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Anomaly detection in multivariate time series is an important research direction, which helps to improve the security of industrial
systems by detecting abnormally unreliable devices. Multivariate time series (MTS) anomalies not only need to pay attention to the
time correlation between different time series but also need to consider the abnormal changes in the relationship between different
variables. Once the influence relationship between two variables that influence each other is ignored, it will likely lead to false
positives or false positives. At the same time, the degree of influence between different time series or different features is also
inconsistent, just like what happened recently have radically different influences on the present. Furthermore, most of the existing
models are weak in detecting no abnormality. To tackle these issues, in this paper, we propose a new model of multivariate time series
anomaly detection based on reconstruction and forecast, named MTAD RF. First, we capture the temporal and feature correlations
of MTS through two parallel GAT layers, and at the same time distinguish the influence degree between different time series or
different features based on attention coefficients. Second, we leverage the generative power of VAE and the single-step forecast power
of MLP to jointly detect known and unknown anomalies based on reconstructed and predicted models. Major practical implications
of the proposed approach is missing. Finally, anomalies are detected and explained based on temporal and feature anomaly scores.
Experiments demonstrate that our model outperforms current state-of-the-art methods on 4 real-world datasets, with an average
F1 score of about 95% and excellent anomaly diagnostic ability.

Index Terms—Anomaly Detection, Multivariate Time-series, Graph Attention Network,Variational AutoEncoder.

I. INTRODUCTION

With the continuous development of the Internet of Things
and 5G, the problem of data security becomes more and
more prominent, especially the lack of reasonable detection
mechanism in the security strategy, which may cause data
theft, tampering or even destruction, posing a great threat to
the security communication of data. Among them, the security
problem of time series data is more severe due to the high
requirements on the continuous working ability and accuracy
of equipment. The most fundamental challenge in the security
analysis of time series data is to mine the time correlation
between data to detect the abnormal data timely and ac-
curately. Accurate abnormal detection results can effectively
guide relevant personnel to carry out accurate protection and
protection of data to avoid huge economic losses caused by
data anomalies. However, it is difficult to conduct anomaly
detection research directly from massive and complex time
series data, because of the diversity of data types, the large
size of data and other noise interference. In recent years,
the data analysis technology represented by deep learning has
developed rapidly. It has become a hot research point to solve
the problem of anomaly detection in complex data by using
deep learning model. On the other hand, network science
can comprehensively analyze complex relational data from
multiple perspectives such as physics, computer and math-
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ematics, and build different networks according to different
data characteristics. This method can effectively focus more
attention on data correlation and avoid the impact of noise
generated by data acquisition on core data analysis. However,
how to conduct proper network modeling for massive and
complex time series data in real life and detect anomalies more
quickly and accurately according to abundant data information
has become an important task to be solved urgently.

Anomaly detection is used to find individuals or events
that deviate from most node behaviors. It is widely used
in various life and production scenarios, such as abnormal
behavior monitoring of smart homes in the Internet of Things
[1], sensor network device indicator abnormal monitoring
[2], terminal abnormal signal detection in wireless body area
network [3] and so on. To improve detection accuracy, it is
particularly important to model more appropriately for real-
world networks. Since sensor network devices are various
and work continuously over time, they can be abstracted into
multivariate time series (MTS) for anomaly detection [4] to
detect which devices are abnormal at what time. As a result,
figuring out how to effectively detect anomalies in multivariate
time series has become an important challenge that has to be
solved urgently.

Fortunately, there have been many studies on multivariate
time series anomaly detection in the literature [5], [6], [7], [8]
etc. For instance, in [9], [10], MTS is converted into univariate
time series (UTS), and then the anomaly detection method of
UTS is used. Although these methods present good approach
for anomaly detection, the methods often ignore the relation-
ship between different variables and achieved less performance
results. [11], [12] regard MTS as a whole, first model the
normal data behavior model according to the characteristics of
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MTS, such as time correlation, then encode and reconstruct or
predict the original MTS, and finally calculate the abnormal
score according to the reconstruction or forecast error to judge
the abnormal. Due to the high efficiency of deep learning,
the use of various deep learning models to study MTAD is
emerging recently.

However, there are still some shortcomings in the exist-
ing methods. LSTM VAE [8] and OmniAnomaly [7] only
consider the temporal correlation between different moments
of MTS, ignoring the correlation between different variables,
which is however crucial for detecting anomalies. For example,
with sensors that measure voltage and current, etc., if one
fails, the other will fluctuate accordingly. If we ignore the
relationship between the two and focus only on the outlier
changes of a single device indicator, it will often cause the
normal fluctuations of the device to be regarded as abnormal,
resulting in false positives or false positives. Additionally, the
existing methods [13], [14] regard the importance of each time
series or variable as the same, which is unreasonable. For
example, the impact of the data of the previous 10 months on
the current moment is almost negligible, and the importance
of the hub node in the sensor network is higher than that
of other ordinary nodes. In addition, an important content
of anomaly detection is to detect those exceptions that have
not occurred. This requires that the model should not only
learn from historical data but also consider the randomness
of variables (hidden space), which is not mentioned in most
literature [15], [16]. On the other hand, methods based on
reconstruction error or forecast error detect anomalies from
the global and local perspectives, respectively. Relying on
only one of the methods will inevitably lead to errors, and
combining the two methods to find the optimal solution may
improve the accuracy.

To address the constraints of the previous methods, we
propose in this paper, a new framework named MTAD RF
a multivariate time series anomaly detection using reconstruc-
tion and forecast. The propose MTAD RF treats the values
of the variables in each time series and the value of the
variable at different time as a whole, investigates the temporal
and feature-based correlations among several time series, and
extracts the relationships between nodes simultaneously.

In the proposed MTAD RF, we first use two parallel atten-
tion layers to distinguish the important of different moments
and different variable through weight coefficients. the feature
attention is mainly use to extract the dependencies between
different features, while the temporal attention focuses on
changing the relationship of different time series. Secondly,
we combine reconstruction model and forecast model to better
represent the time series data. Overall, our contributions are
as follows:

1) We propose a new self-supervised model to solve the
multivariate time series anomaly detection problem un-
like the previous approaches. The proposed MDAT RF
outperforms state-of-the-art methods on 3 real datasets,
with an average F1-score improvement of 9%. The result
indicates that Our method has good abnormality diagnosis
ability and can be applied in various industrial systems.

