication operations of
the SecMul are converted into AND (∧) and XOR (⊕) of bit
operations, respectively. We denote the secure multiplication
protocol in Z2 as SecMul2. Besides, if the objective function
f(x, c) = c×x and c is a constant value, Si performs ⟨f⟩i =
c× ⟨x⟩i and outputs ⟨f⟩i.

Note that Beaver’s multiplicative triples can be generated
via homomorphic encryption (HE) or correlated oblivious
transfer (COT) in an offline stage. Therefore, we assume that
the triples are pre-computed and available for use in our
system.

B. Multiplicative secret sharing

In the multiplicative secret sharing technique, all values are
secret shares between two servers such that the Multiplication
of two secret shares yields the true value, i.e, u = ⟨u⟩0 ×
⟨u⟩1. Similar to additive secret sharing, multiplicative secret
sharing defines a threshold scheme. Note that it is not suitable
to use multiplicative secret sharing over some fields such as
Z2 because if one of the shares is 0, the party could infer that
the secret must also be 0, resulting in a privacy leak. the party
could know the secret is 0. Therefore, it is necessary to handle
the privacy leakage of the secret 0 carefully and correctly.

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 4, JANUARY 2024 174

IV. SYSTEM OVERVIEW

A. System Workflow

L-SecNet system consists of three entities: model user,
model owner, and two independent cloud servers. The model
user has sensitive data x on which he wishes to apply inference
services. The model owner has a proprietary model m for
publishing into cloud servers to get paid. The two servers
S0 and S1 run the encrypted model on the user’s encrypted
data together with our proposed secure protocols in the online
phase. As illustrated in Fig. 2, we provide an overview of the
workflow of secure inference services using L-SecNet system.

L-SecNet system works as follows: To protect the propri-
etary model m, the model owner generates secret shares ⟨m⟩0
and ⟨m⟩1 based on the secret sharing protocols Then, ⟨m⟩0
and ⟨m⟩1 are sent into the two servers S0 and S1, respectively.
Besides, we develop all secure protocols of neural network
layers based on additive secret sharing technology in the two
servers. Once the secret share ⟨m⟩i arrives on each server, Si

automatically searches the execution flow of ⟨m⟩i according
to its architecture. And Si automatically stitches all secure
protocols of network layers in order to obtain a whole secure
protocol of inference service, enabling Si to begin with the
secret shares of the input layer and end with the secret shares
of the output layer. Finally, the user protects his sensitive
data x to generate the secret shares ⟨x⟩0 and ⟨x⟩1 with the
secret sharing technique. And ⟨x⟩0 and ⟨x⟩1 are fed into the
corresponding server. The two servers work coordinately to
run the secure inference protocol and send the secret-shared
outputs ⟨f⟩0 and ⟨f⟩1 into the model user after finishing the
computation. The model user only adds the two outputs to
compute the inference result f labeled the class of his private
input.

B. Threat Model

Similar to prior works [22], [23] in the two-cloud-server
setting, we assume that the model user, the model owner,
and the two independent cloud servers from the different
cloud providers all are semi-honest and non-colluding. In
other words, each server will allow all protocols exactly as
specified yet may attempt to learn the privacy information of
the user or model owner from their known data. If corruption
happens in our system, an adversary can compromise at most
one of the two servers and either the model user or the model
owner, while the other parties keep honest behavior. In fact,
the reason behind our assumption is that cloud provider are
unwilling to bear the risk of damaging their reputation and
interest due to the strict privacy policy, thus avoiding behaving
maliciously and colluding.

C. Design Goals

L-SecNet aims to build a secure and lightweight system for
network inference services. Specifically, our goals are given
as follows:

• Correctness. The encrypted outputs of all secure proto-
cols have to be decrypted correctly.

• Security. Our inference system should be provably secure
under the semi-honest threat model such that any privacy
of the user and model owner can not be leaked from the
cloud servers during the execution of all protocols.

• Low running latency and High accuracy. The primary
objectives of our research is to minimize running latency
in neural network inference processes, particularly in
resource-constrained environments. Additionally, we will
emphasize the importance of maintaining high accuracy
in these inference processes, as this is a critical factor for
the practical application of such systems.

V. LIGHTWEIGHT SECURE COMPARISON

In the comparison, the objective function is f(x, y) = x <
y, where the function output f = 0 if and only if x < y,
otherwise f = 1. To implement a secure comparison protocol,
we combine multiplicative secret sharing with additive secret
sharing to devise a lightweight secure comparison protocol.
To determine the most significant bit (MSB) of the integer
x with privacy protection, we first present a low-running
latency secure integer MSB (SecIntMSB) protocol in the
secret-shared domain. Besides, since most of the parameters in
private inputs and neural networks are float numbers, we also
construct the secure float MSB (SecFloatMSB) protocol based
on the SecIntMSB protocol, which can compare the floating-
point number x and 0 efficiently and securely through three
interactions between S0 and S1 without leaking any privacy
inputs. If the SecFloatMSB protocol is executed in parallel,
SecFloatMSB protocol only requires two interactions between
S0 and S1. Finally, we can rely on the two above protocols to
naturally expand to the secure comparison (SecCom) protocol
of two arbitrary numbers.

A. Secure MSB of Integer Protocol

SecIntMSB only requires one interaction between S0 and
S1, reducing the communication overhead between the two
servers. The protocol is illustrated in detail in Algorithm 1,
and we have also proved the correctness of the algorithm.
In Algorithm 1, our idea is to convert x = ⟨x⟩0 + ⟨x⟩1 to

Algorithm 1 Secure Integer MSB Protocol (SecIntMSB)
Input: Si has ⟨x⟩i ∈ F, where i ∈ {0, 1}.
Output: Si outputs ⟨f⟩i.

