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Traditional Building Information Modeling (BIM) services, using a client-server (C/S) architecture, struggle to adapt to the
new demands and changes in the field of architectural informatization. The development of a comprehensive BIM visualization
system, which is web-based, requires no installation or downloading, is cross-platform, and facilitates easy sharing, has become
a new pathway for BIM advancement. However, when rendering the vast amount of data in BIM three-dimensional scenes on
the web, several issues persist, including low transmission efficiency, slow loading speed, laggy screen display, and low rendering
frame rates, particularly on mobile devices and terminals with limited hardware performance. Therefore, this paper proposes BIM
lightweighting techniques based on geometric data and texture information, as well as a web-based rendering optimization method
for three-dimensional models. In terms of BIM lightweighting, more efficient methods and algorithms are employed to simultaneously
lighten the geometric data and texture information of the models. For rendering optimization, an efficient view frustum culling
algorithm is introduced, along with a design for an adaptive rendering strategy to enhance rendering performance.Through testing
the loading efficiency of different scale BIM models before and after optimization was tested on the web. Results show that, while
maintaining display accuracy, the average loading time of the optimized models was reduced by 40% compared to the unoptimized
models. The average data compression rate reached 45%, and the average memory usage decreased by 32.55%. After stable rendering,
the frame rate was close to 60fps.

Index Terms—Building Information Modeling, Lightweight Processing, Rendering Optimization, Mesh Simplification, Texture
Compression

I. INTRODUCTION

With the development of technologies such as the Internet
of Things (IoT), Building Information Modeling (BIM), as
the digital entity of a building in the virtual world, together
with various sensors and IoT devices, constitutes a digital
mapping of the real world and is widely used in areas
such as smart cities, communities, campuses, and security
[1]. In this new development trend, traditional desktop-level
BIM systems that use a C/S architecture have high hardware
requirements for clients, increased usage and learning costs,
and are difficult to adapt to new needs and changes. Building
a comprehensive BIM visualization system that is web-based,
platform-independent, and easy to share, without the need for
installation or downloading, has become a new path for the
development of BIM.

However, when applying BIM models on the Web, although
the browser can provide a unified and standardized interface
that is easy to expand and develop functions in the later stage
[2], its computational performance is inferior to that of the
client, and its resource utilization is higher. Model loading
time is also longer, especially on mobile and low-performance
terminal devices, which exacerbates this issue. As the demand
for building information models continues to increase, BIM
models are becoming more complex and sophisticated. A
sophisticated BIM model not only contains tens of thousands
or even millions or tens of millions of components [3], but also
various geometric, texture, and material information, making
the model’s volume easily reach several hundred MB, GB,
tens of GB or even hundreds of GB, resulting in low trans-
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mission efficiency, slow loading speed, lagging screens, and
low rendering frame rates during Web loading and rendering.
This seriously affects the system’s reliability, stability, and user
experience. Existing research at home and abroad has focused
mainly on model data simplification, model-level rendering,
and model scene clipping to address the aforementioned issues.

II. RELATED WORK

The edge collapse simplification algorithm was first pro-
posed by Hoppe et al. , which requires constructing a global
energy function to measure the edge collapse error, making
it inefficient [4]. To improve the efficiency of mesh simpli-
fication, Garland et al. proposed a simplification algorithm
based on Quadratic Error Metrics (QEM) [5], but lacked
consideration for simplification quality. Later, various new
error functions were proposed based on the QEM algorithm
to improve simplification quality. Asgharian et al. reduced the
number of vertices through resampling based on the Nyquist
theorem [6], while preserving the important features of the
model surface. Li et al. introduced angle error control to
simplify the model mesh based on the QEM algorithm for
vertex curvature [7]. However, literature [6], [7] considered
simplification of the model texture information, and lacked
consideration for the significant changes in LOD models
during switching.