2) We use two parallel attention layers(Feature attention
and temporal attention ) to simultaneously capture the
temporal and feature correlations of multivariate time
series data and do not require any prior knowledge.

3) We introduce a balance parameter to combine the advan-
tages of reconstruction-based and forecast-based models.
The reconstruction model learns a low-dimensional rep-
resentation of time series data from a global perspective,
while the forecast model only predicts the next timestamp
data, and the joint optimization of the model is controlled
by balancing parameters to find the best solution in global
and local considerations.

The organization of the article is as follows. In section
2, we present some work related to this paper. In section
3, the problem and symbolic representation to be solved in
this paper are defined. In section 4, we describe in detail
our proposed multivariate time series data anomaly detection
model MTAD RF. In section 5, we compare our method with
other baseline methods on 4 real datasets, and the results show
that our proposed model is effective. In section 6, we mainly
perform parameter analysis and anomaly diagnosis capability.
In section 7, we summarize and look ahead to our work.

II. RELATED WORKS

At present, there are two main anomaly detection methods
for multivariate time series: The first method is to use UTS
detection method for each time series in MTS, which performs
well in early research, but it ignores the time correlation
between different time series. The second is to model the
multivariate time series as a whole. Different from the pre-
vious classic anomaly detection methods KNN [17], PCA
[18], SVM [19], and ARIMA [20], In recent years, scholars
concentrate more and more on using deep learning methods
[21] for anomaly detection using multivariate time series.
Most of these approaches base their investigation on either
the reconstruction-based method or the forecast-based method,
and they all consider a variety of loss functions. We discuss
some related researches that are linked to anomaly detection in
multivariate time series based on each deep learning algorithm
from the perspectives of reconstruction and forecast aspect.

A. Reconstruction-based Method

In the recent year, various approaches have been proposed
in the literatures that uses reconstruction based methods for
anomaly detection [11], [8], [7], [13], [16], [5]. This method
learn the normal behavior pattens across time series data
and detect anomalies by reconstructing errors in the original
data. Autoencoder is typically representative of this type of
method where the encoder compresses the input features and
the decoder calculates the reconstruction error of the restored
original data to judge the abnormality [11]. In order to adapt
to the characteristics of time series data, Kieu et al. [12]
proposed to add a sliding window to the autoencoder to further
capture the time information of time series data. However, the
relationship between time sequences in MTS is much more
complicated than that in UTS, and its the most important
problem that needs to be studied and overcome.
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LSTM VAE [8] replaces the encoder in the VAE model
with LSTM to capture the temporal correlation of MTS,
but does not consider the different degrees of influence be-
tween different time series, and the LSTM model is slow
and computationally intensive. OmniAnomaly [7] uses VAE-
based random module and GRU module to solve the temporal
correlation and random variable problem of MTS, and detect
anomalies based on the difference between the reconstruction
probability and the threshold. However, the model does not
explicitly propose a specific feature correlation method and
does not consider the importance of different moments and
different features.

USAD [13] uses the idea of Generative Adversarial Net-
works(GAN) to train two autoencoders to close the gap with
the original distribution of the data, and then adversarially
train the discriminator to enlarge the distribution in the input
data distribution. The generator on the model simulates the
error and improves the sensitivity of detecting anomalies,
but it ignores the correlation between features and the im-
portance of variables. The MSCRED model [14] introduces
a convolutional encoder and an attention-based convLSTM
to construct a feature matrix of inter-sensor correlation and
temporal information, and gives the residual feature matrix
to detect anomalies. However, it only captures the degree of
hidden influence between different time series, and cannot
capture the mutual influence between different sensors.

MTAD GAT [16] creatively uses two parallel attention
layers to capture temporal and feature correlations at the same
time, and mines the hidden association importance of different
time series and different features according to the attention
weight coefficient. However, since the GRU cannot be calcu-
lated in parallel, with the gradual increase in the amount of
input data and the size of the model, the calculation speed and
amount of calculation will also increase significantly. TranAD
[5] attempts to construct an adaptive combination of multiple
meta-learning building blocks based on Transformer from a
lightweight perspective, and amplifies the reconstruction error
through two adversarial training processes to improve the
speed and accuracy of detecting anomalies. We questioned
that TranAD executes the multi-head attention mechanism
serially, which is difficult to correlate time and features at the
same time, and the adversarial training requires high model
parameters, which may lead to non-convergence problems and
make training difficult.

B. Forecast-based Method

In recent years, various methods for anomaly detection
using forecast-based methods have also been proposed [10],
[15], [22]. Similar to the principle of reconstruction model,
the forecast model first performs feature extraction on MTS
dimension reduction, and then predicts the next time series
data according to the learned normal data model, and often
takes the abnormal variable with larger forecast error as the
abnormal variable, which has the advantage of considering
the local area. The optimal solution is crucial for time se-
ries data, and the close connection between contexts makes
this method efficient and feasible. [10] model each variable

time series data separately, convert MTS to UTS and then
input LSTM according to the forecast error. However, the
model cannot effectively capture the interaction information
between different variables, and this phenomenon is in the
real network. unavoidable. The DeepAnt model [15] uses a
window of previous observations as input to predict the next
timestamp to build a CNN forecast model to detect outliers
in multivariate time series. The DAGMM model [22] believes
that the hidden information in the low-dimensional space helps
to detect anomalies, and predicts the likelihood by feeding
the compressed network information together into a Gaussian
mixture model ”GMM”. However the input of the DAGMM
is multivariate, but not a series of time series data. For
multivariate time series data, time information is undoubtedly
an important factor affecting the detection results.

Based on the limitations of existing methods mentioned
above, there are still some shortcomings such as only con-
sidering the time correlation of MTS and ignoring the feature
correlation, treating all-time series and the degree of mutual
influence between variables without distinction, as well as the
ability to detect those anomalies that have not occurred, that is,
whether variable randomness is considered, and so on. Table I
provide the summary of the existing approaches and shows the
differences between the proposed MDAT RF and the existing
methods clearly. In this paper, we proposed a model that
combine both the reconstruction and forecast method in order
to improve the performance of detecting anomalies.