1: The multiplication triples (a, b, c = a×b+η = ⟨c⟩0+⟨c⟩0)
are generated in the stage, where η ∈ (0, 1).

2: (a, ⟨c⟩0) and (b, ⟨c⟩1) are sent into S0 and S1, respectively.
3: S0 computes e = (⟨x⟩0 − ⟨c⟩0)/a. and sends e into S1.
4: S1 computes ⟨u⟩1 = e+ b and d = (⟨x⟩1 − ⟨c⟩1)/⟨u⟩1.
5: S1 sends d into S0.
6: S0 computes ⟨u⟩0 = d+ a.
7: Si extracts the secret-sharing MSB ⟨f⟩i = ⟨u⟩i > 0.

x = ⌊⟨x⟩0+ ⟨x⟩1+η⌋ = ⌊⟨u0⟩×⟨u1⟩⌋ for obtaining the signs
of x, where ⌊.⌋ indicates a rounding-down operation. Then,
we are only required to extract the MSB of ⟨u0⟩ and ⟨u1⟩,
respectively, and only perform XOR operation to obtain the

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 4, JANUARY 2024 175

MSB of x. Thus, we only need to prove x = ⌊⟨x⟩0 + ⟨x⟩1 +
η⌋ = ⌊⟨u⟩0 × ⟨u⟩1⌋ is correct, which is given as follows:

⟨u⟩0 × ⟨u⟩1 = (d+ a)× (e+ b)

= (e+ b)× d+ a× e+ ab

= ⟨x⟩0 − ⟨c⟩0 + ⟨x⟩1 − ⟨c⟩1 + ab

= ⟨x⟩0 + ⟨x⟩0 + η

≈ ⌊⟨x⟩0 + ⟨x⟩1 + η⌋
= x.

(1)

Note that, η ∈ (0, 1) is introduced to avoid leaking the privacy
input x = 0 on the online computation in S1. However, η does
not change the sign of any x ∈ Z, since x + 1 > x + η > x
is correct.

B. Secure MSB of Float Protocol
SecFloatMSB protocol is based on the SecIntMSB proto-

col, which can discriminate the sign of any float number x ∈ F
with preserving the privacy of the data. The protocol only
requires three interactions to share the sign of x between S0

and S1 on the online phase. The realization of SecFloatMSB
protocol is shown in detail in Algorithm 2.

Algorithm 2 Secure Float MSB Protocol (SecFloatMSB)
Input: Si has ⟨x⟩i ∈ F, where i ∈ {0, 1}.
Output: Si outputs ⟨f⟩i.

1: Si extracts the integer part ⟨xint⟩i of ⟨x⟩i.
2: Si computes ⟨α⟩i = SecIntMSB(⟨xint⟩i) and ⟨β⟩i =

SecIntMSB(⟨−xint⟩i).
3: Si computes ⟨κ⟩i = ⟨α⟩i ⊕ ⟨β⟩i ⊕ (i ∧ 1)
4: Si turns ⟨x⟩i−⟨xint⟩i into a integer number ⟨xfrac→int⟩i.
5: Si computes ⟨τ⟩i =SecIntMSB(⟨xfrac→int⟩i).
6: Si outputs ⟨f⟩i = SecMul2(⟨κ⟩i, ⟨α⟩i)+SecMul2((1∧i)⊕

⟨κ⟩i, ⟨τ⟩i).

MSB(x) =

{
⟨xint⟩0 > ⟨xint⟩0 α ̸= β

⟨x⟩0 − ⟨xint⟩0 > ⟨x⟩1 − ⟨xint⟩1 α = β

= κ× α+ (1− κ)× τ

(2)

where κ = 1 iif α ̸= β, and α, β, τ are the signs of xint,−xint

and xfrac→int, respectively.
The correctness of the SecFloatMSB protocol, as outlined in

Algorithm 2, can be easily established. A crucial aspect of this
protocol is the handling of floating-point numbers to prevent
division by zero exceptions,as followed in Eq. (2), a common
issue when extracting the MSB based on the SecIntMSB
protocol. To address this, we divide the floating-point number
x into two components: the integer part xint and the fractional
part x−xint. We then convert the fractional part into an integer
x̄, ensuring that our protocol can operate without encountering
division by zero errors. The sign of x is determined based
on these components. If xint differs from its negative, i.e., if
xint ̸= −xint, then the sign of x is the same as that of xint.
In cases where xint is equal to its negative, the sign of x is
derived from the integer representation of the fractional part,
denoted as xfrac→int.

VI. LIGHTWEIGHT PRIVACY-PRESERVING
NETWORK INFERENCE

The architectures in the neural network can be broken into
linear and non-linear layers. For example, linear layers include
the fully connected layer, convolutional layer, and average
pooling layer. Besides, the non-linear layers include ReLU,
Sigmoid, Tanh, and max-pooling. In the following, We give
secure protocols for all layers to realize the task of neural
network inference.

A. Secure Fully Connected Layer and Convolutional Layer

The fully connected layers and convolutional layers are the
most common unit of neural networks and essentially perform
matrix multiplication operation [24]. The objective function of
each neuron in the network can be expressed as follows:

z =

n∑
i=0

xi × wi + bias (3)

where x = [x1, ..., xn] is the n-dimensional vector or the
activation vector of previous hidden layer, w = [w1, ..., wn]
is the n-dimensional weight of each neuron and bias is the
bias of each neuron.

