
JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 1, MARCH 2023 11

A Range Query Method for Data Access Pattern Protection Based on
Uniform Access Frequency Distribution

Jing Yan1, Zhao Chang1, Ke Cheng1, and Shuguang Wang1,2

1School of Computer Science and Technology, Xidian University, Xi’an, Shaanxi, 710071, China
2Shandong Institute of Standardization, Jinan, Shandong, 250013, China

Data encryption is necessary to keep user information secure and private on the cloud. However, adversaries can still learn
valuable information about the encrypted data by observing data access patterns. To solve this issue, Oblivious RAMs (ORAMs)
are proposed to hide access patterns. However, ORAMs are expensive and not suitable for deployment in a large database. In this
work, we propose a range query algorithm while providing data access pattern protection based on uniform access frequency. In
the preprocessing, multiple key-value pairs in the database are grouped and stored in each storage module, and we make copies
for frequently accessed key-value pairs and also add some dummy key-value pairs on each storage module. In the online query
processing, according to the range query length of the received query access request, we visit the specific storage module for the
query and obtain the query result. Based on the techniques above, our method makes the uniform distribution of access frequency
of data blocks in the database and achieves a security guarantee as strong as the state-of-the-art method. Compared with data
queries that do not provide data access pattern protection, the ratio of network communication overhead is constant rather than
logarithmic in ORAMs.

Index Terms—Data access pattern, data security, range query.

I. INTRODUCTION

W ITH the development of cloud computing and computer
security, people’s awareness of privacy protection is get-

ting stronger and stronger. Among the increasing security and
privacy techniques in large-scale data management, database
encryption algorithms have made great progress in both data
security and query efficiency. Encrypted databases such as
Cipherbase [1], [2], CryptDB [3], TrustedDB [4], SDB [5], and
Monomi [6], as well as various query execution techniques
over encrypted databases [7]–[10] have been developed.

However, the most common encryption method for databases
is to directly encrypt the data in the database, but executing
a query request on an encrypted database will still disclose
the process of this query. This leaked information includes
the frequency of these encrypted data blocks being accessed,
through which the correlation between data blocks, the im-
portance between data blocks, and then the specific content
of data blocks can be inferred.Therefore, simply encrypting
the database and then executing query requests cannot avoid
all attacks, and this method still has security risks [11]–[14].
By observing the user’s data access patterns in a database, a
lot of private information can be inferred. For example, it is
possible to analyze the importance of different areas in the
database by counting the frequency of accessing data items
from the clients, and with certain background knowledge, the
server can learn a great deal with client queries and/or data
[15]. In another example, for a medical encrypted database
containing patients’ medical records, the extremely infrequent
access to the medical record data area is likely to involve some
rare diseases. If a user happens to read this part of the data,
likely, the user is highly correlated with these rare diseases.
Therefore, in big data and cloud computing applications, the

Manuscript received December 2, 2022; revised March 15, 2023. Corre-
sponding author: Zhao Chang (email: changzhao@xidian.edu.cn).

privacy of users cannot be completely protected by encrypting
the content of the data itself. The protection of users’ access
patterns is also a key research goal at present.

To that end, it is possible to protect the user access
patterns from the cloud by using oblivious RAMs (ORAMs).
ORAM is originally proposed by Goldreich [16] and Ostrovsky
[17]. It allows a client to access encrypted data on a server
without revealing its access patterns to the server. However,
most ORAMs are still very expensive, and not suitable for
deployment in a large database [11]. In comparison with data
queries that do not provide data access pattern protection,
the ratio of network communication overhead in ORAM is
logarithmic.

Recently, Grubbs et al. [18] proposes Pancake privacy
scheme, where the ratio of network communication overhead
is constant rather than logarithmic, in comparison with data
queries that do not provide data access pattern protection. The
pancake algorithm mainly realizes the indistinguishability of
data access patterns of query requests through the combination
of selective replication, false access, and query batching, and
supports point queries of key-value pairs in the database.
Pancake assumes that the frequency of user access to data in the
future can be predicted and all the queries are independent with
each other. Under these assumptions, Pancake copies frequently
accessed data blocks and increase the access frequency of fake
data blocks, so that the overall access frequency of all data
blocks satisfies a uniform distribution, and the data access
pattern is protected.