Table I. Differences Between Different Models

Models
Item Temproal Features Importance Stochasticity

DAGMM % " % "

OmniAnomaly " % % "

LSTM VAE " % % %

USAD " % % "

MTAD GAT " " " %

TranAD " % " %

MTAD RF " " " "

Notes: Temproal means temproal correlation. Features means correlation
of features. Importance means whether to consider the degree of influence
between different time series. Stochasticity means whether to consider the
detection of undiscovered anomalies

III. PRELIMINARIES FORMULATION

Some prior knowledge is used to facilitate understanding of
our proposed model. In this section, we first explain in details
on how the proposed MTAD-RF can perform multivariate time
series for anomaly detection, then we define the problem we
want to addressed in this paper. Finally, the basic knowledge
of GAT and VAE involved in MTAD RF is introduced.

A. Anomaly Detection Structure

As shown in Figure 1, the Multivariate time series anomaly
detection structure involves two stages of the assignment,
which are model training and anomaly detection .The data
preprocessing module and relationship extraction module are
shared by the model training and anomaly detection. The
data preprocessing module, includes data cleaning, data nor-
malization, and data partitioning by a sliding window. This
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Figure 1. The structure of the MTAD RF. The solid lines
indicate the process of the training model. The dotted lines
donate the process of anomaly detection.

module does not only eliminates the error effects of noise
and inconsistent data types on the model but also avoids the
invalid effects of outdated historical data. The relationship
extraction module mainly captures the data characteristics
of multivariate time series from the temporal correlation
and feature correlation, which provides the basis for the
subsequent accurate modeling of normal data behavior. The
model training is implemented mainly by the model training
stage, which is a specific implementation of MTAD RF. It
repeatedly adjusts the parameters to train the model according
to train data until it reaches the best state and saves it as
the initial model of the model testing module. On the other
hand, it transfers the anomaly score to the threshold selecting
module to train the automatic selection of anomaly thresholds,
laying the foundation for subsequent anomaly determination.
The anomaly detection is mainly for test data that contains
abnormalities, relying on the model testing module to calculate
the anomaly score at different times or features and anomaly
thresholds, which send to the anomaly detecting module to get
the anomaly times and features. In practical industrial systems,
the model training phase is transparent, and only the anomaly
detection phase is needed to detect anomalies.

B. Problem Definition

In order to facilitate modeling and express the problem we
want to solve clearly, here we define the related problems in
multivariate time series anomaly detection with a mathematical
formal language.

Definition I (Multivariate Time Series): A multivariate
time series XT = {X1, X2, ..., Xi, ...Xt|i ∈ (1, t)}, where
t indicates the maximum number of times. The i-th time
series Xi = {Xi1, Xi2, ..., Xij , ..., Xik|j ∈ (1, k)} , where
k indicates the number of features in Xi. Thus, XT ∈ Rt×k.

Definition II (Multivariate Time Series Anomaly De-
tection): For a multivariate time series XT , the purpose of
anomaly detection is that judging whether the i-th time series
Xi is anomalous by whether the corresponding time anomaly
score Si exceeds the threshold.

In particular, We assume that as long as there is at least
one feature in Xi is anomalous, then Xi is an anomalous
time series.

Definition III (Anomaly Interpretation): For an anoma-
lous time series Xi, anomaly interpretation is to find out which
anomalous features Xij of the time series. By calculating
feature anomaly score Sj , features whose anomaly score
exceed the threshold are considered to anomalous features.

It should be noted that both the time anomaly score So and
the feature anomaly score Sj are based on the anomaly score
Sij of the j-th feature at the i-th moment. We assume that the
temporal anomaly score Si of the time series Xi is the sum
of the anomaly scores of all features at that moment, and the
anomaly score Sj of each feature is the average of the scores
of the corresponding features at all times.

C. Basics methods

In this section, we will briefly introduce the two more
classic models GAT and VAE used in this paper.

1) Graph Attention Network (GAT)
Graph Attention Network (GAT) [23] was first proposed

by Yoshua Bengio to solve problems that current Graph
Convolution Networks (GCN) [24] cannot solve, including
dynamic graph problems (especially when the data in the
training and test sets are based on different graph structures),
directed graph processing bottlenecks, and the problem of
assigning different learned weights to different neighbors.

GAT focuses on obtaining the influence of other nodes
on this node. GAT essentially has two operation modes,
namely Mask graph attention or Global graph attention. Global
graph attention, as the name implies, means each vertex i
performs an attention operation on any vertex on the graph.
The advantage is that it does not depend on the structure
of the graph at all, and there is no pressure on inductive
tasks. However, in Mask graph attention, the operation of
the attention mechanism is only performed on the neighbor
vertices.

GAT is mainly implemented in two steps: (1) Calculate
the attention coefficient. For vertex i, calculate the similarity
coefficient eij between its neighbors j and itself one by
one, and then normalize it according to the softmax function.
(2) According to the calculated attention coefficient, weight
and aggregate the features. Output new features fused with
neighborhood information for each vertex.

In essence, both GCN and GAT aggregate the features
of neighboring vertices to the central vertex (an aggregate
operation), and use the local stationery on the graph to
learn new vertex feature expressions. The difference is that
GCN uses the Laplacian matrix, and GAT uses the attention
coefficient. To a certain extent, GAT will be stronger because
the correlation between vertex features is better incorporated
into the model.

2) Variational Auto-Encoder (VAE)
As a form of a deep generative model, Variational Auto-

Encoders (VAE) is a generative network structure based on
Variational Bayes (VB) inference proposed by Kingma et
al.[25]. Unlike traditional autoencoders that describe the latent
space numerically, it describes the observations of the latent
space in a probabilistic way, showing great application value
in data generation.
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Table II. Notations Definitions

Notations Definitions
XT multivariate time series
Xi a time series in XT

Xij a feature in Xi

Vj a feature time series in XT

X̂T reconstructed XT

Xt
′ forecasted Xi

w sliding window
Si a time series anomaly score
Sj a feature time series anomaly score
Sij a feature in a time series anomaly score
hf feature attention result
ht temporal attention result
h intermediate vector
z hidden vector of VAE

Assuming that the original data is X = {xi}Ni , each
data sample xi is a randomly generated independent, con-
tinuous or discrete distribution variable. The generated data
is X ′ = {x′

i}Ni , and suppose that the process produces a
latent variable Z, that is, Z is the mysterious cause (feature)
that determines the properties of X . The observable variable
X is a random vector in a high-dimensional space, and the
unobservable variable Z is a random vector in a relatively
low-dimensional space.