To preserve private input over matrix multiplication opera-
tion, we present a secure matrix multiplication (SecMatMul)
protocol to achieve the Eq. 3 in the secret-shared domain.
SecMatMul is similar to SecMul, and both protocols are
inspired by the idea of Beaver’s triplet technology. Specifi-
cally, Beaver’s multiplication matrix triplet (c = a · b, a =
⟨a⟩0 + ⟨a⟩1,b = ⟨b⟩0 + ⟨b⟩1, c = ⟨c⟩0 + ⟨c⟩0) are gen-
erated on the offline stage. Then, each server Si takes the
secret shares of private input matrix ⟨x⟩i and private weight
matrix ⟨w⟩i as input and outputs the result of SecMatMul:
⟨f⟩i = i×e ·u+e · ⟨b⟩i+⟨a⟩i ·u+⟨c⟩i, where e = ⟨x⟩i)−⟨a⟩i
and u = ⟨w⟩i − ⟨b⟩i.

Therefore, for the secure convolutional (SecConv) layer
or the secure fully connected layer (SecFC) layer, Si will
compute:

⟨f⟩i = SecMatMul(⟨x⟩i, ⟨w⟩i) + i× bias. (4)

where bias is the bias matrix and i ∈ {0, 1}.

B. Secure Activation Layers

The activation layers introduce nonlinear properties into the
neural network, and they are very sensitive to understanding
the dynamics of neural networks. The popular recommenda-
tion in activation layers of modern neural networks is to use
ReLU, Sigmoid, and Tanh functions, which are applied to
each neuron of the network. Therefore, based on basic secure
protocols, we first present a series of efficient, secure activation
function protocols with low interactions in the secret-sharing
domain.

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 4, JANUARY 2024 176

1) Secure ReLU
The secure ReLU proceeds with the objective function

ReLU(x) = max (x, 0) on each neuron over secret sharing
domain. In other words, two servers work together to compute
ReLU(x) = s× x without leaking any privacy data, where if
x ≥ 0, s = 1, otherwise, s = 0. Prior works often utilized
the heavyweight garbled circuit techniques [25], the linear
activation functions (e.g., square function [26]) or the secure
MSB protocol [23] based on the adder accumulator. However,
they require intensive interaction that is unsuitable for real-
world secure inference services. To reduce interactions, we
propose an efficient secure ReLU function (SecReLU) pro-
tocol which only requires four interactions between S0 and
S1. The pseudo-code of the protocol is shown in detail in
Algorithm 3.

Algorithm 3 Secure ReLU Function Protocol (SecReLU)
Input: Si has the input ⟨x⟩i ∈ F, where i ∈ {0, 1}.
Output: Si outputs ⟨f⟩i.

1: Si gets ⟨β⟩i = SecFloatMSB(⟨x⟩i).
2: Si computes ⟨α⟩i = ⟨β⟩i ⊕ (i ∧ 1).
3: Si computes ⟨s⟩i = ⟨a⟩i + ⟨b⟩i − 2× SecMul(⟨a⟩i, ⟨b⟩i),

where ⟨a⟩0 = ⟨α⟩0, ⟨a⟩1 = 0, ⟨b⟩0 = 0, ⟨b⟩1 = ⟨α⟩1.
4: Si outputs ⟨f⟩1 = SecMul(⟨s⟩i, ⟨x⟩i).

2) Secure Sigmoid and Secure Tanh
In the secure sigmoid function, the objective function

δ(x) = 1/(1 + e−x) is computed on each neuron in se-
cret sharing domain. Previous works that solved this func-
tion are either relying on the approximate piecewise multi-
degree polynomials or utilizing the approximate piecewise
linear polynomials [9], [27]. However, the former requires
intensive communication costs since it introduces multiple
comparison operations in the encryption domain. And the
latter would introduce a serious activation accuracy error in
the range [−5, 5]. Unlike prior works, we present a new
secure Sigmoid function (SecSigmiod) protocol with high
precision, which brings almost no extra computation overhead
to the underlining spectrum auction and incurs only limited
communication overhead. We transform the sigmoid function
to an approximate Eq. 7 with Fourier Expansion method.
As shown in the Fig. 3, compared to other approximation
functions (Eq.5 specified in SecureML and Eq.6 specified
in), ours approximation function (in the Fig. 3(d)) fits the
best and its MSE (Mean Squared Error) is 0.0003.

δ1(x) =

0 x ≤ −5

0.1x+ 0.5 −5 < x < 5

1 x ≥ 5

(5)

δ2(x) =

0 x ≤ −4

0.006x5 − 0.147x3 + 0.241x+ 0.5 −4 < x < 4

1 x ≥ 4
(6)

δ
′
(x) =

0 α = (x ≤ −5)

g(x) γ = (−5 < x < 5)

1 β = (x ≥ 5)

= (g(γ × x)× (1− α) + α)× (1− β)

(7)

where g(x) = 0.1x + 0.5 − (0.1828sin(0.652x + 3.142) +
0.01953sin(1.428x−3.142)). In other words, the two servers
work together to proceed with the function (g(γ × x)× (1−
α)+α)×(1−β)), where if x ≤ −5, α = 1, otherwise, α = 0,
if −5 < x < 5, γ = 1, otherwise, γ = 0, and if x ≥ 5, β = 1,
otherwise, β = 0.

Algorithm 4 Secure Sin Function Protocol (SecSin)
Input: Si inputs ⟨x⟩i.
Output: Si outputs ⟨f⟩i.

1: Beaver’s multiplication triples (a = ⟨a⟩0+⟨a⟩1, b = ⟨b⟩0+
⟨b⟩1, c = a× b = ⟨c⟩0 + ⟨c⟩0) are generated in the offline
stage.

2: Si computes sin(⟨xi⟩), cos(⟨xi⟩).
3: Si(i ∈ {0, 1}) computes ⟨u⟩i = sin(⟨x⟩i) − ⟨a⟩i, ⟨e⟩i =

cos(⟨x⟩i)− ⟨b⟩i and sends ⟨u⟩i and ⟨e⟩i into S1−i.
4: Si computes u = ⟨u⟩0 + ⟨u⟩1 and e = ⟨e⟩0 + ⟨e⟩1.
5: Si outputs ⟨f⟩i × e × u + e × ⟨a⟩i + u × ⟨b⟩i + ⟨c⟩i −

sin(⟨x⟩i)cos(⟨x⟩i).

