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Outsourcing convolutional neural network (CNN) inference services to the cloud is extremely beneficial, yet raises critical privacy
concerns on the proprietary model parameters of the model provider and the private input data of the user. Previous studies have
indicated that some cryptographic tools such as secure multi-party computation (MPC) can be used to achieve secure outsourced
inferences. However, MPC-based approaches often require a large number of communication rounds across two or more non-colluding
servers, which make them hard to exploit GPU acceleration. In this paper, we propose GFS-CNN, a GPU-friendly secure computation
platform for convolutional neural networks. The following two specific efforts of GFS-CNN have been made by combining machine
learning and cryptography techniques. Firstly, We use quadratic activation functions to replace most of the ReLU functions without
losing much accuracy, so as to create a mixed linear layer for better efficiency by integrating convolution, batch normalization,
and quadratic activation. Secondly, for the rest ReLU functions, we implement the secure ReLU protocol using function secret
sharing, enabling GFS-CNN to evaluate the secure comparison function via a single interaction during the online phase. Extensive
experiments demonstrate that GFS-CNN is accuracy-preserving and reduces online inference time by 16.4% on VGG-16 models
compared to Delphi (USENIX Security’20).

Index Terms—Secure inference, convolutional neural network, function secret share, secure multi-party computation, GPU
acceleration.

I. INTRODUCTION

THE convolutional neural network (CNN) inferences have
enabled numerous applications in diverse fields, such

as image classification, voice assistant, and security systems.
But CNN inferences[1], [2], [3], [4] are largely data-driven
and rely on aggregating and analyzing users’ massive data,
which requires strong computing power. Towards these needs,
outsourcing the CNN inference to cloud servers has rapidly
become an appealing offering.

However, uploading the users’ personal data to the cloud
will raise critical privacy concerns [5], [6], [7], [8]. To address
the privacy concerns, a number of works [3], [9], [10] in
the last few years have introduced cryptographic frameworks
based on the secure multiparty computation (MPC) to enable
secure CNN inference. From a broad perspective, MPC proto-
cols enable a group of mutually untrusting parties to calculate
an arbitrary function by inputting their private data collab-
oratively. In the calculation process, each party only learns
about the secret shares of output and nothing more. However,
the existing MPC-based CNN inference protocols remain the
problems in expensive calculations and high communication
rounds. These problems occurs for the following two reasons.

Firstly, some CNN inference protocols [1], [2], [11] based
on MPC techniques require high communication rounds,
which makes them not scale well to the hardware acceleration
with graphics processing units (GPUs). Specifically, in the
GPU-accelerated scenario, data is typically stored in GPU
memory, and the communication between GPU memories of
different parties needs to go through CPU bridging. Therefore,
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high communication rounds increase the communication time
between parties and the data exchange time between the GPU
and the CPU.

Secondly, some approaches [6], [7] replace some ReLU ac-
tivations with quadratic activation functions to minimize time-
consuming nonlinear computation while maintaining accuracy.
However, replacing all ReLU layers in the CNN with quadratic
activations is impracticable as it can result in reduced inference
accuracy and even makes the inference unavailable.

To address the above problems, we introduce GFS-CNN,
a GPU-friendly privacy-preserving computation framework
convolutional neural network inference, in which all of the
secure protocols for both linear and nonlinear are implemented
on the GPU. Our main contributions are as follows:

• We use quadratic activation functions to replace most of
the ReLU functions without losing much accuracy, so as
to create a mixed linear layer for better efficiency by in-
tegrating convolution, batch normalization, and quadratic
activation. To implement the calculation, we propose a
basic protocol, secure continuous multiplication protocol,
which enables to compute the multiple secret-shared
matrices via two communication rounds.

• We propose the secure ReLU protocol, which combines
the function secret sharing and additive secret sharing
to provide a privacy-preserving implementation of the
ReLU layer. This enables us to evaluate secure ReLU on
secret-shared data via only two communication rounds,
in which the secure comparison function only needs a
single communication round.

We evaluate the performance of the GFS-CNN basic proto-
cols and the overall performance of GFS-CNN on VGG-16.
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Typically, the online calculation time of the mixed linear layer
and secure ReLU function is 27.8% and 21.1% faster than the
previous works [5], [7]. For evaluating VGG-16 on CIFAR-10,
GFS-CNN reduces online inference time by 16.4% compared
to the current state-of-the-art Delphi [7].