The generative model can be divided into two processes: (1)
the approximate inference process of the posterior distribution
of the latent variable Z: qθ(z|x), which is an inference
network. (2) the generating variable Conditional distribution
generation process for X ′: Pθ(z)Pθ(x

′|z), which is gener-
ation network. The output of the inference network should
be the posterior distribution p(z|x) of Z. But this p(z|x)
posterior distribution itself is not easy to find. So some
scholars came up with another scalable distribution qθ(z|x)
to approximatep(z|x). By learning the parameters of qθ(z|x)
through a deep network, and optimizing q step by step to
make it very similar to p(z|x), it can be used to approximate
the inference of complex distributions. To make the two
distributions q and p as similar as possible, we can minimize
the KL divergence between the two distributions.

IV. MTAD RF APPROACH

In this section, we present a detailed description of the
proposed MTAD RF model. First, we present the overview
of the model in Section 4.1. We then present the detail
of each module of MTAD RF model: Data preprocessing,
relationship extraction, model training and anomaly detection
and interpretation in section 4.2, 4.3, 4.4 and 4.5 respectively.
Table II shows meaning of notations frequently used in this
paper.

A. Overview of MTAD RF

The overall framework of the MTAD RF model is shown in
Figure 2 below, which mainly includes four parts: Relationship
extraction based on GAT, data reconstruction based on VAE,
data forecast based on MLP, and anomaly detection and
location. The specific functions of each part are as follows:

• Relationship Extraction : We apply a 1D convolution
layer to the original data to enhance the local feature
aggregation ability of the data when using sliding win-
dows [26], while simplifying the computation. Then two
analogous graph attention layers are applied to extract
information from the original data from the perspectives
of time and feature simultaneously. Finally, concatenate
the three outputs as intermediate vector h.

• Reconstruction : Feed the middle vector h to the VAE
to reconstruct the feature values at all times Ŵt by the
sliding window w, where Z is recorded as a hidden vector
in VAE.

• Forecast : A MLP with 3 layers is applied to the middle
vector h to predict the feature values of the next moment
X ′

t according to the time series data in the sliding window
w. The basis for forecast is the influence of adjacent time
series data in continuous time.

• Anomaly Detection : First, calculating anomaly score
of different features at different times Sij according to
the reconstruction error and forecast error at the t-th
moment, and then get the final anomaly scores Si and
Sj of different times and different features. Therefore,
the anomaly times are derived by Si through compared
anomaly threshold, and the abnormal features are ob-
tained by combining the feature attention weight matrix
and Sj .

B. Data Preprocessing

To reduce the interference of noisy data to the model, we
first perform data preprocessing, mainly data cleaning and
data standardization. Referring to the Spectral Residual (SR)
algorithm [27] to process anomaly detection of univariate time
series data, we use the SR method to clean the data; in
addition, the data standardization adopts the maximum and
minimum standardization method.

Data cleaning: Since the methods based on reconstruction
and forecast are greatly affected by irregular values and
outliers in the data, to reduce the influence of data on the
model method, we follow the most outstanding method for
univariate data anomaly detection proposed by Ren et al.[27]
Method SR method, which is used to detect anomalies for
each moment of the training data. In addition, referring to the
practice of [16], we replace the data at abnormal times with
data that is close to normal to complete the data cleaning.

Data standardization: We use min-max normalization to
process the training data, which is implemented as follows:

Ṽj =
Vj −min(Vj)

max(Vj)−min(Vj)
(1)

where Vj(j ∈ (1, k)) is the j-th feature of all times, max(Vj)
is the maximum value of Vj , and min(Vj) is the minimum
value of Vj .

C. Relationship Extraction

The distinguishing feature of time series is long-term co-
herence, however, the impact of data from a long time ago
on the current is often small or even irrelevant. Therefore, we
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Figure 2. The framework of the MTAD RF. The size of XT is n × k, h is the intermediate vector, which is the splicing of
the results of 1D-Conv, hfeature and htemporal, size is n × 3k. µ and σ represent the mean and variance, respectively. z is
the encoded hidden vector. Sij is the anomaly score of the j-th feature at the i-th time.

introduce the concept of sliding window. As the name implies,
its main function is to divide too long time data into a window,
to focus on the influence of local time series data on each other.
As mentioned in [27], the convolution operation can work well
for local feature extraction. Therefore, we preliminarily apply
a 1D convolution layer to the original data XT to initially
focus on the interaction between local sequences, and the
output is X̃T ∈ Rt×k.

Additionally, time correlation and feature correlation of
multivariate time series contains a lot of information, espe-
cially the mutual influence between features, which is very
important for analyzing anomalies. GAT [23] can mine the
mutual influence relationship between different nodes in the
graph data by constructing the attention weight matrix. There-
fore, we used a two-layer GAT layer to extract the feature
information of time series data from the aspects of time and
feature, respectively. The main principle of GAT is shown in
the Figure 3.