Before realizing SecSigmiod protocol based on Eq. 7, we
first present a new secure sin function (SecSin) protocol,
which only requires one interaction between Si and S0.
The pseudo-code of this protocol is shown in detail in the
Algorithm 4. Besides, due to Eq. (8) holds true, then it directly
validates the correctness of Algorithm 4. This relationship
is crucial as it underpins the theoretical foundation of our
proposed method. By establishing the validity of Equation
(8), we consequently affirm the accuracy and reliability of
Algorithm 4 within our framework.

sin(x) = sin(⟨x⟩0 + ⟨x⟩1)
= ef + e(⟨a⟩0 + ⟨a⟩1) + u(⟨b⟩0 + ⟨b⟩1) + ⟨c⟩1 + ⟨c⟩0
− sin(⟨x⟩0)cos(⟨x⟩0)− sin(⟨x⟩1)cos(⟨x⟩1)

(8)

where e = sin(⟨x⟩0) + sin(⟨x⟩1) − a and u = cos(⟨x⟩0) +
cos(⟨x⟩1)− b.

Based on the proposed SecSin protocol, it is easy for us to
construct the SecSigmoid protocol. Specifically, each server
Si(i ∈ {0, 1}) first obtains the secret sharing MSB of x+5 (i.e,
x−(−5) > 0) and x−5 (i.e, x−5 > 0), respectively. Then, Si

computes the secret shares ⟨zi⟩ of g(x). Finally, Si outputs the
secret sharing result ⟨fi⟩ = SecMul(SecMul(⟨x⟩i, (−⟨α⟩i +
i)) + ⟨α⟩i), (−⟨β⟩i + i)).

Finally, since Tanh(x) = 2Sigmoid(2x) − 1, the secure
Tanh function protocol is expanded by utilizing the SecSig-
mod protocol. In brief, each server Si(i ∈ {0, 1}) only com-
putes the secret sharing output ⟨f⟩i = 2SecSigmoid(2⟨x⟩i)−i.

C. Secure Pooling Layers
The pooling layer is used to perform a feature downsam-

pling operation within a certain sliding window [28]. The

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 4, JANUARY 2024 177

�� �� �� � � � �

x

���

���

���

���

���

���

y

sigmoid(x)
δ1(x)
����������

(a)

�� �� �� � � � �

x

���

���

���

���

���

���

y

sigmoid(x)
δ2(x)
�����������

(b)

�� �� �� � � � �

x

���

���

���

���

���

���

y

sigmoid(x)
δ ′(x)
�����������

(c)

Fig. 3. Comparison of Different Approximation Functions with Sigmoid Function

Algorithm 5 Secure Sigmoid Function Protocol (SecSigmoid)
Input: Si has the input ⟨x⟩i ∈ F, where i ∈ {0, 1}.
Output: Si outputs ⟨f⟩i.

1: Si sets k1 = 0.1828, k2 = 0.652, k3 = 0.01953, k4 =
1.428 and m = 3.142.

2: Si gets ⟨α⟩i = SecFloatMSB(⟨x⟩i − 5i) and
⟨β⟩i =SecFloatMSB(⟨x⟩i + 5i).

3: Si computes ⟨x⟩i = (⟨α⟩i − 1)× (⟨β⟩i − 1)× ⟨x⟩i
4: Si sets ⟨u⟩i = k2⟨x⟩i+m× i and ⟨d⟩i = k4⟨x⟩i−m× i.
5: Si computes:

⟨z⟩i = 0.1⟨x⟩i+0.5i-(k1SecSin(⟨u⟩i)+k3SecSin(⟨d⟩i)).
6: Si computes ⟨s⟩i = ⟨a⟩i + ⟨b⟩i − 2SecMul(⟨a⟩i, ⟨b⟩i),

where ⟨a⟩0 = ⟨β⟩0, ⟨a⟩1 = 0, ⟨b⟩0 = 0, ⟨b⟩1 = ⟨β⟩1.
7: Si computes ⟨ᾱ⟩i = ⟨a⟩i + ⟨b⟩i − 2SecMul(⟨a⟩i, ⟨b⟩i),

where ⟨a⟩0 = ⟨α⟩0, ⟨a⟩1 = 0, ⟨b⟩0 = 0, ⟨b⟩1 = ⟨α⟩1.
8: Si computes ⟨fi⟩ = SecMul(SecMul(⟨z⟩i, (−⟨α⟩i + i))+

⟨α⟩i), (−⟨β⟩i + i)).

popular pooling layers has the max pooling function and the
average pooling function. If the average pooling function is
used in the neural network, the two servers only perform se-
cure addition protocol locally within a rectangular neighboring
window, which is trivial in the secret-sharing protocols.

The max-pooling function is to compute the maxi-
mum within a certain sliding window, i.e., f(x1, ...xn) =
max(x1, ..xn), where a sliding window contains n values.
Therefore, the pairwise maximum operations in the max
pooling function are first transformed into the comparison
operation based on the SecMSB protocol via Eq. 9 and a
secure linear function on Eq. 10, which is a similarity to the
SecReLU protocol:

β = SecMSB(x1 − x2)

{
0 x1 >= x2

1 x1 < x2

(9)

max(x1, x2) = (1− β)x1 + βx2. (10)

Next, we adopt img2col technology to convert the max-pooling
tensor into a matrix. Finally, we compute the maximum value
within each sliding window with the parallelization technology
and the divide-and-conquer algorithm.

