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In this paper, we proffer a novel technique designed for low-cost and computationally light localization of mobile nodes in an
urban terrain, by leveraging the extended COST 231 Hata Path-Loss (PL) model and the Trilateration technique. Our approach
accounts for the possibility of a Non-Line-of-Sight (NLoS) scenario in a medium-sized city, wherein one of the three reference nodes
required for the trilateration approach encounters NLoS impediments. Our proposed method proceeds with localization by utilizing
solely two Line-of-Sight (LoS) reference nodes, while integrating the localization system simulator with an Extended Kalman Filter
(EKF). The simulation results presented herein demonstrate a marked enhancement in performance, surpassing that of trilateration
in scenarios where three LoS nodes cannot be established.
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I. INTRODUCTION

LOCALIZATION , defined as the process of estimating the
orientation and position of a moving object, has already

become an instrumental feature of the universal Smart-X
applications [1], being studied since the emergence of wireless
mobile technology. Numerous applications in our modern
world benefit from location-aware communications, includ-
ing Autonomous Driving, Industrial IoT (IIoT), and Tactile
Internet. Wireless location-based systems are revolutionizing
internet-based applications and remote physical interaction,
evolving them into more sophisticated systems [2]. Over recent
decades, various localization techniques have been proposed,
utilizing visible light [3], ultrasound [4], inertial sensors [5],
hybrid signals [6], and, specifically, Radio Frequency (RF)
[7], which is our focus here. RF signals, as the omnipresent
feature of current cellular networks, are immensely deployed
for location estimation. Based on RF measurements, location
determination techniques can be categorized into Angle of
Arrival (AoA) [8], Time of Arrival (ToA) [9], and Received
Signal Strength (RSS) [10]. ToA localization systems offer
centimeter-level accuracy but require high precision time syn-
chronization (nanosecond-level) between wireless reference
nodes and mobile nodes, making them costly. AoA local-
ization systems still necessitate specific hardware including
a phase-detection mechanism. Besides, since this technique
uses angles, error can start to rise as the distance between
the reference and mobile node increases. Considering all
these issues, the cost and the complexity of AoA and ToA
location estimation solutions limit their feasibility in low-
cost, unsophisticated applications. In contrast to ToA or AoA,
the RSS technique is straightforward to implement and cost-
effective. It is compatible with basic legacy consumer devices
and can be applied to estimate distances using parametric
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Path-Loss (PL) models. However, it provides relatively lower
accuracy compared to ToA and AoA methods.

PL between a transmitter and a receiver is defined as the
ratio of transmitted to received power, expressed in decibels,
and includes all power losses as the radio wave propagates
and interacts with obstacles, attenuating all the way. Wave
propagation mechanisms are mainly associated with refraction,
reflection, diffraction, and scattering, which can be discussed
separately. PL models are mainly classified as empirical,
stochastic, and deterministic. Empirical PL models are attained
based on measurements and observations, under different am-
bient conditions, and can be tuned with measurements specific
to any type of geographical area. They characterize wave
propagation in terms of the distance between the receiver and
transmitter, antenna heights and angles, operating frequency,
walls and obstacles, etc. As reported in the literature, the path
between the receiver and the transmitter can be either LoS or
NLoS [11-13]. Numerous empirical PL models are available,
including principal models such as Hata [14], COST 231 Hata
[15], and Ericsson 9999 [16]. Table 1 summarizes the majority
of famous empirical PL models in different environments and
scenarios.

Among this extensive spectrum of empirical PL models,
Hata stands out as the most widely adopted while COST
231 Hata, which represents one of the latest extensions to
the Hata model, is practical for 5G networks. COST 231
Hata can be used in network planning of legacy networks and
non-standalone deployments in 5G. It assumes environmental
type parameters, offering simplicity and significantly expedited
computation time. While COST 231 Hata works rather well in
urban areas, its response may be slow when the environment
changes rapidly. Besides, the transmitter antenna height must
be higher than the receiver’s, and it does not account for
foliage. Although there are other more accurate PL models that
can be used for 5G networks, they are often more complex than
the COST 231 Hata model [15, 17]. Another criterion in local-
ization methods, is protection against malicious attacks, which
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TABLE I: Famous empirical PL models in different environments and scenarios [17].

can compromise the accuracy of mobile node localization. In
NLoS scenarios, a non-malicious node behaves similarly to a
malicious node [12].