For a network of n nodes G = {z1, z2, ..., zn}, zi ∈ Rk,
k is the number of features of the node. To obtain a low-
dimensional representation of the network with more infor-
mation, all nodes share a weight matrix W ∈ Rk×k′

, and
then perform self-attention on the nodes, that is, a shared
attention mechanism a, and calculate the attention coefficient
accordingly:

eij = a(Wz⃗i,W z⃗j) (2)

which represents the influence of node j on node i, where
j ∈ Ni. Ni is the set of first-hop neighbor nodes of node i.
The attention mechanism a is implemented as follows:

eij = LeakyReLu(⃗aT [Wz⃗i ∥Wz⃗j ]) (3)

The weight vector a⃗ ∈ R2k′
, ∥ represents the splicing opera-

tion, .T represents the transpose operation, and LeakyReLu is

Figure 3. Attention mechanism between node zi and its
neighbors zj,j∈(1,7), αij,j∈(1,7) represent the corresponding
attention coefficients. hi is the output feature vector of zi.

the activation function. In addition, to facilitate the comparison
of different node attention coefficients, regularizing all j with
the Softmax function:

αij =
exp(eij)∑Ni

k=1 exp(eik)
(4)

Finally, the feature vector hi of node i is output, where hi ∈
Rk′

, σ is the activation function.

hi = σ

∑
j∈Ni

αijWz⃗j

 (5)

Since the structural relationship between the variables of
multivariate time series is not clear in reality, we propose to
construct time series data as a fully connected graph from the
perspective of time and feature, and then apply two-parallel
GAT layers to extract information. Subsequent experimental
results also demonstrate the effectiveness of our method.
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1) Feature Attention
From the perspective of feature, we regard multivariate time

series as a graphGf = {V1, V2, V3..., Vk}, where node Vj(j ∈
{1, k}) has t features. It also can be understood in Figure 3.
that we define one feature as a node and all-time feature values
are node features. After sliding window w, the X̃T divided
by multiple small pieces of size Rk×w, which can acquire a
series of a smaller graph Gw like the organization of Gf . In
every Gw, we use GAT to calculate the association between
two features, resulting in the attention coefficient αf and the
output hfeature, which size is k × t.

2) Temporal Attention
Similarly, from the perspective of time, we regard multivari-

ate time series as a graph Gt = {X1, X2, X3..., Xt}, where
node Xi(i ∈ {1, t}) has k features. Different from feature
attention, we define one moment as a node, and all feature
values at this moment are node features. The W̃t is divided
into a series of small pieces of size Rw×k according to the
sliding window w. In the same way, GAT is applied in the
sliding window to extract the relationship between two-time
series, and obtain the attention coefficient αt and the final
output htemporal, which size is t × k. More implementation
details can be seen in the Algorithm 1.

D. Model Traning

After initially extracting the time and feature features of the
original data XT , the next step is to train the model according
to the minimization of reconstruction error and forecast error,
which mainly includes the following parts.

1) Reconstruction model
After extracting the features of the original data XT , we

concatenate X̃T , hfeature and htemporal as intermediate vector
h. Since the difference between normal data is not large after
encoding and decoding, the difference between abnormal data
is obvious. Therefore, the reconstruction model mainly judges
the abnormality according to the reconstruction error. VAE
[25] has a stronger generation ability than general AE, and
the generalization effect is excellent when reconstructing the
original data. The schematic diagram of the specific VAE is
shown in Figure 4.

Figure 4. Schematic diagram of the principle of VAE.

The main idea of VAE is to use some common distribution
like a normal distribution train a model x = G(z) that
maps the original simple probability distribution to the true
probability distribution of the training set. Here, the latent
variable z is introduced, which is generated by the sampling
and parameters of the input data x, and not only contains the
information of x, but also satisfies the normal distribution.

First, for the continuous variable z according to the total
probability formula, we can calculate p(x):

p(x) =

∫
z

p(x|z) · p(z) dz (6)

But it is difficult to calculate an integral part directly because
we can’t enumerate all the vectors z and p(x) we don’t know.
The posterior distribution can be given by

p(z|x) = p(z) · p(x|z)/p(x) (7)

It is equally hard to calculate directly. Therefore, we introduce
a inference model qϕ(z|x) and a generative model(decoder)
pθ(x̂|z) to deal the problems, which is shown in Figure 4. So,
the specific implementation of the reconstruction model is the
followings, note that ϕ, θ are all parameters that need to be
trained.

• Encoding : it is assumed that the latent variables z follow
a normal distribution qϕ(z|x) with respect to each sample
x posterior, so that the z collected by p(z) uniquely
corresponds to a certain sample; and then based on
the posterior qϕ(z|x) sampling to obtain p(z). During
training, each sample trains two targets mean µ and
variance σ.

• Decoding : Calculate pθ(x|z) to regenerate sample x̂.

To make all posterior distributions align with the standard
distribution, KL divergence is introduced to achieve. And
combined with the reconstruction error, the loss function of
the reconstructed model can be given by:

Lossrecon =
∥∥∥Ŵt −Wt

∥∥∥
2
+KL

(
N(µ, σ2)||N(0, 1)

)
=

t∑
i=1

∥∥∥X̂i −Xi

∥∥∥
2
+

1

2

(
− log σ2 + µ2 + σ2 − 1

)
(8)

The KL divergence loss is a regular term, which makes the
encoding result have zero mean and a certain amount of noise,
which increases the generalization ability of the decoded and
regenerated samples.

2) Forecast model
The intermediate vector h is passed into the Multi-Layer

Perceptron(MLP) [28] , through the multi-layer hidden layer,
and finally, the t-th time data predicted at the t-h moment X ′

t

is output. The loss function adopts MSE(mean-square error):

Lossfor = ∥X ′
t −Xt∥2 (9)

3) Joint optimization
Unlike most models that only consider reconstruction or

forecast in a certain way to detect anomalies, we believe that
the joint reconstruction and forecast model can comprehen-
sively detect model robustness for accurately judging whether
the i-th moment is abnormal or not. At the same time, we
set hyperparameters η ∈ {0, 1} to balance the effects of
reconstruction and forecast models. Therefore, the total loss
function of the model is as follows:

Loss = ηLossrecon + (1− η)Lossfor (10)
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Trained Model

Reconstruction Error about XT

Forecast Error about Xi

Anomaly Score Sij

Dynamic Anomaly Threshold

Anomaly Times & 
Features

Figure 5. The process of detecting MTS anomalies from trained model by anomaly score.

E. Anomaly Detection and Interpretation

The main process of MTS anomaly detection according
to the trained model is shown in Figure 5. First of all,
the trained model can generate all reconstructed time series
X̂T = {X̂1, X̂2, ..., X̂t|i ∈ (1, t)}, a predieted time series
Xi

′ = {Xi1
′, Xi2

′, ..., X ′
ik|j ∈ (1, k)}and dynamically gen-

erate the abnormal threshold according to the training data,
where the abnormal threshold determination method comes
from ϵ-method proposed by [10]. Then, the abnormal time
and feature can be determined by calculating the abnormal
score Sij of the j-th feature at the i-th time and comparing it
with the threshold.