VII. SECURITY ANALYSIS

The security of our proposed protocols can be proved in
the ideal/real-world simulation paradigm over the universal
composability system [29]–[31]. In the honest-but-curious
system, an adversary A is allowed to corrupt at most one of the
model owners, the model user, or the two cloud servers. If our
protocols are secure, there exists a probabilistic polynomial-
time simulator forging A’s view such that A cannot distinguish
between a real or ideal world. Specifically, the following
definitions and lemma are adopted to prove our protocols.

Definition 1. A protocol can securely compute a functionality
f in the honest-but-curious system if there exists a probabilis-
tic polynomial-time simulator S that can generate a view in
the ideal world for A in the real world and the generated view
is computationally indistinguishable from its real view [32].

Definition 2. A protocol is simulatable if all sub-protocols of
the protocol are simulatable [32].

Lemma 1. If a random value r is uniformly distributed and
is independent of any variable x in a finite field F, the r+x is
uniformly and randomly distributed and is independent with
x [23].

In L-SecNet system, the threats mainly are from the en-
gagement of two honest-but-curious cloud servers. For the
user or the corrupted model owner, their inputs in L-SecNet
are masked locally with the random values to upload to two
cloud servers. It is pretty clear that the adversary A cannot
distinguish whether their transcripts come from the simulator
S or the real world. Thus, we mainly analyze the security of
the communication between two cloud servers.

Theorem 1. SecMul protocol is secure in the semi-honest
system.

Proof. For each server Si in SecMul protocol,
the view of the protocol’s execution is Vi =
(⟨x⟩i, ⟨y⟩i, ⟨a⟩i, ⟨b⟩i, ⟨c⟩i, ⟨e⟩i, ⟨d⟩i), where ⟨e⟩i =
⟨x⟩i − ⟨a⟩i, ⟨u⟩i = ⟨y⟩i − ⟨b⟩i, and the view of the protocol
output is Oi = (⟨f⟩i = i× e×u+ e×⟨a⟩i+u×⟨b⟩i+ ⟨c⟩i).
According to Lemma 1, it is known that all values of Vi and
Oi are uniformly random. Therefore, there is a simulator
S that will interact with a corrupted server Si and both
Vi and Oi are simulated by S. The views of S and A are

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 4, JANUARY 2024 178

computationally indistinguishable due to the randomness of
these views. Thus, the SecMul protocol is secure according
to Definition 1.

Theorem 2. SecIntMSB and SecFloatMSB protocols are se-
cure in the semi-honest system.

Proof. For the server Si in SeIntMSB protocol, the view of
the protocol’s execution is Vi = (⟨x⟩i, a, b, ⟨c⟩i, e, d), where
c = ⟨c⟩i−⟨η⟩i, e = (⟨x⟩i−⟨c⟩i)/a, d = (⟨x⟩1−i−⟨c⟩1−i)/(e+
b), and the view of the protocol output is Oi = (⟨f⟩i = ⟨u⟩i <
0). According to Lemma 1, it is known that all values of Vi and
Oi are uniformly random. Therefore, there is a simulator S
that will interact with a corrupted server Si and both Vi and Oi

are simulated by S. The views of S and A are computationally
indistinguishable due to the randomness of these views. Thus,
SecIntMSB protocol is secure according to Definition 1.
Simultaneously, SecFloatMSB is constructed by SecIntMSB
protocol and SecMul protocol. Therefore, SecFloatMSB is
also secure according to Definitions 2 and 1.

Theorem 3. SecSin protocol is secure in the semi-honest
system.

Proof. We first construct a simulator S to simulate the A′s
view. For A receives sin(⟨x⟩i) and sin(⟨y⟩i) from the real
world, S randomly picks two values ⟨x′⟩i, ⟨y

′⟩i from F and
generates sin(⟨x′⟩i) and cos(⟨y′⟩i). According to Definition
1, A cannot distinguish the view generated by S from the
real view. Besides, the view of SecSin protocol’s execution
on Si is Vi=(sin(⟨x⟩i), cos(⟨x⟩i), ⟨a⟩i, ⟨b⟩i, ⟨c⟩i, ⟨e⟩i, ⟨d⟩i)
where ⟨e⟩i=sin(⟨x⟩i) − ⟨a⟩i, ⟨u⟩i=cos(⟨x⟩i) − ⟨b⟩i, and the
view of the protocol output is Oi = (⟨f⟩i = i × e × u +
e × ⟨a⟩i + u × ⟨b⟩i + ⟨c⟩i − sin(⟨x⟩i)cos(⟨x⟩i)). Therefore,
there is the simulator S that will interact with a corrupted
server Si and both Vi and Oi are simulated by S . According
to Definition 2, The views of S and A are computationally
indistinguishable due to the randomness of these views. Thus,
SecSin protocol is secure according to Definition 1.

Theorem 4. Our protocols of the network model inference are
secure in a semi-honest system.

Proof. In L-SecNet, a network model inference may involve
the secure linear operation, the secure convolutional operation,
the secure activation operation, and the secure pooling opera-
tion. These secure operations can all be built by our secure
basic protocols. Thus, our protocols of the network model
inference are secure according to Definitions 1 and 2.

VIII. PERFORMANCE EVALUATION

A. Experiment Setup

In the experiment, we implement a prototyping system of
L-SecNet in PyTorch. The evaluations of our secure protocols
are executed on two docker servers with Ubuntu 18.04 and
equipped with Intel(R) Core(TM) i7-8700 CPU@ 3.20GHz,
32G RAM, where the communication protocol is the TCP
protocol in the local area network (LAN) between the two
servers. Each server is limited to 2Gbps of upload and down-
load bandwidth.