However, Pancake only supports point query algorithms for
data access pattern protection, but does not provide data access
pattern protection for range queries. The query independence
assumption that Pancake relies on makes it difficult to safely
extend to support range queries.

In this work, we propose a range query algorithm while
providing data access pattern protection based on uniform



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 1, MARCH 2023 12

access frequency. The preprocessing includes the following
steps. First, according to the maximum length of the range
query, multiple key-value pairs in the database are grouped
and stored, and several original storage modules are obtained.
Second, depending on the frequency of access to the data
blocks, we will store more copies of the data blocks that are
accessed frequently. In order to ensure the privacy of the total
number of data blocks, some dummy data blocks are also
added, so that the total number of data blocks is exactly twice
the original data block. Last, we calculate the frequency of
false access to replicas for each key-value pair in each final
storage module. In the online query processing, according to
the range query length of the received query access request,
we visit the specific final storage module for the query and
obtain the query result. Based on the techniques above, our
method makes the uniform distribution of access frequency of
data blocks in the database, and achieves the security guarantee
as strong as Pancake.

In brief, the major contribution of this work is to support
database range queries while providing data access pattern
protection based on uniform access frequency distribution, so
that query algorithms can achieve the balance between data
security and query efficiency. Compared with data queries
that do not provide data access pattern protection, the ratio
of network communication overhead is constant rather than
logarithmic. Specifically, the best range query algorithms that
protect data access patterns today have a feasible memory
overhead, but the time overhead is too large to be applied in
real life. However, the algorithm proposed in this paper uses
about 1.6 times more memory overhead than the above method,
but in exchange for at least 456 times less time overhead, so
that the range query algorithm that protects the access mode
can be applied in real life.

The rest of this article is organized as below. Section II
describes the work, Sections III and IV introduce the modeling
of the system and implementation options, Section V discusses
the results of the assessment, and section VI concludes the
paper.

II. RELATED WORK

A. Database encryption algorithm
The algorithm is an active defense mechanism, which can

prevent data leakage caused by plaintext storage, external
hacker attacks that break through boundary protection, and
data theft from internal high-privilege users, and fundamentally
solve the problem of database sensitive data leakage [19].
Database encryption technology is the top protection means of
database security measures, and it is also the technology with
the highest technical requirements, and it is also very important
for the stability of products [20]. At present, the database
encryption technologies still used in different scenarios include
pre-proxy encryption, application system encryption, file system
encryption, post-proxy encryption, tablespace encryption, and
disk encryption.

B. Oblivious random access machine
Current methods of protecting data access patterns include

Oblivious Random Access Machines (ORAM) and other

methods of protecting data access. Among them, the Oblivious
Random Access Machine (ORAM) can provide data access
pattern protection for data storage, and support data reading
and writing and point query. ORAM is an important means
of protecting access patterns, which protects information such
as access operations and access locations by obfuscating each
access and making it indistinguishable from random access.
The use of ORAM can reduce the possibility of the attacker’s
speculating about private information through access patterns,
reduce the attack surface of the system, and provide more secure
and complete services. However, ORAM can also introduce
additional client storage overhead or network communication
overhead.

Oblivious RAM (ORAM) is proposed by Goldreich and
Ostrovsky. It allows the client to access encrypted data in
a remote server while hiding its access patterns. Since then,
many ORAM constructions have been proposed; among them
the Path-ORAM construction gains its popularity due to its
simplicity and efficiency [21]. For a detailed analysis of various
ORAM constructions, please refer to the recent work.