Referring to the definition of anomaly detection defined
above, we introduce the parameter λ ∈ {0, 1} to balance the
reconstruction error of XT and the forecast error of Xi to
calculate the anomaly score Sij of the j-th feature at the i-th
time:

Sij =
[
λ
∥∥∥X̂ij −Xij

∥∥∥
2
+ (1− λ)

∥∥X ′
ij −Xij

∥∥
2

]
(11)

We detect anomaly on two aspects anomaly times and
anomaly features, which corresponds to the results of anomaly
detection and anomaly interpretation. We define temporal
anomaly score St = {S1, S2, ..., Si, ..., St|i ∈ (1, t)} as the
sum of the anomaly scores for all features at that moment,
feature anomaly score Sf = {S1, S2, ..., Sj , ..., Sk|j ∈ (1, k)}
is the average of all moments for an feature, which is computed
as follows.

Si =

k∑
j=1

Sij , Sj =
1

t

t∑
i=1

Sij (12)

Once a certain time is judged to be an abnormal time, the
features that exceed the feature abnormal score threshold at
that time are immediately obtained as candidates for abnormal
causes. The entire process from model training to anomaly
detection is specifically implemented as shown in algorithm 1.
In our approach, GAT can be used to learn the temporal and
feature correlations of MTS and assign their weights according
to the form of input data. The anomaly score result is used
to judge whether the next moment is abnormal and locate the
abnormal features.

Remark: The time complexity of algorithm 1 is
O(max(t2, k2)), and the space complexity is O(max(t, k)).
In the process of algorithm execution, MTS adaptively learns
the smallest possible constraints and an attention strategy that
can extract as much information as possible. After the epoch

is executed, the abnormal score values of all time series
and all features of MTS can be obtained, which meets the
expectation of abnormal judgment. In addition, since each
time series interacts with data in adjacent sliding window
of size w, it is parallel in each iteration, indicating that the
algorithm is fair, which avoids that different time sequences
are affected by the previous extraction results due to the
sequence of occurrence.

V. EXPERIMENTS AND RESULTS

To demonstrate the effectiveness and accuracy of the pro-
posed MTAD RF model, we conducted the following experi-
ments. Unfortunately, it include comparing the performance of
the proposed MTAD RF on multiple real world datasets and
multiple baseline methods, as well as an analysis of important
parameters in our model and anomaly detection diagnostics of
our model. We first describe the datasets, the baseline methods
and the evaluation metrics for performance evaluation.

A. Datasets

We selected 4 publicly available datasets to test our model.
SMD (Sever Machine Dataset) is a 5-week-long dataset col-
lected from a large internet company with policy permission
[7]. SMAP (Soil Moisture Active and Passive) and MSL
(Mars Science Laboratory rover) are satellite datasets collected
by NASA [29]. SWaT (Secure Water Treatment) is a water
treatment test bench for research in the field of cybersecurity
[30]. The specific information of the dataset is shown in Table
III.

B. Baseline Methods

To demonstrate the overall performance of our proposed
method MTAD RF, we compare it with 5 state-of-the-art
baseline methods. The details are as follows:

• AutoEncoder [11]: Encoders and decoders that unsu-
pervised learn normal data patterns in multivariate time
series data and detect anomalies through reconstruction
errors.

• OmniAnomaly [7]: A Stochastic Recurrent Neural Net-
work that stitches together VAE and GRU, taking into
account both time dependence and randomness. Random
variables can capture more information from historical
random variables and better represent the input data.
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Algorithm 1: The Learning Algorithm of MTAD

Input: Multivariate time seresXT ∈ Rt×k, Epoch T ,
Sliding window w, Balance parameter λ and η.

Output: Anomaly temporal and feature score St and
Sf .

1 Clean and standardize XT ;
2 Divide XT by slide window w;
3 Lossr ← 0, Lossf ← 0, Loss ← 0;
4 for epoch ← 1 to T do
5 X̃T ←1D-Conv(XT );

// Temporal Attention return
htemporal

6 foreach Xi in X̃T do
7 foreach Xj in X̃T do
8 eij ← LeakyReLu(⃗aT [W1Xi ∥W1Xj ]);
9 αij ← Softmax(eij);

10 hi ← σ
(∑

j∈T αijW1Xj

)
;

11 end
12 end

// Feature Attention return hfeature

13 Transpose XT
′, do the above loop over each row

of Vi;
14 h ← X̃T ∥ htemporal ∥ hfeature;

// Reconstruction Model
15 µ ←W2h;
16 σi ←W3h;
17 Sample ϵ from N(0, 1);
18 z ← µ+ ϵ ∗ σ;
19 X̂T ←W4z;

20 Lossrecon ←
∥∥∥X̂T −XT

∥∥∥
2
+

KL
(
N(µ, σ2)||N(0, 1)

)
;

// Forecast Model
21 Xt

′ ←W5h;
22 Lossfor ← ∥X ′

i −Xi∥2;
23 Loss ← ηLossrecon + (1− η)Lossfor;
24 Update W1,W2,W3,W4,W5, with Loss;
25 if epoch = T then
26 St ← λ||X̂T −XT ||2 + (1− λ) ∥X ′

t −Xt∥2;
27 Sf ←

1
T [λ||X̂T −XT ||T2 + (1− λ) ∥X ′

t −Xt∥T2 ];
28 end
29 end
30 Return St and Sf .

Table III. Details of each dataset

Datasets Features Train Test Anomalies

SMD 38 708405 708420 4.16%
SMAP 25 135183 427617 13.13%
MSL 55 58317 73729 10.72%
SWaT 51 495000 449919 12.14%

Table IV. Parameter settings in Experiments

Parameters Default Value

batch size 256
window size 50
training iterations 30
optimizer Adam
learning rate 0.001
valid split 0.1
Decoder layers 1
MLP layers 3

However, it does not explicitly solve the problem of fea-
ture correlation in the model and ignores the interactive
information between features.