104 105 106 107
�������

���	

����

����

����

����

���	

����

�
��
��
��
��
�

���������������������
�������
���������

Fig. 4. Scalability of secure computation operations

We conduct experiments over four public real-world
datasets: MNIST is a popular dataset including 28 × 28
greyscale images, where the test dataset has 10,000 examples
and the training dataset has 60,000 examples. CIFAR-10 is a
complex dataset including 32×32 RGB images, where the test
dataset has 10,000 images and the training dataset has 50,000
images. TinyImageNet dataset contains 120, 000 RGB images
of size 64×64 pixels in 200 classes, where each class contains
500 training images, 50 verification images and 50 test images.
SCUT-HEAD is a large-scale head detection dataset, including
4405 images labeld with 111251 heads. Besides, we evaluate
L-SecNet on several neural network architectures including
3FC-ReLU-FC model architecture (Model 1) specified in
Sonic [22] , AlexNet(Model 2), Logistic Regression specified
in SecureML [9], FitNet(Model-3) specified in Sonic [22],
ResNet-32 [35] (Model-4) specified in DELPHI [10], ResNet-
50 (Model-5) specified in CrypTFlow [10], Heads model
(Model-6) with CNNs and RNNs specified in SIRNN [26].

B. Metrics

In secure neural network inference, the running times,
rounds of communaction and network bandwidth are largely
limited to the response time of neural network inference
[36]. Thus, we measure the communication including network
bandwidth and rounds between two cloud servers, while we
also measure the running time including the time of trans-
ferring messages and computation between two servers. The
experimental result reported is an average of over 10 trials.

C. Microbenchmarks

Secure basic protocols. Since we implement the secure
neural network inference system based on secure basic pro-
tocols, their performance is evaluated in our secure system.
First, we still maintain the most remarkable performance of
SecAdd and SecMult operations due to using the most
existing advanced technology. Besides, we mainly measure the
performance of the SecCom operations. As shown in Table II,
we see that the overheads of communication and the runtime
of inference for the secure comparison (SecCom) protocol
are notably less than the prior works [22], [33], [34]. We

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 4, JANUARY 2024 179

TABLE II
COMPARISON OF SECURE COMPARISON PROTOCOL OVER l = 32 BIT-WITH NUMBER

Operations Prior Approach Communication Rounds Bandwidth Runtime (n = 1000 numbers)

SecCom

MSB [33] O(l) 12l − 16 182 ms
MSB (parallel) [22] O(logl) 12l − 6 103 ms

GC [34] O(1) 30kl 1562 ms
Ours O(1) 6l+4 51 ms

3×32×32 3×64×64 3×128×128 3×256×256
0

20

40

60

80

100

120

140

160

180

200

Ru
nt

im
es

 (m
s)

Data sizes

 SecConv
 SecReLU
 SecSigmoid
 SecMaxPool

Fig. 5. Scalability of secure layers in network inference

98.6 98.6 96.96

84.64

Pliantext L-SecNet SecureML CryptTen
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Fig. 6. Accuracy of Logistic Regression on MNIST

analyze that our secure comparison protocol over the 32-bit
number achieves 2×, 2×, 75.6× bandwidth savings and 3.5×,
2×, 30.6× runtime savings compared with the prior works
[22], [33], [34]. To ensure our secure protocols have strong
scalability, we put n numbers into an array of Pytorch to
execute vectorization operations in parallel instead of doing
secure comparisons one by one. As depicted in Fig.4, We can
see that the runtime grows linearly as the size exponentially
grows, and the gap of the runtimes between SecMul and
SecCom is also not large. Therefore, our protocols ensure
the high efficiency of communication and computation in the
secure neural network inference system.

Secure Layers of Network Inference. Since our secure
layers of network inference are implemented based on a series
of our lightweight protocols to outperform those of previous
works, obviously, we emphatically focus on the scalability of
all secure network operations in our secure system on this

TABLE III
SUMMARY OF INFERENCE ACCURACY

Dataset Model L-SecNet Plaintext

MNIST Model-1 98.2% 98.2%
Model-2 99.1% 99.1%

CAFAIR-10 Model-3 83.0% 83.8%
Model-4 82.7% 83.1%

TinyImageNet Model-5 76.8% 79.3%
SCUT-HEAD Model-6 73.2% 77.4%

part. As shown in Fig. 5, the runtime of these operations also
increases as the size of inputs grows. However, it is totally
acceptable for the impact of the secure computation process
for their relatively small runtime.

D. Summary of Accuracy

Table III shows the prediction accuracy of different models
over different datasets in the L-SecNet system and com-
pares the experimental results with the corresponding plaintext
model. As shown, the inference of Model-1 and Model-2 over
MNIST datasets for L-SecNet is the same as that of the corre-
sponding plaintext model, i.e., 98.2% and 99.1%, respectively.
For Model-3 and Model-4 over CAFIR-10 datasets, L-SecNet
achieves 83.0% and 86.7% inference accuracy, which is a
sight lower than the accuracy 83.7% and 87.1% of plaintext
model. For this phenomenon, we analyze that the loss of
model inference accuracy is mainly caused by participating
in computation with floating-point numbers. For Model-5 over
the TinyImageNet dataset and Model-6 over the SCUT-HEAD
dataset, the accuracy of L-SecNet is 4%-5% lower than that
of the plaintext model. The reason for the loss of accuracy
is that the error between the proposed approximate function
and the original function will increase with the depth of the
neural network, affecting the accuracy of L-SecNet. Simulta-
neously, Fig. 6 describes the accuracy of logistic regression on
MNIST and compares the results with the prior works. The
accuracy of L-SecNet still is the same as the plaintext model
outperforms previous work. This is mainly due to the fact that
the error between the proposed approximate function and the
raw sigmoid function is only 0.0003 and does not affect the
inference accuracy of logical regression.