There exist more advanced ORAM constructions that either
leverage parallelism or support multiple clients more efficiently.
PrivateFS [22] is an oblivious file system based on a new
parallel Oblivious RAM mechanism. The objective is to enable
access to remote storage and keep both the file content and
client access patterns secret. Its major contribution is to support
multiple ORAM clients. Shroud [23] is a general storage system
and functions as a virtual disk, which can hide access patterns
from the cloud servers running it. It achieves this objective
by adapting oblivious algorithms to enable parallelization. It
focuses on using many inexpensive coprocessors acting in
parallel to reduce operation request latency. ObliviStore [24]
is a high performance, distributed ORAM based cloud data
store. It uses an ORAM construction that there is similar to
TP-ORAM [25]. ObliviStore is able to achieve high operation-
level throughput by making I/O operations asynchronous.
CURIOUS [26] fixes a security flaw in ObliviStore arising
in concurrent environments. However, Sahin et al. [27] show
that CURIOUS is also insecure under asynchronous scheduling
of network communication. They implement a new oblivious
storage system TaoStore. TaoStore is built on a tree-based
ORAM scheme that processes client requests concurrently and
asynchronously in a non-blocking fashion.

There are also recent studies that investigate how to support
the ORAM primitive more efficiently inside the architectural
design of new memory technologies, e.g., the recent work on
designing secure DIMM with ORAM support [28].

However, there is a theoretical lower bound on the per-
formance of ORAMs. Compared to data queries that do not
provide data access schema protection, the ratio of network
communication overhead is logarithmic, resulting in a signifi-
cant time overhead for data query processing.

C. Oblivious query processing

Oblivious query processing techniques for specific query
operations have also been explored. Li et al. [29] study how
to compute theta-joins obliviously. Arasu et al. [13] present



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 1, MARCH 2023 13

oblivious query processing algorithms for a rich class of
database queries involving selections, joining, grouping, and
aggregation. However, their study is purely theoretical and
does not lead to practical implementations. Xie et al. [30]
propose ORAM based solutions to perform privacy-preserving
shortest path computation, for which earlier work explores
private information retrieval (PIR) based solutions [31], [32].
In general, ORAM based solutions can provide much better
performance and scalability. ZeroTrace [33] is a new library
of oblivious memory primitives, combining ORAM techniques
with SGX. However, it only performs basic get/put/insert
operations over Set/Dictionary/List interfaces. Obladi [34] is
the first system to provide ACID transactions while also hiding
access patterns. The contribution is orthogonal to our study.

However, the techniques above are still limited by the theo-
retical lower bound on the performance of ORAMs or oblivious
algorithms. Compared to data queries that do not provide data
access schema protection, the ratio of network communication
overhead is logarithmic, resulting in a significant time overhead
for data query processing.

Recently, Grubbs et al. proposes a Pancake privacy scheme,
and the ratio of network communication overhead is constant
rather than logarithmic, in comparison with data queries that
do not provide data access schema protection. This algorithm
mainly realizes the indistinguishability of data access patterns of
query requests through the combination of selective replication,
false access, and query batching, and supports point queries of
key-value pairs in the database. Although this approach supports
point queries against key-value data while protecting data access
patterns, it relies on query independence assumptions that make
it difficult to safely extend to support range queries.

D. Secure multi-party computation

Some recent work explores building an ORAM for secure
multi-party computation (MPC) [35]. MPC is a powerful
cryptographic primitive that allows multiple parties to perform
rich data analytics over their private data while preserving each
party’s data privacy [36].

For oblivious query processing in MPC setting, Bater et
al. [37] propose the Private Data Network (PDN), a federated
database for querying over the collective data of mutually
distrustful parties, where each member database does not reveal
its tuples to its peers nor to the query writer. They introduce
SMCQL, a framework for executing PDN queries. SMCQL
translates SQL statements into MPC primitives to compute
query results over the union of its source databases without
revealing sensitive information about individual tuples to peer
data providers or the honest broker. Volgushev et al. [38] point
out that many relational analytics queries can maintain MPC’s
end-to-end security guarantee without using cryptographic MPC
techniques for all operations. They implement a query compiler
Conclave, which accelerates such queries by transforming them
into a combination of data-parallel, local cleartext processing,
and small MPC steps.

In summary, MPC ensures that all parties can obtain the
computation result, but no party can learn the data from another
party. That is to say, the problem setting in MPC is clearly

different from our cloud database setting. Therefore, these
MPC-based solutions [35]–[38] are designed for a different
context and we do not evaluate them in our study.