Wu et al. proposed a texture compression algorithm that
is based on model geometry information and has high com-
pression ratio [8]. Buyukdemircioglu et al. simplified the
texture information of 3D city models in the reconstruction
and efficient visualization process of heterogeneous models,
by using format conversion, duplicate item removal, and
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merging into texture atlases [9]. Khan et al. obtained compact
texture descriptions using information-theoretic compression
techniques, and combined multiple local texture descriptors
to improve pattern recognition performance [10]. However,
neither literature [8], [9], [10] considered the simplification
of model geometry data nor had an effective organization of
multi-level textures.

Xu et al. proposed a BIM model conversion method
from the Industry Foundation Classes (IFC) to the 3D Tiles
data format [11]. During the conversion process, coordinate
transformation, data mapping, spatial indexing, and detail
level partitioning were performed, with the aim of improving
the traditional model simplification approach and enhancing
model loading speed and rendering performance. Zhu et al.
presented a semantic-based entity model simplification method
that maintains the consistency of the model semantics before
and after simplification by studying the IFC semantic con-
straints [12]. However, literature [11], [12] did not preserve
the hierarchical relationship of semantic information before
and after merging, which brings certain difficulties to querying
semantic information.

Che et al. proposed a feedback-based hierarchical combi-
nation optimization method for constructing more realistic 3D
scenes [13]. Abualdenien et al. introduced a multi-level-of-
detail (LOD) meta-model to explicitly describe the require-
ments of LOD and ensure the consistency between geometry
and semantic information, as well as the topological consis-
tency between different LODs [14]. Wang et al. presented a
quasi-continuous LOD algorithm for lightweight rendering,
and incorporated relevant constraints during the process of
adjusting model details to address issues such as model abrupt
changes and distortions [15]. However, literature [13], [14],
[15] all lack consideration of data simplification for the models
themselves.

Zhang et al. proposed a visualization method based on
variable-depth embedding clustering fusion and Hilbert R-
tree, aiming to address the issues of slow display and lag-
ging when rendering massive geological data [16]. Ströter et
al. introduced a new boundary volume hierarchy for GPU-
accelerated direct volume rendering, as well as for volume
network slicing and inside-outside intersection testing [17].
Hui et al. addressed the difficulty of model space collision
detection by proposing an intelligent algorithm that integrates
bounding boxes, which effectively improves the efficiency
of collision detection in virtual scenes [18]. Although they
improved the rendering efficiency of models from various
perspectives, the literature [16], [17], [18] lacks consideration
of algorithm complexity and the rendering effect is inadequate.

In summary, model lightweighting and rendering optimiza-
tion are complementary, and currently, some mainstream BIM
lightweighting methods still have some problems in practical
applications, such as the inability to ensure model accuracy,
poor rendering effects, high algorithm complexity, and neglect
of the influence of texture data. Therefore, how to deeply
simplify model data while ensuring model display accuracy,
improve rendering frame rate during visualization, reduce
model switching abruptness, and alleviate the rendering pres-
sure of computers, is still a problem that needs to be solved
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Fig. 1: BIM model before and after redundant component
processing

urgently. This paper proposes a BIM lightweighting method
based on geometric data and texture information, which aims
to reduce the large amount of data in BIM models, enable them
to be smoothly displayed on browsers and mobile devices,
and lower the threshold for BIM services. Therefore, the web-
based BIM model lightweighting technology studied in this
paper has significant research significance and broad prospects.
It has significant value in accelerating the application of
BIM technology in practical engineering fields, expanding the
application scope of BIM technology, and promoting the trans-
formation of the construction industry towards digitalization
and intelligence.

III. BIM LIGHTWEIGHT PROCESSING METHOD

A. Based on Structural Matching: A Method for Retrieval
and Removal of Redundant Components in BIM

The building components in Building Information Modeling
(BIM) are organized and managed in a tree-like structure based
on categories, families, family types, and family instances
[19]. Fig. 1 shows the comparison before and after removing
redundant components.The section uses a BIM redundant
component retrieval and removal method based on structural
matching, with the matching and alignment information of
components used as the basis for determining redundant
components, thus removing a large number of redundant com-
ponents [20]. This method has higher efficiency, accuracy, and
redundancy removal rate compared to the traditional geometric
instantiation method based on component reuse. The main idea
is as follows:

1) first, by constructing an Item-based Structure Graph (ISG)
based on components, the matching and alignment prob-
lem of building components is converted into an ISG
structural matching problem.