Localization-based applications that prioritize energy effi-
ciency and computational simplicity, such as battery-powered
asset tracking, low-power IIoT, and energy-efficient wearables,
require localization solutions that minimize both energy con-
sumption and computational complexity. These applications
are commonly deployed in urban environments, where NLoS
reference nodes can introduce significant localization chal-
lenges. To tackle these challenges, we present an innovative
RSS-based localization that harnesses the principles of the
COST 231 Hata PL model. Our approach makes use of the
low energy consumption of the RSS technique and the efficient
computational capabilities offered by the COST 231 Hata
PL model, effectively mitigating the inherent low accuracy
limitations of RSS-based localization technique. This approach
is ideally suited for location-based applications in medium-
sized cities, especially when one of the three required reference
nodes for trilateration, as depicted in Fig. 1, encounters NLoS
conditions—a realistic and common occurrence. To further
enhance accuracy and tackle additional challenges, such as
dealing with a single NLoS reference node or adhering to
the reference node antenna to be positioned higher than the
mobile node according to the COST 231 Hata PL model as
well as potential altitude variations in certain locations, we
augment our solution by integrating COST 231 Hata PL model
and Trilateration with the Kalman Filter (KF), a lightweight
estimation algorithm. KF, a simple robust estimator, is often
used to filter out rapid changes, noise, interference, and smooth
the motion trajectory. In any dynamic system with uncertain
information, KF can efficiently predict the next trend of the
system [18-20]. Simulation results of our method demonstrate
promising efficiency, making it applicable to a wide range of
industrial applications. In Section II, we discuss our proposed
localization system without KF to further examine the errors

our simulated system encounters. In Section III, we apply KF
to mitigate these errors, and the numerical results are presented
in Section IV to support a more comprehensive comparison.
We finally conclude our work in Section IV.

II. THE PROPOSED LOCALIZATION SYSTEM

Popular algorithms for RSS-based node localization are cen-
troid, gradient, and trilateration. The centroid algorithm de-
termines the mobile node’s location by calculating the aver-
age position of all reference nodes within the transmission
range. Although it is easy to implement, this method exhibits
relatively limited accuracy in localization. In contrast, the
gradient algorithm utilizes the signal strength distribution in
the surrounding area to estimate the mobile node’s direction.
By combining multiple directional estimates, this algorithm
ascertains the mobile node’s location. The gradient algorithm
effectively addresses sampling bias and mitigates the impact of
non-uniform signal propagation. However, it requires extensive
RSS measurements to yield desirable results. Trilateration,
as another approach, employs a PL model to convert RSS
measurements into distances between the source node and
receivers. These distances are then combined to determine the
source node’s location. The trilateration algorithm depends on
having access to PL model parameters, such as source trans-
mitting power and PL exponent. Typically, these parameters
are assumed to be known beforehand through a calibration
phase. In trilateration, the three reference nodes’ positions
(XR1 , YR1 ), (XR2 , YR2 ), (XR3 , YR3 ), and their respective distances
d1, d2, d3 from the mobile node (XM, YM) calculated by the
COST 231 Hata PL model, are assumed known [19]. RSS-
based ranging approaches translate an RSS from a mobile node
to a specific reference node using a PL model or a propagation
channel model. The majority of PL models are customizable
by manipulating parameters, with respect to the environment
[20]. Referring to the COST 231 Hata PL model [15], the
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propagation loss which is the difference value between the
received power and the radiated power, is calculated as