• LSTM VAE [8]: A reconstructed model composed of
LSTM and VAE. The LSTM module is used to capture
time information, and the VAE module captures feature
information, but the LSTM module takes more time.

• DAGMM [22]: Anomaly detection is performed through
a neural network model based on Autoencoder and
Gaussian Mixture Model ”GMM” that comprehensively
considers hidden layer features and reconstruction errors,
but it ignores the time information of the data.

• USAD [13]: An unsupervised anomaly detection method
based on an adversarially trained autoencoder is pro-
posed. The use of adversarial training and its architec-
ture enables it to isolate anomalies while providing fast
training. It also demonstrates its superiority in robustness,
training speed, and high anomaly detection.

C. Experiment Setup

The hardware environment of our experiment depends on
the Linux system, with 8G memory, 4 CPU cores, and 1
integrated graphics card GeForce RTX3090; the software
environment is pytorch1.10, cuda10.3. The main parameter
values involved in the model and default value settings are
shown in Table IV.

In addition, due to the large difference in features between
datasets, the dimensions of each hidden layer in the reconstruc-
tion and forecast models of each dataset are different. The
specific details are that for SMD, SMAP, MSL, and SWaT,
the dimensions of the encoding part of the hidden layer in the
reconstruction module are 100, 150, 100, 150; the dimensions
of the decoding part of the hidden layer are 30, 50, 30, 50; the
dimensions of the MLP hidden layer in the forecast module
are 10, 30, 10, 30.

D. Experiment Results and Analysis

We experimentally investigate the anomaly detection per-
formance of MTAD RF and other baseline methods on 4 real
datasets. The accuracy of anomaly detection of each method is
compared, and the performance of our method is evaluated in
two aspects: parametric analysis and anomaly diagnosis ability.

1) Performance of Accuracy
We use precision(P), recall(R), and F1-score(F1) as the

evaluation metrics to test the performance of our model, which
are calculated as follows. The reason we do not use the
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accuracy(ACC) is that in the case of imbalanced positive and
negative samples, the accuracy rate is a big flaw. For example,
in anomaly detection, anomalies are often very rare, generally
only a few thousandths. Therefore, even if all forecasts are
negative (normal samples), the ACC is more than 99%, which
is meaningless.

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 = 2 · P ·R

P +R

Where TP represents the number of positive samples that
are correctly identified, FP represents the number of false
negative samples, and FN represents the number of false
positive samples.

We compare MTAD RF with other baseline methods on
the following 4 real-world datasets with precision (P), recall
(R), and F1-score (F1) as evaluation metrics The specific
experimental results obtained are shown in Table V.

As can be seen from Table V, we can find that MTAD -
RF outperforms other methods on SMAP, MSL and SWaT
datasets, and is second only to the USAD method on SMD
datasets. The experimental results fully demonstrate the ef-
fectiveness and efficiency of our method. We also found that
the AE method unexpectedly performed evenly across datasets
despite its simpler structure, suggesting a lack of model
personalization. At the same time, the OmniAnomaly method
has lower performance than our method because it does not
explicitly solve the feature-related problems in the model
and ignores the interaction information between features. The
DAGMM method is slightly inferior to other methods on sev-
eral datasets, mainly due to the shortcomings of the algorithm
design itself, which does not consider the time feature and only
uses the feature feature. Although the LSTM-VAE method
increases the capture of temporal features in VAE, the LSTM
module is limited by long-distance ”memory”, and the parallel
computing overhead is huge, so its experimental effect is not
ideal. In addition, although the USAD method draws on the
idea of GAN and trains two autoencoders adversarially and
obtains a certain good implementation effect, the experimental
complexity is high (a large number of parameters) and it is
easy to cause non-convergence problems, so the effect is lower
than ours method.

2) Parameters Analysis
We discuss the joint optimization effect of the reconstruction

and forecast modules on the model. In MTAD RF, we propose
the parameter η in the total loss function to balance the
reconstruction loss and the forecast loss to minimize the error
between the calculated result and the original data. Similarly,
we also introduce the parameter λ in the anomaly score
calculation to balance the effects of reconstruction error and
forecast error on the calculated score. These two parameters
work are samely, and we naturally keep them consistent
in our experiments. To further study the specific impact of
the reconstruction and forecast modules on the experimental
results, we conducted additional experiments with different
values of λ and η at an interval of 0.1 between [0,1] on
SMD, SMAP, and MSL datasets about Precision, Recall and
F1-score.

(a) parameter analysis of MSL

(b) parameter analysis of SMD

(c) parameter analysis of SMAP

Figure 6. The effect of different balance parameter λ and η in
the MTAD RF of 3 different datasets.

Figure 7. Comparison of F1-Score of 3 datasets with different
balance parameters λ and η.

The results are detailed in Table VI and Figure 6 shows
the different parameter analysis of three datasets. We notice
that different settings of η and λ have similar effects on
the three indicators. Precision has high values on the three
datasets, and does not change greatly with the change of the
balance parameter, while the Recall rate changes drastically.
Therefore, F1-score is more suitable as an indicator to evaluate
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Table V. Performance Comparison Results of methods on datasets.

Methods SMD SMAP MSL SWaT
P(Precision) R(Recall) F1 P R F1 P R F1 P R F1

AE 0.883 0.804 0.828 0.722 0.98 0.778 0.854 0.975 0.879 0.991 0.704 0.823
OmniAnomaly 0.764 0.974 0.856 0.647 0.995 0.784 0.772 0.971 0.86 0.963 0.745 0.82

DAGMM 0.789 0.917 0.848 0.699 0.884 0.781 0.723 0.696 0.709 0.895 0.734 0.806
LSTM VAE 0.951 0.859 0.903 0.726 0.821 0.77 0.835 0.763 0.797 0.946 0.78 0.855

USAD 0.932 0.962 0.938 0.77 0.983 0.819 0.881 0.979 0.911 0.987 0.74 0.846
MTAD RF 0.967 0.852 0.906 0.971 0.942 0.956 0.913 0.946 0.923 0.95 1.0 0.974