The rest of the paper is organized as follows. Section II
presents the related work. Section III and Section IV introduce
preliminaries and system overview. The specific schemes of
our system implementation are in Section V. The detailed
experimental evaluations are shown in Section VI. Finally,
Section VII concludes the paper.

II. RELATEED WORKS

In privacy-preserving neural network inference outsourcing,
the provider’s model is stored in ciphertext on the cloud server.
The users can obtain the inference output without revealing
their input data. Many prior works have explored the privacy-
preserving CNN inference methods [1], [6], [7], [9], [12], [13].

SecureML [9] is a classic secure machine learning frame-
work that uses a two-server secure computational model to
enable the ciphertext model for both inference and training on
ciphertext input. XONN [1] is a privacy-preserving inference
framework based on garble circuit. It replaces the costly matrix
multiplication operations of deep learning models with the
nearly free XNOR operator in GC, resulting in a 37× increase
in operational efficiency improvement compared to SecureML.

The state-of-the-art works CryptGPU [13] and Piranha [14]
argue that hardware acceleration with GPUs is essential for
accelerating privacy-preserving CNN inference. CryptGPU in-
troduces a new interface that can process secret-shared values
by highly-optimized CUDA kernels for linear algebra. Based
on the interface, CryptGPU proposes a sequence of crypto-
graphic protocols to enable privacy-preserving evaluation of
both linear and nonlinear operations on the GPU. Piranha is a
modular structure platform for GPU-accelerated MPC protocol
development, which can accelerate secret-sharing protocols
by providing integer-based kernels in current general-purpose
GPU libraries. Piranha’s modular structure provides wide ap-
plicability for other projects to use GPU acceleration without
requiring expert knowledge.

For the ReLU approximation, Manto [6] and Delphi [7]
propose good solutions. Delphi [7] replaces the ReLU ac-
tivation function with a quadratic activation function and
designs a planner that automatically determines the number
of quadratic approximation polynomials and their positions in
the network for the better trade-off of protocol efficiency and
classification accuracy. However, for deep neural networks,
Delphi still needs to keep many ReLU functions and imple-
ment these quadratic activation functions in practice through
time-consuming confusion circuits implement these nonlinear
operations in practice. Manto [6] presents a quadratic-fitting
function search algorithm and a fine-tuning approach to pro-
duce accurate CNNs with fewer ReLU activations. Addition-
ally, it proposes a collection of secure protocols employing
lightweight cryptographic primitives for both quadratic and
ReLU6 activations.

TABLE I: Notations and Definitions

Notations Definitions
a a scalar a
X a matrix X
E the unit matrix with all elements of 1
aX the matrix X multiplied by the number a

X× Y the Hadamard product of matrices X and Y
X · Y the Cartesian product of matrices X and Y

X⊗ Y the 2D-convolutional calculation of X and Y

III. PRELIMINARIES

This section introduces some basic protocols used in our
system, including additive secret sharing, function secret shar-
ing, linear layer computation, and ReLU approximation. Table
I lists the main notations and definitions used in GFS-CNN.

A. Additive Secret Sharing

A 2-out-of-2 additive secret sharing scheme (ASS) [4] is
a cryptographic primitive that protects a private value x by
splitting it into two secret shares, where each share alone
reveal nothing about x. It consists of two algorithm: Share
and Restore, which are defined as follows:

• Share(x): Server Si generates a random number r (for
i ∈ {0, 1}), sets ⟨x⟩i = (x − r), and sends r to S1−i,
who sets ⟨x⟩1−i = r. We denote ⟨x⟩ = (⟨x⟩0 , ⟨x⟩1) as
their shorthand.