2) Secondly, based on the Factorized Graph Matching algo-
rithm and the Iterative Closest Point algorithm, the ISG
matching model is obtained.

3) Then, ISG pre-matching, ISG full matching, and ISG
partial matching are used to process it, achieving fast
alignment of BIM components.

4) Finally, the component alignment results are used as the
basis for component retrieval, thus removing redundant
components.



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 2, SEPTEMBER 2023 91

Revit API

Navisworks 

plugin
Navisworks 

Manage

Fig. 2: BIM model before and after redundant component
processing
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Fig. 3: BIM model before and after redundant component
processing

B. Model Format Selection and Processing

Although IFC files are one way to represent building
information models, they cannot be rendered directly on the
web and must be converted to a certain format [21]. The
typical process for converting file formats is shown in Fig.
2. After a series of transformations and processing, the final
result is an FBX model with materials and textures.To further
lighten the BIM model, the model format is converted from
the perspective of loading and rendering on the web. This is
because different formats of models have different rendering
performance on the web, as shown in Fig. 3. By conducting
15 loading tests on different formats of the same model on
the web, the results show that the glTF format has the best
effect, not only compressing the size of the file itself but
also having a faster average loading speed than the other
two. Therefore, considering both the lightweight of the model
and the rendering optimization, this paper chooses to further
convert the fbx format model to the glTF format model.

C. The Screen-Space Error and Angle Error Correlated
Edge Collapse Mesh Simplification Algorithm

After format conversion, the current BIM model’s geometric
information representation is essentially consistent with the
classical 3D model data features. Therefore, mesh compression
algorithms in computer graphics can be used to further reduce
the weight of the current BIM model. This section proposes
a screen-space and angle-error-related edge-collapse mesh
simplification algorithm to further simplify the geometry data
of the model. Firstly, based on the quadratic error measure
algorithm, vertex curvature and angle error control are in-
troduced to maintain better geometric features of the model.
Then, screen-space error is introduced to reduce the number of
inaccurate triangle meshes, thereby further reducing the weight

(a)Original model (b)Simplify 50% of the model

Fig. 4: Comparison of model simplification using the QEM
algorithm with introduced vertex curvature

(a)Original model (b)Simplify 50% model using QEM 

algorithm introducing vertex curvature

(c)Simplify 50% of the model using 

the QEM algorithm that introduces 

vertex curvature and angle errors

Fig. 5: Comparison of model simplification using the QEM
algorithm with introduced vertex curvature

of the model and improving its display effect.The specific
algorithm process is as follows:

(1) Description of the QEM Algorithm
The Quadratic Error Metric (QEM) algorithm is an improve-

ment over the edge-collapse algorithm, and its error metric
measures the distance between a vertex and the first-order
neighborhood triangle as the evaluation indicator.

(2) The Improved Algorithm Based on Vertex Curvature and
Angle Error Introducing Using QEM

The introduction of vertex curvature in the QEM algorithm
aims to reduce the impact of changes in edge folding order
and new vertex position on the simplification effect. When
sorting the weights of the folded edges, the priority of edges
with large vertex curvatures is reduced, which better preserves
the geometric features of the model.

The QEM algorithm with introduced vertex curvature was
used to simplify a certain building model, and the results
are shown in Fig. 4. It can be observed that the simplified
model has poor visual quality due to the changes in the
position and shape of the newly generated triangles during
the simplification process.

Therefore, based on this, we introduce angle error control to
control the rotation direction of the newly generated triangles,
thus preserving more geometric features and improving visual
effects. The angle error here refers to the maximum angle
change value of the normal vectors of the intersecting triangle
faces after folding the edges of a certain triangle face.