Lp(dB) = Pt − Pr. (1)

and the standard formula for median propagation loss is
obtained by

Lp(dB) = 46.3 + 33.93 log10(fc)− 13.82 log10(hb)
−a(hm) + (44.9− 6.55 log10(hb)) log10(d),

(2)

where fc is the carrier frequency in the range 1.5-2GHz, hb is
the reference node height which is 30-200m, d is the distance
between the mobile node and the reference node 1-20km, and
a(hm) is the correction factor for hm (mobile node antenna
height 1-10m), calculated as

a(hm) = 3.2(log10(11.75hm))2 − 4.97 (dB), (3)

which is assumed zero in medium cities. The distance d can
be calculated by

d(km) = 10
Lp+13.82 log10(hb)−33.93 log10(fc)−46.3+a(hm)

44.9−6.55 log10(hb) . (4)

Hence, with the four parameters Lp, fc, hb, and a(hm), the
distance between the reference node and the mobile node,
forming a circular locus, can be determined. On the other
hand, in trilateration, by knowing the coordinates of the
three reference nodes (XR1 , YR1 ), (XR2 , YR2 ), (XR3 , YR3 ) and
their respective distances d1, d2, d3 from the mobile node
(calculated using the COST 231 Hata PL model), the mobile
node coordinates (XM, YM) can be determined. This process
involves solving a system of equations that includes three
circle equations

(XR1
−XM )2 + (YR1

− YM )2 = d21
(XR2

−XM )2 + (YR2
− YM )2 = d22 .

(XR3
−XM )2 + (YR3

− YM )2 = d23

(5)

In this method, a minimum of three LoS reference nodes are
required. Consider a scenario in which the mobile node is a
user situated in an urban terrain characterized by the presence
of foliage and tall buildings. It is highly probable that, in
such a typical environment, at least one of the three required
reference nodes for trilateration technique encounters NLoS
conditions. In this particular scenario, our low-energy location-
based application faces a significant challenge. Moreover,
due to the error associated with the COST 231 Hata PL
model and the attenuation mechanisms, a considerable location
estimation error arises earlier on. Even with the COST 231
Hata model parameters, we can still estimate the mobile
node’s location using only two LoS reference nodes, using
(5), albeit with a larger error. As shown in Fig. 1, when
only the two LoS reference nodes, labeled as 1 and 2, are
available, the distances from these two LoS reference nodes
(d1 and d2) can be calculated using the first two equations in
(5). The intersections of the two green circles, derived from
(5) and represented by coordinates (XR1 , YR1 ), (XR2 , YR2 ), are
approximate locations for the mobile node which could be
either A or B. The antenna sectors of the reference nodes can
be instrumental in determining the true location of the mobile
node. By measuring the signal strength and direction from

antenna sectors, we can determine that the mobile node is most
likely located in close proximity to point A in this scenario.
Therefore, the mobile node’s position is approximated as point
A (the gray point), although this approximation comes with a
larger error compared to having three LoS reference nodes.
In [20], using a single reference node and the COST 231
Hata model in an urban area, the mean estimation error of
a mobile node localization was obtained in the range 184-
207m, with more than 95% of all measurements resulting in a
localization error under 679m. In the next section, we present
the simulated localization errors when using 2 LoS reference
nodes, admitting that as more reference nodes go NLoS, the
localization error increases.

III. ERROR MITIGATION BY KALMAN FILTERING

KF is capable of predicting the next state of a system, by
using the current and previous states. It is defined by one
equation with two phases: prediction and update. KFs are used
to estimate system parameters and minimize noise error, well
suited for dynamic systems. In our localization scenario, we
have a non-linear equation (4) that is not compatible with
the simple KF. Instead, we use the Extended Kalman Filter
(EKF), which is the non-linear version of KF. Our proposed
localization system is realized according to the block diagram
shown in Fig. 2. We use MATLAB R2022b in Block 1
to design a simulator that generates noisy PLs Lp1-Noisy and
Lp2-Noisy with respect to the reference nodes 1 and 2, and
the mobile node. For the simulation, we assume that the
coordinates of reference nodes 1 and 2 are (XR1 , YR1 )=(2, -
1), (XR2 , YR2 )=(-2, 3), respectively, and the initial coordinates
of the mobile node are (XM,YM) = (3, 1), all in kilometers. In
addition, we adopt the following state-space mobility model
for the mobile node:

X =


XM

YM

˙XM

˙YM

 , Ẋ =


1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

X,

Y =

[
d1

d2

]
=

[√
(XR1

−XM )2 + (YR1
− YM )2√

(XR2
−XM )2 + (YR2

− YM )2

] (6)

Here, ˙XM , ˙YM are the mobile node speed in km/s, with
respect to the horizontal and vertical axes of a 2-D Carte-
sian space and assumed to be ˙XM = 0.01 km/s, ˙YM =
0.015 km/s. Having d1, d2, and (2), (3), with system param-
eters fc=2GHz, hb=70m, hm=1.5m, the PLs Lp1 and Lp2 can
be calculated. White Gaussian Noise with a signal-to-noise
ratio of 33 decibels is then added. The simulated PL values
(output of Block 1) relative to the mobile node and the two
LoS reference nodes, with a sampling interval of 0.25s, are
obtained as shown in Fig. 3. As input to Block 1, we have the
actual XM and YM based on the mobility model (6), which are
changing over time. The outputs of Blocks 3 and 4 represent
the outputs of the localization system without and with EKF,
respectively.

Having the above PLs, the PL exponent is estimated to
be 3.28. Block 2 takes the simulated Lp1-Noisy and Lp2-Noisy as
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Fig. 1: Trilateration method, 2 LoS and 1 NLoS reference nodes.

input and uses (4) to calculate the relative simulated distances
as shown in Fig. 4. Block 3 uses d̃1 , d̃2 along with (5), to
intersect the two circles with respective radii and calculate the
estimated location of the mobile node (X̃M , ỸM ). Expanding
(5) for the first two circles and rearranging the terms in each
equation, then subtracting the second equation from the first
to omit X̃M , and ỸM will offer:

2(XR1 −XR2)X̃M = (X2
R1

−X2
R2

)

+ (Y 2
R1

− Y 2
R2

)− (d̃1
2
− d̃2

2
)

(7)

2(YR1
− YR2

)ỸM = (X2
R1

−X2
R2

)

+ (Y 2
R1

− Y 2
R2

)− (d̃1
2
− d̃2

2
)

(8)

Solving (7) and (8) for X̃M , ỸM :
X̃M =

(X2
R1

−X2
R2

) + (Y 2
R1

− Y 2
R2

)− (d̃1
2
− d̃2

2
)

2(XR1
−XR2

)

ỸM =
(X2

R1
−X2

R2
) + (Y 2

R1
− Y 2

R2
)− (d̃1

2
− d̃2

2
)

2(YR1
− YR2

)

(9)

Solving (9) for X̃M , ỸM yields two points, A, and B as
shown in Fig. 1. Logically, the mobile user should be either
at point A or B. The reference nodes use sector antennas
capable of detecting signals within their specific service areas.

After evaluating the received signals from the mobile node, the
direction or angle of the received signal is determined. This
information now can be leveraged to pinpoint the true location
of the mobile node, which is point A. Now the output of the
proposed system in Block 3 is the location of the mobile
node estimated by the COST 231 Hata model and 2 LoS
reference nodes. In Block 4, the EKF kicks in to smooth the
estimated trajectory. The EKF takes simulated observations
d̃1 and d̃2 which are calculated using the COST 231 Hata
model and generated in the output of Block 2, and simulated
measurements X̃M , ỸM calculated in Block 3 by intersecting
the first two circle equations in (5). Block 3 serves as a
data source or a sensor. In the output of Block 4, the EKF
provides simulated estimated measurements denoted as d̂1, d̂2.
Following a similar procedure to that in Block 3, we obtain
the estimated coordinates X̂M , ŶM . In the EKF algorithm,
the measurement noise covariance matrix is set to 1. The a
priori estimation Xt+1|t predicts the state in the next time
sample, while the a posteriori estimation Xt|t is accomplished
by utilizing both observed measurements d̃1, d̃2 and the a
priori estimation at the previous sampling time Xt|t−1. The
covariance of Xt+1|t is calculated in each iteration, having an
initial value of 1. As shown in Fig. 2, we have all the three
types of location determined by now: the actual location of the
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Fig. 2: Block diagram of the proposed localization system.