• Restore(⟨x⟩): Server Si send ⟨x⟩i to server S1−i, who
compute x = (⟨x⟩i + ⟨x⟩1−i)

Next, we introduce two secure protocols for fundamental
operations over the above secret-shared data. SecAdd takes
two shares ⟨x⟩,⟨y⟩ as input, and outputs ⟨x+ y⟩ without
revealing x, y. Similarly SecMul takes ⟨x⟩,⟨y⟩ as input, and
outputs ⟨xy⟩ without revealing any values of x, y. The above
operations are defined as follows:

• SecAdd(⟨x⟩,⟨y⟩): Si locally computes ⟨x+ y⟩i ←
⟨x⟩i + ⟨y⟩i(for i ∈ 0, 1)

• SecMul(⟨x⟩,⟨y⟩): We use Beaver’s triples [15] to imple-
ment SecMul. First, randomly generate triples {a, b, c},
where c = ab. Then share them among the two servers
of the form {⟨a⟩, ⟨b⟩, ⟨c⟩}. For each server, Si locally
computes ⟨e⟩i ← ⟨x⟩i−⟨a⟩i and ⟨f⟩i ← ⟨y⟩i−⟨b⟩i. Both
servers perform Restore(⟨e⟩) and Restore(⟨f⟩), then set
output ⟨xy⟩i ← i · ef + e · ⟨b⟩i + f · ⟨a⟩i + ⟨c⟩i.

B. Function Secret Sharing

Function secret sharing (FSS) [16], [17], [18], [19], a
primitive introduced by Boyle [16], [17], [18], provides a way
to allow secure two-server evaluation of non-linear functions
(e.g., comparison) with low interactions in the secret sharing
domain. Thus, in a two-server FSS scheme, a target function
f is split into two succinct keys f1, f2, where f(x) = f1(x)+
f2(x). Each key alone does not reveal private information
about the target function f . A 2-server function secret sharing
(FSS) scheme is a pair of algorithms (KeyGen, Eval) with
the following syntax:
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• KeyGen(1λ, fα,β) is a probabilistic polynomial-time key
generation algorithm, which on input 1λ (security param-
eter) and fα.β ∈ {0, 1}∗, output a pair of succinct FSS
keys (k0, k1).

• Eval (i, ki, x) is a polynomial-time evaluation algorithm,
in which input is server index i ∈ {0, 1}, ki(the i-th FSS
key) and x, and the outputs is ⟨fα,β(x)⟩i.

FSS provides security guarantees such that if an adversary
has access to only one of the keys (k0, k1), the adversary
cannot obtain any confidential information about the target
function for its output f(x).

C. Linear Layer Computation

The secure computation of linear layers has been widely
used in many previous works [5], [6], [8]. We employ a
state-of-the-art convolutional protocol [6], which transforms
the convolution to the matrix multiplication, denoted as Y =
X⊗W1+B1 (The notation “⊗” denotes the 2D-convolutional
calculation of two matrices). Similarly, we can denote the
equation for the batch normalization (BN) as Y = A1×X+B2.

D. ReLU Approximation

Various prior works [6], [7], [20] have attempted to provide
effective quadratic activation functions to replace the ReLU
function. The output of the quadratic activation function in
a certain interval is very close to the output of the ReLU
activation function. The secure quadratic activation (SQA)
protocol assumes that S0 holds ⟨X⟩0, ⟨k2⟩0, ⟨k1⟩0, ⟨k0⟩0 and
S1 holds ⟨X⟩1, ⟨k2⟩1, ⟨k1⟩1, ⟨k0⟩1. The SQA protocol aims to
securely compute f(x) = k2X2+k1X+k0, without revealing
any private information about X, k2, k1, k0.

IV. SYSTEM OVERVIEW

A. System model

Fig. 1 shows our system architecture. Our system involves
a user, a model provider, two non-colluding cloud servers, and
a trusted dealer (denoted as TD). The user holds the privacy
input data. The model provider holds the privacy model
parameters. The trusted dealer generates auxiliary parameters
for subsequent secure calculations. The cloud servers offer
efficient and secure neural network inference services. A pre-
trained model can be deployed in a secret-shared form on the
cloud through the service, which can then provide inference
services without exposing the model in plaintext. The user
encrypts the data locally and uploads it to two servers. The
cloud server performs a series of secure computing protocols
and then sends the encrypted result to the designated user.

B. Threat Model

In this paper, we present a set of secure computing protocols
designed under the semi-honest security model. Specifically,
the protocols are designed for two cloud servers assumed to be
semi-honest, meaning they will faithfully perform operations
as specified and will not actively disrupt the execution of the
protocol, but may attempt to snoop or infer private information

Security Protocol

User

Encrypted 

Data

Encrypted 

Result

Cloud Server

Model provider

Encrypted 

Model

S0
S1

Fig. 1: System architecture.