The QEM algorithm with introduced vertex curvature and
triangle error was tested, and through the comparison in Fig. 5,
it can be observed that under the condition of equal numbers
of triangles, the algorithm is clearly superior to the QEM
algorithm with introduced vertex curvature. The geometric
features of the model are better preserved, resulting in better
visual effects. However, some geometric features are still lost,
which leads to poor performance in multi-level rendering on
the Web.
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Fig. 6: Schematic diagram of LOD switching generated by
the above algorithm

(3) Introduce Screen-Space Error
Although the above-mentioned algorithm can simplify the

building model and achieve an acceptable visual effect, it
still leads to the loss of some geometric features. When the
model volume reaches hundreds of MB or even GB, this
disadvantage will become more obvious. Therefore, to address
the existing issues, screen-space error is introduced in the
process of generating LOD (level of detail) using the above-
mentioned algorithm, in order to control the errors generated
during LOD generation and the amount of data entering the
pipeline. The main idea is to use the distorted pixel values
(the size of distorted triangle meshes mapped to pixels on the
screen) as the error generated during the switching of multiple
detail levels, in order to reduce the amount of data entering the
rendering pipeline and ensure the visual effect of the model.

The length value of the triangle mesh edge mapped to the
screen can be calculated using equation 1, where L represents
the edge length of the triangle mesh, d represents the distance
between the triangle mesh and the viewpoint, and x represents
the length of the plane in front of the viewing frustum.

SSE(x) =
Lx

2d tan θ
2

(1)

The maximum pixel value mapped to the screen for a mesh
with edge length L can be calculated using the value obtained
in the previous step. This value can be used as the mesh error,
and the calculation formula is given in equation 2:

∆(mesh) =
Weight × Height

2xy
× SSE(x)× SSE(y) (2)

When switching between LOD levels, the value of ∆(mesh)
is calculated, and the LOD level with the largest error within
an acceptable range of model error is selected to balance the
amount of data entering the pipeline with visual perception.

The algorithm was tested on a specific building model by
setting different maximum folding edge lengths and viewing
distances to generate LODs of different levels. Then, the
corresponding ∆(mesh) values were calculated to select a
suitable value as the error criterion for LOD switching, within
the acceptable range of model error. The experimental results
are shown in Table I, and the LOD switching diagram is
shown in Fig. 6. Based on the data in the table and the
switching diagram, it can be concluded that the introduction of
screen-space error further improved the QEM algorithm that
introduced vertex curvature and angle errors.

TABLE I: LOD parameter settings and error results
generated by a architectural model

LOD level Total number
of patches

Maximum fold-
ing edge length

Range of
visibility ∆(mesh)

0 288889 0 1 0

1 226567 0.05 10 62

2 154746 0.07 20 34

3 8026 0.09 40 16

D. Texture Classification and Redundant Texture Elimina-
tion

In order to achieve a realistic effect for a 3D building model,
texture mapping is often applied, which is usually obtained
from aerial photography. This results in a texture image where
only 5% of the area is effectively textured, and the remaining
95% is invalid or redundant. According to the texture mapping
mechanism of OpenGL, all image files are preloaded, and
then the effective area is determined based on the texture
UV coordinates and the corresponding 3D coordinates of the
model, and finally texture mapping is performed. However,
redundant textures being loaded in this process cause excessive
memory usage, making it necessary to remove them. This
can not only reduce the weight of the model, but also reduce
memory consumption during rendering.

In most cases, texture coordinates within the [0, 1] range
are required for most texture mappings. However, due to
the lack of a unified standard in the field and other factors,
some texture coordinates may still exceed this range. Such
textures are referred to as anomalous textures in this paper, and
textures within anomalous textures that are heavily repeated
are referred to as repetitive textures. Textures can also be
classified based on the number of times they are bound. When
a single texture image has a binding count of 1, it is referred
to as a standalone texture. Therefore, textures can be classified
into repeated textures, shared textures, and standalone textures
based on texture coordinates and binding count.

According to the binding frequency of the texture, it can
be divided into two types of textures. For individual textures,
they can be updated directly, while for shared textures, an
integer offset is applied first, followed by coordinate union
calculations, and finally texture updates, in order to achieve
the goal of redundant texture elimination.