Table VI. The effect of different parameters on the MTAD RF
model on different datasets

λ&η
MSL SMD SMAP

P R F1 P R F1 P R F1
0 0.930 0.746 0.828 0.984 0.577 0.728 0.971 0.677 0.798

0.1 0.954 0.761 0.846 0.978 0.537 0.726 0.963 0.614 0.750
0.2 0.977 0.699 0.815 0.986 0.537 0.695 0.969 0.597 0.739
0.3 0.983 0.729 0.837 0.988 0.469 0.636 0.967 0.683 0.801
0.4 0.913 0.946 0.923 0.991 0.577 0.730 0.976 0.744 0.844
0.5 0.92 0.82 0.867 0.988 0.469 0.636 0.981 0.817 0.892
0.6 0.976 0.682 0.803 0.992 0.697 0.819 0.968 0.853 0.907
0.7 0.981 0.665 0.792 0.967 0.852 0.906 0.953 0.829 0.887
0.8 0.991 0.586 0.736 0.964 0.786 0.866 0.971 0.942 0.956
0.9 0.984 0.403 0.571 0.994 0.589 0.739 0.954 0.796 0.868
1.0 0.982 0.545 0.701 0.997 0.548 0.707 0.983 0.682 0.805

the performance of the model. We separately plotted the F1-
scores of the three datasets under different balance parameters
as shown in Figure 6. In addition, with the change of balance
parameters, the F1-score of MTAD RF is better than relying
only on reconstruction (λ, η = 1) or forecast model (λ, η =
0) in most cases, which effectively proves that we introduce
correctness of balancing parameters.

As shown in Figure 7, a parameter of 0 means only the fore-
cast model, and a parameter of 1 means only the reconstruction
model. We notice that the best F1 values are not at the ends of
the polyline, but somewhere in the middle: for MSL is η and λ
= 0.4, for SMD when η and λ = 0.7, for SMAP when η and λ =
0.8. The experimental results are in line with expectations and
prove our idea that comprehensive reconstruction and forecast
models are more efficient than relying only on one or the
other. high. It’s just that the balance ratio of reconstruction
and forecast models for different datasets is different, which
is also very reasonable, mainly related to the characteristics
of the dataset. Secondly, for different datasets, we observed
that when η and λ are within a certain interval, such as MSL
when η and λ belong to [0, 0.6], the experimental results of
MTAD RF are better This demonstrates the robustness of our
parameters compared to most baseline methods.

3) Anomaly Diagnosis Analysis
For real industrial systems, it is not enough to only detect

the occurrence of anomalies, and it is also necessary to
determine the specific causes of the anomalies, such as certain
sensors that may be attacked. Our model achieves this function
well. According to Equations 11 and 12, we can get a series
of feature anomaly score Sj and temporal anomaly score Si.
By sorting the anomaly scores, we consider Sj and Si which
exceeding thershold are anomalies.

Since the datasets MSL, SMAP, and SMD record the time
of anomaly generation and the specific features that caused
the anomaly to occur, we choose them to test the anomaly

Table VII. Model diagnostic capability

Model Datasets HitRate@100% HitRate@150% NDCG@5

MTAD RF
SMD 0.834 0.852 0.994

SMAP 0.827 0.843 0.986
MSL 0.805 0.827 0.980

diagnostic ability of our model. We select the top-8 features
as the cause of the anomaly. We achieve our goal based on
the metrics HitRate@P%[7] and NDCG[31]. For

HitRate@P% =
Hit@ ⌊P%× |GTt|⌋

|GTt|

in which GTt is the ground truth array of features that caused
the anomaly moment, |GTt| is the length of GTt, ASt is the
feature anomaly score, and Hit@P% indicates the ratio of the
number of overlapping features between top ⌊P%× |GTt|⌋
and GTt in ASt to |GTt|. Unlike HitRate@P% that considers
the importance of each feature of time series data to be
the same, Normalized Discounted Cumulative Gain (NDCG)
considers the ordering factor, so that the feature with a higher
anomaly score has a higher gain, which is calculated as

NDCG@k =
DCG

IDCG

About DCG =
∑k

i=1
rel(i)

log2(i+1) , which rel(i) represents the
correlation coefficient of i, and IDCG means idea DCG,
which calculate the best DCG according to the descending
order of rel(i).

We set P as 100 and 150 and k as 5 with three datasets,
respectively, and the results are shown in Table VII. The
experimental results confirm that our model can well find the
top feature that causes anomalies. 80% of the true anomaly
features are captured in all three datasets, and almost all of the
top 5 anomalies in the ranking are detected, further implying
the high performance of our method in finding the top 5
anomalies generated by anomalies reasons. For real industrial
systems, our algorithms can greatly help users find the real
cause of anomalies and solve problems as soon as possible.

VI. CONCLUSION

In this paper, we propose MDAT RF for multivariate time
series anomaly detection to address the problems of existing
anomaly detection methods. For example, the time correlation
and feature correlation between different time series are not
considered at the same time, the degree of influence on
different time series and variables is not distinguished, and
the anomalies that have not occurred cannot be detected. In
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MTAD RF, we first use two parallel GAT layers named tem-
poral attention and feature attention to simultaneously capture
the temporal and feature correlations of MTS, and distinguish
the influence degree between different time series and features
according to the attention weight coefficient. Second, we
combine the VAE-based reconstruction model and the MLP-
based forecast model to detect those known and unknown
anomalies. We validate our method is effective and efficient
on 4 real datasets, yielding an average F1-score of 95%, an
average improvement of 6% over the best baseline methods.
Moreover, the abnormal diagnostic ability of our method
performs well in HitRate and NDCG. From the perspective of
actual production and life, our proposed MTAD RF can enable
industrial complex systems to automatically and accurately
detect abnormal moments and equipment, and improve the
security and safety of the system.

Nevertheless, our work still has some limitations, such as the
initial assumption of a fully connected relationship between
different time series and different features when learning
attention coefficients. Future work in this area can investigate
the use of various graph representation learning techniques
(such as LINE [32], SDNE [33] and EGES [34] etc.) for
anomaly detection to construct combinations between MTS
features and further improve the feature extraction capability
of MTS.
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