Algorithm 1 Secure Continuous Multiplication (SecCMul)
Protocol
Input: S0 holds ⟨X0⟩0, ⟨X1⟩0, · · · , ⟨XN ⟩0,

S1 holds ⟨X0⟩1, ⟨X1⟩1, · · · , ⟨XN ⟩1
Output: S0 outputs ⟨Y⟩0 = ⟨X0 × X1 × · · · × XN ⟩0,

S1 outputs ⟨Y⟩1 = ⟨X0 × X1 × · · · × XN ⟩1
1: On the offline phase
2: TD randomly choose a1, a2, · · · , aN , t0, t1, · · · , tN
3: TD computes t−1

0 , t−1
1 , · · · , t−1

N , pj = tj−1t
−1
j , ajpj =

aitj−1t
−1
j , (j ∈ [1, N ]), and computes q = t−1

0 tN
4: TD send

{
(⟨aj⟩0, ⟨pj⟩0, ⟨ajpj⟩0)j∈[1,N ], ⟨q⟩0

}
to S0 and

send
{
(⟨aj⟩1, ⟨pj⟩1, ⟨ajpj⟩1)j∈[1,N ], ⟨q⟩1

}
to S1

5: On the online phase
6: For (j = 1, 2, ..., N) do in parallel:
7: For i ∈ {0, 1}, Si computes ⟨Xj⟩i − ⟨ajE⟩i
8: For i ∈ {0, 1}, Si sends ⟨Xj⟩i − ⟨ajE⟩i to S1−i and

obtains (X− ajE) = Restore(⟨Xj⟩i − ⟨ajE⟩i)
9: For i ∈ {0, 1}, Si computes ⟨Dj⟩i = ((Xj − ajE)×

⟨pjE⟩i+⟨(ajpj)E⟩i) and obtain Dj = Restore(⟨Dj⟩)
← (Xj × pjE)

10: End for
11: S0 computes ⟨Y⟩0 = (D1 × D2 × · · · × DN × ⟨qE⟩0)
12: S1 computes ⟨Y⟩1 = (D1 × D2 × · · · × DN × ⟨qE⟩1)

related to the original data. Additionally, we assume no collu-
sion between the two cloud servers, as large service providers
typically value their reputations in practice. This assumption
is widely used in previous works [2], [5], [21].

V. GPU-FRIENDLY PRIVACY-PRESERVING COMPUTING

In this section, we propose a series of GPU-friendly secure
protocols to compute linear and nonlinear layers in the CNN
model efficiently.

A. Secure Mixed Linear Layer Protocol

Previous works [6], [7] have shown that the online latency in
CNN inference is most in ReLU functions as it involves many
nonlinear operations, so we use quadratic activation functions
[7] to replace most of the ReLU functions without losing
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Fig. 2: Comparisons of the inference accuracy between two approaches

Algorithm 2 Secure Mixed Linear Layer (SMLL) protocol

Input: S0 holds ⟨X0⟩0, ⟨W1⟩0, ⟨B1⟩0, ⟨A1⟩0, ⟨B2⟩0, ⟨k2⟩0,
⟨k1⟩0, ⟨k0⟩0, S1 holds ⟨X0⟩1, ⟨W1⟩1, ⟨B1⟩1, ⟨A1⟩1, ⟨B2⟩1,
⟨k2⟩1, ⟨k1⟩1, ⟨k0⟩1.

Output: S0 outputs ⟨Y⟩0 = ⟨k2[A1 × (X ⊗ W1 + B1)+
B2]

2⟩0+⟨k1[A1×(X⊗W1+B1)+B2]⟩0+⟨k0⟩0, S1 outputs
⟨Y⟩1 = ⟨k2[A1 × (X ⊗W1 + B1)+ B2]

2⟩1 + ⟨k1[A1 ×
(X⊗W1 + B1) + B2]⟩1 + ⟨k0⟩1

1: For i ∈ {0, 1}, Si computes ⟨Xout⟩i = ⟨X0⟩i ⊗ ⟨W1⟩i
2: For i ∈ {0, 1}, Si computes ⟨K2⟩i = ⟨k2⟩iE, ⟨K1⟩i =
⟨k1⟩iE, ⟨K0⟩i = ⟨k0⟩iE