E. Comparison with Prior works

To demonstrate the lightweight, L-SecNet compares with
notable prior works about the secure neural network inference
system in terms of runtime of computation and bandwidth of
communication. All measurements are from their correspond-
ing papers. Tabel IV summarizes of the implementation of

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 4, JANUARY 2024 180

TABLE IV
SUMMARY OF IMPLEMENTATION OVER APPROACHES

Approach Implementation

MiniONN [16] C++
EzPC [37] C++

Chameleon [6] C++
DELPHI [10] C++

Sonic [22] Java
L-SecNet Python

TABLE V
COMPARISON OF L-SECNET WITH PRIOR WORKS ON MNIST

Model Prior Approach Bandwidth Runtime

Model-1

MiniONN 15.8 MB 1.12s
EzPC 70 MB 4.29 s

Chameleon 10.5 MB 2.24s
Sonic 1.8 MB 0.62s

L-SecNet 1.02 MB 0.08s

Model-2

MiniONN 657.5 MB 9.32s
EzPC 501.0 MB 24.5s
Sonic 10.8 MB 13.6s

L-SecNet 7.6 MB 0.54s

the prior works. As shown, the prior works implement their
system with C++, except that Sonic and ours apply Java and
Python to establish the corresponding system, respectively. It
is well-known that the runtime of C++ and Java programs is
faster than Python-based programs. However, L-SecNet is still
ahead of these prior works.

In addition, Tabel V and Tabel VI summarize the runtime
of computation and the bandwidth overheads of communica-
tion on different network models over MNIST and CIFAR-
10 datasets, respectively. As Tabel V shows, L-SecNet can
save up to 68× bandwidth, 53× runtime and no less than
1.79 × bandwidth, 7.5× runtime over Model-1 compared
with prior works on MNIST. L-SecNet can save up to 86×
bandwidth, 45× runtime, and no less than 1.42× bandwidth,
17.2× runtime over model-2 compared with prior works on
MNIST. From Table VI, L-SecNet saves about 9×, 19×, 8×,
3× bandwidth and about and 19×, 9.3×, 2.4×, 2.4×, 3.3×
runtime over Model-3 than MiniONN, EzPC, Chameleon and
Sonic on CIFAR-10, respectively. Besides, to demonstrate our
system for the application of deep models, L-SecNet measures
the overhead of computation and communication over ResNet
on CAFIR-10 and also compares the corresponding results
with DELPHI. The experimental results show that L-SecNet
reduces 4× bandwidth than DELPHI.

TABLE VI
COMPARISON OF L-SECNET WITH PRIOR WORKS ON CAFIR-10

Model Prior Approach Bandwidth Runtime

Model-3

MiniONN 9272 MB 544.0s
EzPC 40683 MB 265.6s

Chameleon 2650 MB 52.67s
Sonic 711 MB 94.7s

L-SecNet 185.27 MB 28.2s

Model-4 DELPHI 6.5GB 200.0s
L-SecNet 1.28GB 68.6s

Finally, we also report the performance of CrpytTFlow2
and SIRNN for evaluating Heads (Model-5) on SCUT-HEAD
and ResNet50 (model-6) on TinyImageNet separately, along
with the performance of L-SecNet for the same model. Table
VII shows that the time to evaluate Model-5 having Sigmoid
and Tanh functions is consuming time, but our protocols save
13.5× bandwidth and 1.08×consuming runtime than SIRNN.
Also, note that we reduce the communication by8.1×and
runtime by 2.3× on Model-6, Compared with CryTFlow2
(SCIHE).

TABLE VII
COMPARISON OF L-SECNET WITH PRIOR WORKS ON LARGE-SCALE

DATASET

Model Prior Approach Bandwidth Runtime

Model-5 SIRNN 85.5GB 409.7s
L-SecNet 6.32GB 378.4s

Model-6 CrypTFlow2 (SCIHE) 32.43GB 295.7s
L-SecNet 3.98GB 128.0s

Based on the above observation, L-SecNet obviously outper-
forms previous works in both the bandwidth of communication
and the runtime of computation via the results of these tables.
This is for the reason that L-SecNet does not use any heavy
cryptographic primitives and can avoid the overheads of com-
putation and communication over encrypted data. Moreover,
these excellent results also benefit from the new lightweight
implementation of secure non-linear layers. More importantly,
we utilize the vectorization technique of Pytorch to perform
all secure protocols of L-SecNet system in parallel to speed
up secure network inference.

IX. CONCLUSION

In the paper, we proposed a lightweight, secure neural
network inference system, namely, L-SecNet. Specifically, we
devised a series of secure and efficient basic protocols to
support all of the lightweight, secure operations of network
inference service, each of which can ensure the privacy
protection of sensitive data for the user and the model owner.
Besides, we also presented a lightweight secure comparison
protocol and new secure accurate activation functions with
low communication overheads, reducing the running latency
of the inference services. Finally, the security and efficiency
of L-SecNet system were demonstrated by theoretical analysis
and empirical experiments. The system saves up to about 80×
bandwidth and about 53× runtime than the existing works in
the online inference phase.

REFERENCES

[1] X. Wu, X. Feng, X. Cao, X. Xu, D. Hu, M. B. López, and L. Liu, “Facial
kinship verification: A comprehensive review and outlook,” International
Journal of Computer Vision, pp. 1–32, 2022.

[2] B. Xu, C. Lu, Y. Guo, and J. Wang, “Discriminative multi-modality
speech recognition,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 14 433–14 442.

[3] Q. Lou, W.-j. Lu, C. Hong, and L. Jiang, “Falcon: fast spectral inference
on encrypted data,” Advances in Neural Information Processing Systems,
vol. 33, pp. 2364–2374, 2020.

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 4, JANUARY 2024 181

[4] M. Samragh, S. Hussain, X. Zhang, K. Huang, and F. Koushanfar,
“On the application of binary neural networks in oblivious inference,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 4630–4639.