E. Texture Compression Based on Wavelet Transform

This section focuses on the compression of texture images
for the facade information of building models, without consid-
ering the internal structure of the building model or the texture
information corresponding to the facade. The wavelet method
is very suitable for image compression, especially for building
facades. This is because the distribution structure of texture on
building facade models includes two structures: horizontal and
vertical, which are very consistent with the two directions of
wavelet transform. This makes it easy to reconstruct textures
of different resolutions based on wavelet-based texture image
compression [22].
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(a)Original color image

(b)Original grayscale image

(c)first compression    (d)second compression

(e)third compression     (f)fourth compression

Fig. 7: Comparison between the original image and the
image compressed by Haar wavelet

Low frequency coefficient image for scale 1 Low frequency coefficient image for scale 2 Low frequency coefficient image for scale 3 Low frequency coefficient image for scale 4

Scale 1 horizontal high-frequency coefficient map Scale 1 vertical high-frequency coefficient map Scale 1 diagonal direction high-frequency coefficient map Scale 2 Horizontal High Frequency Coefficient Map

Scale 2 vertical high-frequency coefficient map Scale 2 diagonal direction high-frequency coefficient map Scale 3 Horizontal High Frequency Coefficient Map Scale 3 vertical high-frequency coefficient map

Scale 3 diagonal direction high-frequency coefficient map Scale 4 Horizontal High Frequency Coefficient Map Scale 4 vertical high-frequency coefficient map Scale 4 diagonal direction high-frequency coefficient map

Fig. 8: Detailed diagram of Haar wavelet processing process

The Haar wavelet transform used in this paper consists of
a row transform and a column transform. Let A = [aij ] be
a matrix, where i ∈ 1 . . . n, j ∈ 1 . . .m. The row transform is
defined by equation 3, and the column transform is defined by
equation 4:

Hrow (A) = [tij ] (3)

Hcol(A) = [tij ] (4)

where, when j ≤ m/2, tij =
(
aij + ai(j+m/2)

)
/2, and

when j > m/2, tij =
(
aij − ai(j−m/2)

)
/2. Similarly, when

j ≤ n/2, tij =
(
aij + ai(j+n/2)

)
/2, and when j > n/2, tij =(

aij − ai(j−n/2)

)
/2.

To validate the effectiveness of the Haar wavelet transform
on image compression, the front view of a certain 3D building
model was used as an example. The model was subjected to
four successive transformations by Haar wavelet transform in
both the row and column directions. The resulting images after
each compression are shown in Fig. 7. The resulting low-
frequency coefficient images and the high-frequency coeffi-
cient images in the horizontal, vertical, and diagonal directions
are shown in Fig. 8.

In Fig. 8, it can be seen that with each wavelet transform,
the image is compressed, resulting in images with different
resolutions. Moreover, with each successive compression, the
volume of the image is also reduced, as shown in Table II
with specific data.

TABLE II: The table of image volume data after Haar
wavelet processing

Image Category Image Resolution Image Size

Original image 600 ∗ 800 3750

Image after first compression 300 ∗ 400 937.5

Image after second compression 150 ∗ 200 234.375

Image after third compression 75 ∗ 100 58.59375

Image after fourth compression 38 ∗ 50 14.84375

(a)LOD0 (b)LOD1 (c)LOD2 (d)LOD3

Fig. 9: Simplified LOD models matching geometry with
textures

F. Constructing LOD Models That Match Geometry With
Textures

In UV mapping, each vertex has a corresponding coordinate
in the UV coordinate system, which is used to represent
the position of the vertex in the texture image. U and V
respectively represent the horizontal and vertical coordinates
of the texture.

When constructing a LOD model that matches geometry
and texture, the texture resolution level corresponding to
each LOD model should be determined first. Then, based on
the resolution level corresponding to each LOD model, the
texture sub-image to be used should be determined. Typically,
lower resolution LOD models use lower resolution texture
sub-images, while higher resolution LOD models use higher
resolution texture sub-images.

By using the texture coordinate mapping method to perform
level-by-level mapping, LOD models that match the geometry
and texture can be constructed, as shown in Fig. 9. Models
at different LOD levels are mapped to textures with different
resolutions.