3: S0 and S1 (do in parallel):
4: ⟨Z0⟩ ← SecCMul(⟨K2⟩, ⟨A1⟩, ⟨A1⟩, ⟨Xout⟩,⟨Xout⟩)
5: ⟨Z1⟩ ← SecCMul(⟨K2⟩, ⟨A1⟩, ⟨A1⟩, ⟨B1⟩,

⟨Xout⟩) · 2
6: ⟨Z2⟩ ← SecCMul(⟨K2⟩, ⟨A1⟩, ⟨B2⟩, ⟨Xout⟩) · 2
7: ⟨Z3⟩ ← SecCMul(⟨K1⟩, ⟨A1⟩, ⟨Xout⟩)
8: ⟨Z4⟩ ← SecCMul(⟨K2⟩, ⟨A1⟩, ⟨A1⟩, ⟨B1⟩, ⟨B1⟩)
9: ⟨Z5⟩ ← SecCMul(⟨K2⟩, ⟨A1⟩, ⟨B2⟩, ⟨B1⟩) · 2

10: ⟨Z6⟩ ← SecCMul(⟨K2⟩, ⟨B2⟩, ⟨B2⟩)
11: ⟨Z7⟩ ← SecCMul(⟨K1⟩, ⟨A1⟩, ⟨B1⟩)
12: ⟨Z8⟩ ← SecCMul(⟨K1⟩, ⟨B2⟩)
13: For i ∈ {0, 1}, Si computes ⟨Y⟩i ← ⟨Z0⟩i+⟨Z1⟩i+ · · ·+
⟨Z8⟩i + ⟨K0⟩i

much accuracy. Fig.2 plots the accuracy against the varying
number (n) of non-ReLU layers for two CNN architectures,
respectively. We observed that we can replace part of the ReLU
layer on the basis of ensuring accuracy.

We first propose Secure Mixed Linear Layer Compu-
tation protocol (SMLL), which combines one convolutional
layer, one batch normalization layer, and one quadratic activa-
tion layer for calculation. It reduces the communication rounds
and calculation times. Recall that the convolutional layer is
Y = X ⊗W1 + B1, the BN layer is Y = A1 × X + B2, and
the quadratic activation layer is Y = k2X2 + k1X + k0. Such
that the combined equation is

Y =k2[A1 × (X⊗W1 + B1) + B2]
2

+ k1[A1 × (X⊗W1 + B1) + B2] + k0

Algorithm 3 Secure Comparison (SecCmp) protocol

Input: S0 holds ⟨x⟩0, S1 holds ⟨x⟩1
Output: S0 outputs ⟨z⟩0 = ⟨x ≤ 0⟩0,

S1 outputs ⟨z⟩1 = ⟨x ≤ 0⟩1
1: On the offline phase
2: TD generates ⟨γ⟩0 and ⟨γ⟩1, where γ = ⟨γ⟩0 + ⟨γ⟩1
3: TD obtains k0, k1 ← KeyGen(1λ, fγ)
4: TD sends k0, ⟨γ⟩0 to S0 and sends k1, ⟨γ⟩1 to S1.
5: On the online phase
6: For i ∈ {0, 1}, Si computes ⟨x⟩i + ⟨γ⟩i
7: For i ∈ {0, 1}, Si sends ⟨x⟩i + ⟨γ⟩i to S1−i and obtain

x+ γ
8: For i ∈ {0, 1}, Si obtains ⟨z⟩i ← Eval(i, ki, x+ γ)

We assume that the size of X is m×m, W1 is f × f , such
that the size of (B1,A1,B2, (X⊗W1)) is q×q (q = m−f+1).
And the combined equation can be deformed to

Y =k2A2
1 × (X⊗W1)

2

+ (2k2A2
1 × B1 + 2k2A1 × B2 + k1A1)× (X⊗W1)

+ k2A2
1 × B2

1 + 2k2A1 × B2 × B1

+ k2B2
2 + k1A1 × B1 + k1B2 + k0

The underline part of the equation can be calculated by
SecConv [6], and the rest can be calculated by the se-
cure continuous multiplication protocol (SecCMul). SecC-
Mul aims to compute ⟨Y⟩ ← f(⟨X1⟩, ⟨X2⟩, · · · , ⟨Xn⟩), where
Y = X1 × X2 × · · · × Xn.