mobile node in all sampling times, the location determined by
the COST 231 Hata PL model, and the location estimated by
EKF (Fig. 5).

IV. NUMERICAL RESULTS

We adopt root mean squared error (RMSE) to benchmark
the accuracy of the estimated positions of the mobile node
movement for the first 300 seconds by the COST 231 Hata PL
model and COST 231 Hata PL model with EKF, respectively,
as shown in Fig. 6. Note that the RMSE for location estimation
by the COST 231 Hata model is rising from about 10m in the
first seconds of mobile node movement to more than 30m

in the last seconds of the sampling interval, while the EKF
leveraged simulator starts with the RMSE of about 10m and
ends up with the RMSE almost equal to 2m. The reason
for this is that, despite the rational initial location estimation
offered by COST 231 Hata, its performance gradually starts
to exacerbate with the mobile node receding. The COST 231
Hata is deterministic, meaning that it assumes no measurement
uncertainty. Thus, it is obvious that as the mobile node moves,
the measurements deteriorate and the RMSE of COST 231
Hata is elevated. On the flip side, our EKF-based simulator
showcases a noteworthy aptitude to optimize the estimated
locations during the sampling time intervals. The EKF, a re-
cursive algorithm, is intrinsically probabilistic, considering the
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Fig. 3: Outputs of Block 1; Simulated Noisy PLs.

Fig. 4: Outputs of Block 2; Simulated d1 and d2.

uncertainties of measurements. It continuously fine-tunes its
location estimation by accepting new measurements, leading
to a robust RMSE reduction. Considering error mitigation
in localization for energy-efficient and computationally light
applications, such as low-power wearables, IIoT, and asset
tracking, it is essential to explore alternatives to EKF. One
such alternative is Machine Learning (ML). The advantages
of EKF over ML include efficient real-time performance, the
utilization of prior knowledge for improved accuracy, sensor
fusion capacities, and a transparent framework that facilitates
error correction and diagnosis. These merits not only bolster
performance but also contribute to cost-effectiveness, making
EKF a practical choice for applications prioritizing computa-
tional simplicity and low energy consumption. EKF strikes a
balance between accuracy and computational simplicity when

compared to resource-intensive ML approaches.
In urban environment with buildings and obstacles, the

occurrence of shadowing phenomena is inevitable. To make
the scenario more realistic, we introduced shadowing in the
MATLAB simulations by incorporating strong white Gaus-
sian noise into the pathlosses at each sampling time step.
The RMSE results in Fig. 6 demonstrate the EKF’s ability
in addressing challenges, including shadowing, and validat-
ing practical efficiency in real-world applications.

V. CONCLUSION

We have developed a simulator for accurately achieving low-
power and computationally light localization of mobile nodes
in wireless networks, utilizing only 2 LoS reference nodes.
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(a)

(b)

Fig. 5: The actual location of the mobile node at all sampling times, the location determined by the COST 231 Hata model,
and the location estimated by EKF: (a) X-axis, and (b) Y-axis.

By leveraging trilateration with the COST 231 Hata Path-Loss
model and the Extended Kalman Filter, we are able to reduce
the RMSE from approximately 30 meters for the standalone
COST 231 Hata model simulator, to just 2 meters for our
proposed trajectory positioning model. These results clearly
demonstrate the effectiveness of our approach in enhancing
the reliability and accuracy of localization by utilizing readily
available RSS data in wireless networks.
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