IV. OPTIMIZATION METHOD FOR 3D MODEL RENDERING

A. A Depth Clipping Algorithm Based on Octree and Thread
Separation

Due to the substantial data volume in large-scale 3D
architectural scenes, certain situations may lead to issues
such as object clipping and fragmentation. Therefore, further
optimization of the existing view frustum culling algorithm
is necessary. The core idea is to enhance the effectiveness of
polygon clipping during the view frustum culling process by
performing depth detection and calculation on polygons. This
approach reduces ineffective rendering and improves overall
performance. The specific implementation steps are as follows:

1) In order to render objects effectively, it is necessary to
transform them into the view frustum coordinate system.
This process involves coordinate transformation, specifi-
cally converting the vertex coordinates of objects from the
world coordinate system to the view frustum coordinate
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system. In other words, it entails transforming the eight
vertices of the Axis-Aligned Bounding Box (AABB)
from the world coordinate system to the observation
space.

2) The collision test between the AABB in the world coordi-
nate system of the rendered model and the view frustum
determines whether the model intersects with the view
frustum. If all the vertices of a polygon are outside the
view frustum, the polygon is completely clipped and no
further steps are taken. If some vertices of the polygon
are within the view frustum, a depth clipping process
is required. By calculating the intersections of all edges
with the view frustum, the polygon is clipped into two or
more new polygons. One of these polygons lies inside the
view frustum, while the remaining polygons are outside
the view frustum.

3) The determination of whether the current vertex is depth
clipped involves comparing the z-values of the projected
point on the near clipping plane and the projected point
on the far clipping plane. If the z-value of the vertex is
less than the z-value on the near clipping plane or greater
than the z-value on the far clipping plane, it is considered
to be depth clipped.

4) After the polygon has been clipped, it undergoes an-
other intersection check with the view frustum. If the
clipped polygon is entirely outside the view frustum, it
is completely discarded. However, if the clipped polygon
partially resides within the view frustum, it is rendered
accordingly.

5) After the rendering process is completed, it is necessary
to transform the rendered results from the view frustum
coordinate system back to the world coordinate system
for display and subsequent processing purposes.

Although the aforementioned algorithms reduce the data
volume entering the rendering pipeline, they also introduce
additional computational overhead, resulting in suboptimal
improvement in rendering frame rate. To optimize this pro-
cess, we introduce the concept of thread separation based on
the aforementioned improved algorithms. By leveraging Web
Worker technology, the computational cost of the aforemen-
tioned algorithms is offloaded to threads outside the main
thread. The JavaScript asynchronous mechanism is utilized for
event loop processing, avoiding blocking the main thread and
enabling it to focus solely on rendering operations. As a result,
the computation and rendering processes are parallelized with-
out impacting the main thread, thereby enhancing rendering
performance and frame rate.

B. Adaptive Rendering Strategy

The main idea of this adaptive strategy is to utilize the
concept of the strategy pattern in design patterns, combined
with existing frustum culling rendering algorithms, depth
clipping rendering optimization algorithms based on octrees
and thread separation, LOD rendering optimization, and In-
dexedDB cache optimization, to construct an adaptive render-
ing strategy for three-dimensional scenes based on frustum
culling technology. These algorithms are encapsulated into

TABLE III: Table of configuration information for the main
foundational hardware devices

Hardware device name Configuration details

System Windows10

CPU Intel (R) Core (TM) Intel i5-10210U

RAM 16GB

SSD 512GB

HDD TOSHIBAMQ01ABD1001TB

GPU NV IDIAGeForceMX350

Pixel 1920 ∗ 1080

different strategy classes, with each class responsible for im-
plementing a specific rendering strategy. During the rendering
process, the appropriate rendering strategy class is dynamically
selected based on the complexity of the current scene, enabling
better utilization of frustum culling technology and improving
the rendering efficiency on the Web platform.

V. EXPERIMENTS RESULTS AND DISCUSSIONS

In order to validate the effectiveness and efficiency of the
proposed method in this paper, a series of experiments and
evaluations were conducted, this section selects four building
information models of different scales for comprehensive
experimental verification.

A. Experimental Environment

The main hardware equipment and configuration informa-
tion required for the operation and testing of the system are
shown in Table III.