Assume that the S0 holds ⟨X0⟩0, ⟨X1⟩0, · · · , ⟨XN ⟩0, S1

holds ⟨X0⟩1, ⟨X1⟩1, · · · , ⟨XN ⟩1. On the offline phase,
The TD generates auxiliary random numbers, and send{
(⟨aj⟩i, ⟨pj⟩i, ⟨ajpj⟩i)j∈[1,N ], ⟨q⟩i

}
to Si respectively, where

i ∈ {0, 1}. On the online phase, Si computes ⟨Xj⟩i −
⟨ajE⟩i and obtain (X − ajE). Then Si computes ⟨Dj⟩i =
(⟨Xj − ajE⟩i × ⟨pjE⟩i + ⟨(ajpj)E⟩i) and obtain Dj ←
ReStore(⟨Dj⟩). Finally, Si obtains ⟨Y⟩i = (D1 ×D2 × · · · ×
Dn×⟨qE⟩i). The specific calculating process of the SecCMul
protocol is shown in Algorithm 1.
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TABLE II: Running time and communication cost of SMLL

Parameters
System Time(ms) Comm.Input Kernel Stride&

C ×H × W N ×K ×K Padding Rounds Volume(KB)

16× 32× 32 16× 3× 3 (1, 1)
GFS-CNN 15.02 3 128
Delphi [7] 19.2(14.05 + 2.51 + 2.64) 5 104

32× 16× 16 32× 3× 3 (1, 1)
GFS-CNN 12.24 3 64
Delphi [7] 14.92(11.85 + 1.34 + 1.73) 5 52

64× 8× 8 64× 3× 3 (1, 1)
GFS-CNN 9.16 3 32
Delphi [7] 10.35(8.7 + 0.76 + 0.89) 5 26

TABLE III: Running time and communication cost of SReLU and MSB-ReLU

ReLU Time(ms) Comm. Rounds Comm. Volume(KB)
SReLU 10.9 2 4

MSB-ReLU [5] 13.2 7 364

TABLE IV: Performance Evaluation On CNNs

Network Test Set System Acc Time(s) Comm. Rounds Comm. Volume(KB)

AlexNet MNIST Delphi(GPU) [7] 96.0% 1.59 34 190.59
GFS-CNN(CPU) 95.6% 2.24 20 201.51
GFS-CNN(GPU) 95.6% 1.44 20 201.51

VGG-16 CIFAR-10
Delphi(GPU) [7] 85.6% 3.86 119 8092.5
GFS-CNN(CPU) 85.4% 5.26 53 1537
GFS-CNN(GPU) 85.4% 3.22 53 1537

Algorithm 4 Secure ReLU (SReLU) Protocol

Input: S0 holds ⟨x⟩0, S1 holds ⟨x⟩1
Output: S0 outputs ⟨y⟩0 = ⟨x > 0⟩0 · ⟨x⟩0, S1 outputs

⟨y⟩1 = ⟨x > 0⟩1 · ⟨x⟩1
1: S0 and S1 computes ⟨z⟩ = 1− SecCmp(⟨x⟩)
2: S0 and S1 computes ⟨y⟩ = ⟨zx⟩ ← SecMul(⟨z⟩, ⟨x⟩)

B. Secure ReLU Protocol

Previous work [6], [7] and our experiments show that
replacing the ReLU layer with a quadratic activation function
completely will decrease inference accuracy and make the
inference results unavailable. This is a composite loss of
accuracy due to the increase in the amount of calculation
of the square term. Therefore, we propose the Secure ReLU
Protocol (SReLU), which replaces the ReLU function using
function secret sharing in CNNs.

For the comparison operations in ReLU functions, we
propose the Secure Comparison (SecCmp) protocol based
on FSS, which aims to compute ⟨z⟩ ← ⟨x⟩ ≤ ⟨y⟩. We choose
the latest FSS-based comparison construction [8], [17], [19],
named distributed comparison function (DCF), allowing secure
comparison with low communication costs. Specifically, the
DCF can perform secure computation of the function fα,β(x),
in which the output is β if x is less than or equal to α,
and 0 if x is greater than α. In the two-server scenario, the
TD generates two DCF keys (k0, k1) from KeyGen function
and sends them to S0 and S1 respectively. S0 and S1 then
obtain the secret-shared output by evaluate the EVAL(i, ki, x)
function using the DCF key and the input x.