[5] A. Brutzkus, R. Gilad-Bachrach, and O. Elisha, “Low latency privacy
preserving inference,” in International Conference on Machine Learning.
PMLR, 2019, pp. 812–821.

[6] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, “Chameleon: A hybrid secure computation frame-
work for machine learning applications,” in Proceedings of the 2018 on
Asia conference on computer and communications security, 2018, pp.
707–721.

[7] L. K. Ng and S. S. Chow, “{GForce}:{GPU-Friendly} oblivious and
rapid neural network inference,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 2147–2164.

[8] N. Koti, M. Pancholi, A. Patra, and A. Suresh, “{SWIFT}: Super-fast
and robust {Privacy-Preserving} machine learning,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021, pp. 2651–2668.

[9] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in 2017 IEEE Symposium on Security and
Privacy (SP), 2017, pp. 19–38.

[10] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in 29th
USENIX Security Symposium (USENIX Security 20), 2020, pp. 2505–
2522.

[11] Z. Ghodsi, A. K. Veldanda, B. Reagen, and S. Garg, “Cryptonas:
Private inference on a relu budget,” in Advances in Neural Information
Processing Systems, vol. 33. Curran Associates, Inc., 2020, pp. 16 961–
16 971.

[12] Q. Lou, Y. Shen, H. Jin, and L. Jiang, “{SAFEN}et: A secure, accurate
and fast neural network inference,” in International Conference on
Learning Representations, 2021.

[13] N. K. Jha, Z. Ghodsi, S. Garg, and B. Reagen, “Deepreduce: Relu
reduction for fast private inference,” in International Conference on
Machine Learning. PMLR, 2021, pp. 4839–4849.

[14] Q. Li, Z. Huang, W.-j. Lu, C. Hong, H. Qu, H. He, and W. Zhang,
“Homopai: A secure collaborative machine learning platform based on
homomorphic encryption,” in 2020 IEEE 36th International Conference
on Data Engineering (ICDE). IEEE, 2020, pp. 1713–1717.

[15] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in International conference on
machine learning. PMLR, 2016, pp. 201–210.

[16] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in Proceedings of the 2017
ACM SIGSAC conference on computer and communications security,
2017, pp. 619–631.

[17] D. Demmler, T. Schneider, and M. Zohner, “Aby-a framework for
efficient mixed-protocol secure two-party computation.” in NDSS, 2015.

[18] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “{ABY2. 0}:
Improved {Mixed-Protocol} secure {Two-Party} computation,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 2165–
2182.

[19] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “{GAZELLE}:
A low latency framework for secure neural network inference,” in 27th
USENIX Security Symposium (USENIX Security 18), 2018, pp. 1651–
1669.

[20] Q. Lou, Y. Shen, H. Jin, and L. Jiang, “Safenet: A secure, accurate and
fast neural network inference,” in International Conference on Learning
Representations, 2020.

[21] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in Annual International Cryptology Conference. Springer, 1991, pp.
420–432.

[22] X. Liu, Y. Zheng, X. Yuan, and X. Yi, “Securely outsourcing neural
network inference to the cloud with lightweight techniques,” IEEE
Transactions on Dependable and Secure Computing, pp. 1–1, 2022.

[23] K. Huang, X. Liu, S. Fu, D. Guo, and M. Xu, “A lightweight privacy-
preserving cnn feature extraction framework for mobile sensing,” IEEE
Transactions on Dependable and Secure Computing, vol. 18, no. 3, pp.
1441–1455, 2019.

[24] C. Nebauer, “Evaluation of convolutional neural networks for visual
recognition,” IEEE transactions on neural networks, vol. 9, no. 4, pp.
685–696, 1998.

[25] M. Ciampi, V. Goyal, and R. Ostrovsky, “Threshold garbled circuits and
ad hoc secure computation,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2021,
pp. 64–93.

[26] D. Rathee, M. Rathee, R. K. K. Goli, D. Gupta, R. Sharma, N. Chandran,
and A. Rastogi, “Sirnn: A math library for secure rnn inference,” in
2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021, pp.
1003–1020.

[27] W.-j. Lu, Z. Huang, C. Hong, Y. Ma, and H. Qu, “Pegasus: bridging
polynomial and non-polynomial evaluations in homomorphic encryp-
tion,” in 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
2021, pp. 1057–1073.

[28] P. Kim, “Convolutional neural network,” in MATLAB deep learning.
Springer, 2017, pp. 121–147.

[29] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium on
Foundations of Computer Science. IEEE, 2001, pp. 136–145.

[30] R. Canetti, A. Cohen, and Y. Lindell, “A simpler variant of universally
composable security for standard multiparty computation,” in Annual
Cryptology Conference. Springer, 2015, pp. 3–22.

[31] A. Ben-David, N. Nisan, and B. Pinkas, “Fairplaymp: a system for
secure multi-party computation,” in Proceedings of the 15th ACM
conference on Computer and communications security, 2008, pp. 257–
266.

[32] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework
for fast privacy-preserving computations,” in European Symposium on
Research in Computer Security. Springer, 2008, pp. 192–206.

[33] Y. Zheng, H. Duan, and C. Wang, “Towards secure and efficient
outsourcing of machine learning classification,” in European Symposium
on Research in Computer Security. Springer, 2019, pp. 22–40.

[34] M. Keller, E. Orsini, and P. Scholl, “Mascot: Faster malicious arithmetic
secure computation with oblivious transfer,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.
Association for Computing Machinery, 2016, p. 830–842.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[36] X. Liu, B. Wu, X. Yuan, and X. Yi, “Leia: A lightweight cryptographic
neural network inference system at the edge,” IEEE Transactions on
Information Forensics and Security, vol. 17, pp. 237–252, 2021.

[37] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tripathi, “Ezpc:
programmable and efficient secure two-party computation for machine
learning,” in 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 2019, pp. 496–511.