B. Model Geometry Data Simplification Test

In this section, we tested the geometric data simplification of
four models using the method proposed in this paper. Table IV
shows the comparative data of the four models with different
complexities before and after processing. For each model,
compression was performed at 15%, 30%, 50%, and the table
shows that the model size, number of triangles, and vertices
all decreased, and the simplified models can ensure a certain
display accuracy. At the same time, four different levels of
models were generated, where the original model was taken
as the LOD0 model, and the models simplified at 15%, 30%
and 50% were respectively taken as the LOD1, LOD2, and
LOD3 models in this paper.

Fig. 10 presents the comparison of the simplified model
of a, and it can be observed that when simplified to 50%,
the user’s perception will be affected if viewed from a close
distance. However, when displayed as an LOD model, this
problem does not exist. The LOD display is shown in Fig. 11,
which demonstrates that the visual effect of the model is well
represented.
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TABLE IV: Table comparing details of geometric data
simplification before and after for the models

Model name Model
size(MB)

Number of
triangular
faces in

the model

Number
of model
vertices

Model a (Original) 19 43960 28409

Model a (simplified by 15%) 17.8 36345 24374

Model a (simplified by 30%) 15.3 28657 20238

Model a (simplified by 50%) 13.5 18232 14813

Model b (Original) 36.8 199826 168654

Model b (simplified by 15%) 33.28 168852 143586

Model b (simplified by 30%) 28.76 137778 118458

Model b (simplified by 50%) 21.4 96213 84927

Model c (Original) 107.7 1613460 1040706

Model c (simplified by 15%) 96.55 1370441 884830

Model c (simplified by 30%) 79.39 1127322 728894

Model c (simplified by 50%) 59.85 803030 520953

Model d (Original) 201 8193785 6202213

Model d (simplified by 15%) 178.85 6963717 5272111

Model d (simplified by 30%) 148.7 5733549 4341949

Model d (simplified by 50%) 124.5 4093192 3101707

(a)Original model (b)Simplify  15% (c)Simplify 30% (d)Simplify  50%

Fig. 10: Comparison of simplified effects of model a

C. Model Texture Data Simplification Test

In this section, the method proposed in this paper is used
to simplify the texture data of four models. Table V shows
the comparison of texture data before and after processing for
models a, b, c, and d. Fig. 12 is a schematic of the multi-
resolution texture generated by processing part of the texture
data of model d.

D. Model Loading Time Test

In this section, loading time tests will be conducted on four
models, where the loading time refers to the time it takes for
model data to be transmitted from the server to the client and
successfully rendered and displayed on the browser interface.
Considering that loading time may be affected by factors such
as network, computing performance at a certain moment, and
server status, this experiment uses the method to conduct 30
loading tests on each of the four models. Additionally, to
highlight the changes in loading time, the loading time of
rendering these four models directly without processing will
also be recorded for 30 times. Finally, the average reduction
ratio of model loading time will be used as a measure of the
loading time test to further verify the performance advantages

Fig. 11: Simplified LOD display of model a

TABLE V: Comparison Table of Details before and after
Simplification of Model Texture Data

Model name
Original
Texture

Size (MB)

first
(MB)

second
(MB)

third
(MB)

fourth
(MB)

Model a 15.8 7.9 3.95 1.98 0.97

Model b 43.6 21.8 10.9 5.45 2.73

Model c 124.8 62.4 31.2 15.6 7.8

Model d 216.5 108.25 54.13 27.07 13.54

of this method. The results of the loading time reduction ratio
test are shown in Fig. 13.

The results indicate that using this method for loading and
rendering 3D models can reduce the average loading time to
40% of the original loading time, which can effectively shorten
the loading time.

E. Model Compression Rate Test

This section will test the compression rate of the model.
Firstly, lightweight tests will be conducted on each model
for 30 times. Then, by comparing the data size before and
after processing these models, the compression rate will be
calculated, and the average compression rate will be used to
measure the lightweight processing capability of this method.
The specific compression results are shown in Fig. 14. As can
be seen from the figure, the average value of data compression
rate can reach 45%, which proves the lightweight processing
capability of this method.