However, as the DCF evaluation mandates both parties to
provide specific inputs, evaluating DCF on a private (additive-
secret-shared) value is not feasible through the above proce-
dure. To address this challenge, we maintain the secrecy of
the private value x by revealing its masked version. To be
more specific, for a given target function f0,1 (in which the
output is 1 if x ≤ 0 and 0 if x > 0), we generate a set
of DCF keys for the offset function fγ,1, in which f0,1(x) =
fγ,1(x+γ). Here, γ denotes a random value and is divided into
two additive secret shares, γ = ⟨γ⟩0 + ⟨γ⟩1. Next, Si sends
the masked share ⟨x⟩i + ⟨γ⟩i to S1−i, and the two servers
cooperatively obtain x+ γ without leaking x. The S0 and S1

securely perform the offset FSS evaluation functions on the
input x+γ and obtain the secret-shared output of fγ,1(x+γ),
where fγ,1(x + γ) = f0,1(x). Based on the offset function,
we introduce the calculation process of SecCmp protocol in
Algorithm 3.

Given the above SecCmp protocol and the secret-shared
input, the SReLU(⟨x⟩) protocol is shown in Algorithm 4.
Assume Si holds ⟨x⟩i respectively, and α = 0, β = 1. Then
Si can obtain ⟨x⟩i if x > 0 and obtain ⟨0⟩i if x ≤ 0.

VI. EXPERIMENT

A. Implementation and Experimental Setup

Our system is implemented in Python3.8 with the Pytorch
library for matrix operations. All our secure MPC protocols
are multi-threaded. We use two separate servers to act as the
server S0 and S1, which run Ubuntu 22.04 and are equipped
with a 2.5GHz Intel Xeon processor with four cores, 128GB
of RAM, and an Nvidia 2080ti GPU. We put the two servers in
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the practical WAN, which communication bandwidth is 1000
Mbps.

B. Microbenchmarks

We provide microbenchmarks of GFS-CNN performance on
SMLL protocol and SReLU protocol, comparing both with
previous works.

SMLL performance. The complexity of the SMLL is
determined by the input dimensions, the size and number of
convolution kernels, and the padding and stride. In Table II,
we evaluate the costs of SMLL and compare it with Delphi.
The experimental data show that our online time is over 1.2×
faster than Delphi’s, and our online communication rounds
are only three times. However, our communication volume is
higher than Delphi due to the high parallelism of our SMLL
protocol.

SReLU performance. We evaluated the SReLU protocol
on the (16, 32, 32) feature images and compared it with the
MSB-based Relu protocol. As shown in Table III, the SReLU
protocol is 1.2× faster than the MSB-ReLU protocol [5]. And
SReLU protocol requires only one round of communication
and 4KB of communication volumes, which is 83.3% and 98%
lower than MSB-ReLU, respectively.

C. Performance Evaluation on CNNs

By demonstrating the SMLL and SMReLU protocols of
GFS-CNN and comparing them with previous work, we sig-
nificantly reduce the communication rounds and prove the
low latency of GFS-CNN. Next, we will provide a detailed
evaluation of AlexNet and VGG-16 using the test sets MNIST
and CIFAR-10, respectively. Table IV shows the performance
of GFS-CNN and the comparisons with Delphi. We find that,
under the same level of inference accuracy, our work reduces
the online inference time for evaluating AlexNet on MNIST
and VGG-16 on CIFAR-10 by 10.2% and 16.4%, respectively.
And on this basis, our communication rounds are reduced
by 41.1% and 55.4% on AlexNet and VGG-16, respectively.
However, our communication volume is higher on Alexnet
but much smaller on VGG-16 than Delphi. This is because
we replace all the ReLU layers on Alexnet with the quadric
activation function, while only part of the ReLU function is
replaced on VGG-16, and the rest uses the DCF function as
the activation layer.

VII. CONCLUSION

In this paper, we propose GFS-CNN, a GPU-friendly
privacy-preserving computing framework for CNN inference,
which provides privacy protection for users’ private data and
model providers’ privacy models. Technically, we propose a
parallelized protocol SMLL, reducing communication rounds
to only three times in the mixed linear layers. In addition,the
FSS-based secure ReLU protocol only involves two commu-
nication rounds, thereby better exploiting GPU acceleration.
Compared with the state-of-the-art solution Delphi, GFS-CNN
reduces the online inference time by 10.2%− 16.4%, and the
number of communication rounds by 41.1%− 55.4%.
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