F. Model Rendering Frame Rate Test

In this section, we will test the changes in model rendering
frame rates, as frame rates usually reflect the smoothness
of model loading and user experience. Therefore, we will
compare and analyze the frame rate values of models directly
rendered without using this method and the same models
processed by this method, in order to verify the performance of
this method in loading and rendering models. The frame rate
values were recorded 30 times within 1.4s after the model was
loaded. The test results are shown in Fig. 15, which displays
the changes in frame rate values of the four models before and
after processing.

Generally, the lowest acceptable frame rate for human eyes
is above 30fps. During usage, if the frame rate is consistently
lower than 30fps and the frame rate fluctuates significantly, it
will cause problems such as the screen not loading smoothly,



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 2, SEPTEMBER 2023 96

Fig. 12: Comparison of simplified effects of model a

0 5 10 15 20 25 30

Frequency(times)

0

10

20

30

40

50

60

70

80

90

Lo
ad

 T
im

e 
R

ed
uc

tio
n 

R
at

e(
%

)

Reduction ratio of 30 loading times for model a
Reduction ratio of 30 loading times for model b
Reduction ratio of 30 loading times for model c
Reduction ratio of 30 loading times for model d

Fig. 13: Comparison of the proportion of reduced loading
time for four models

seriously affecting the user’s experience. As can be seen from
Fig. 15, models a and b, due to their small size, can still
be rendered normally even without the system’s processing.
However, the frame rate of both models fluctuates greatly,
and after the frame rate stabilizes, the average frame rate is
close to 50fps, which will have a certain impact on the user’s
experience. Model c and d, due to their relatively large size,
model c, which is not processed, can barely be rendered, but
the frame rate is basically fluctuating around 30fps and is
extremely unstable, resulting in screen stuttering and tearing.
The unprocessed model d causes the browser to crash during
rendering, seriously affecting the user’s experience. After these
four models were processed using this method, the rendering
frame rate of models a, b, and c was improved, and the
frame rate fluctuated less, and after the frame rate stabilized,
the average frame rate was close to 60fps. Compared with
the other three models, the rendering frame rate of model d
fluctuates greatly, but compared with the rendering without
processing, its rendering frame rate is basically maintained
above 30fps, and the screen can be rendered smoothly.

G. Model Memory Usage Test

High memory usage can lead to system crashes or slow
performance on one hand, and data corruption or loss on the
other, thereby impacting work efficiency and user experience.
To further test the reliability and efficiency of the method,
this section analyzes and compares the memory usage of the
model before and after using the method. The memory usage
data analyzed here is the average memory usage of the model
during loading and rendering. To ensure the accuracy of the
experiment, each model was tested 30 times, and the specific
results are shown in Fig. 16.
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Fig. 14: Comparison of compression rates among four
models

Based on the test results, the average memory usage of
models a, b, c, and d before processing were 212.7MB,
446.8MB, 811.4MB, and 1505.9MB, respectively. After
processing, their average memory usage reduced to 158.4MB,
359.9MB, 497.9MB, and 802.7MB, respectively, with mem-
ory usage reduction rates of 25.5%, 19.4%, 38.6%, and 46.7%.
Therefore, by using this system to process the models, the
memory usage can be optimized by an average of 32.55%.

VI. CONCLUSION

Through comprehensive experimental validation, the pro-
posed lightweight processing method for BIM models based
on geometric data and texture information, as well as the
web-based 3D model rendering optimization method, have
been proven effective. After applying these methods to BIM
models while ensuring model display accuracy, the average
data compression rate reaches 45%. Furthermore, extensive
testing has been conducted on models of various scales, and
the experimental results demonstrate that the processed models
exhibit stable rendering frame rates close to 60fps, a 40%
reduction in average loading time, and a 32.55% decrease in
average memory usage. These data validate the effectiveness
and efficiency of the proposed methods, providing significant
insights for research and application of web-based lightweight
BIM and rendering optimization techniques, and contributing
to the advancement of BIM technology.
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(c) 30 rendering frame rates for model c
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Fig. 15: Comparison of frame rate values before and after processing of four models
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(b) Average memory usage of model b
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(c) Average memory usage of model c
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