E. Differential privacy
Differential privacy (DP) is an effective model to protect

against unknown attacks with guaranteed probabilistic accuracy.
Existing DP-based solutions build key-value data collection
[39], build an index for range query [40] or support general
SQL queries [41], [42]. Local differential privacy (LDP) has a
stronger privacy model than DP [43]. Protocols satisfying LDP
enable parties to collect aggregate information while protecting
each client’s privacy [44]. LDP can be applied on private
spatial data aggregation [45] and answering multi-dimensional
analytical queries [46], [47]. In brief, DP-based solutions [39]–
[47] provide differential privacy for query results, while our
setting is to answer queries exactly.

F. Side channel attacks
The core idea of this method is to obtain ciphertext

information by encrypting various leaked information generated
by the operation of software or hardware [48]. Intrusive, semi-
intrusive, and non-intrusive attacks against security devices fall
under the category of side-channel attacks. In a broad sense,
side-channel attacks are often brain-opening, and there are
many attack methods, such as side-channel attacks on keyboard
tapping content, such as sound analysis attacks, electromagnetic
analysis attacks, attacks through WIFI channel status, and
attacks through kernel usage state and process information.

III. SYSTEM MODEL

In this paper, we introduce a new system model that can be
used to solve a persistent observer’s attack on the database.

The basic core structural details of this range query scheme
will be described in detail. It is divided into five main points.

A. Preprocess the data store
Its main job is to group and store the data in the database

according to specific rules. That is a plaintext data store KV =
(ki, vi) with n key-value pairs, where i ∈ {1, 2...n}, grouped
and stored by the maximum length of the range query. All data
is stored in the database in the form of key-value pairs, and to
improve the efficiency of range queries, the data needs to be
stored in groups. Although this step also consumes time and
memory, as the number of range queries increases, this cost
will continue to be evenly distributed, and the amortized cost is
much less than the cost required by the original ORAM range
query. In summary, preprocessing data storage is essential. In
detail, first, take a group of 20 key-value pairs, that is, a key-
value pair as a group, a total g = n group, and store it here
sub id : 0; Next, take 21 key-value pairs in a group, that is,
all key-value pairs in a group of 2, a total of g = ⌈n/2⌉ group,
stored here in sub id : 1; And so on, finally, in a group of 2l

key-value pairs, all key-value pairs in a group of 2l, a total
of g = ⌈n/(2l)⌉ group, stored in sub id : l. where l needs to
satisfy 2l ≤ n. According to the maximum span of the range
query, set l so that the maximum length a of the range query
meets 2l−1 < a ≤ 2l.



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 1, MARCH 2023 14

B. Selective replication

Calculate the access frequency of each key-value pair stored
in the database, add multiple copies to the key-value pair with
high access frequency proportionally, and distribute the access
frequency of these data blocks. The rule of addition is the more
frequent access, the more replicas are added. When an access
request arrives, a copy is randomly selected for access, so
that the final access distribution reaches a uniform distribution.
Create R(K) copies of the keyword key, and the number of
copies R(K) = ⌈π(K) · n⌉. n is the number of keyword keys
in the data store, and π(K) is the frequency of keyword key
access. n′ is the total number of replicas for all key-value pairs,
which ensures that there is always a total number of replicas
n′ ≤ 2n.

C. Adding dummy keywords

The approach outlined above will result in a different total
number of replicas n′ for different distributions, which leaks
information about the distribution since an attacker may learn
some distribution information from n′. To avoid this leakage,
here enough virtual copies are used to initialize key-value pairs
so that the total number of copies is always 2n. Specifically, a
dummy keyword D with 2n− n′ copies is added, so the total
number of copies is always exactly 2n regardless of π. When
an access request comes, a mix of fake and true queries with
the same proportion will be used to ensure that the frequency
of access is an uniform distribution.

D. Calculate the frequency of fake access on replicas

Calculate a complementary distribution of fake access on
replicas such that the sum of the probabilities of fake and true
access for any given replica is equal to 1/2n, where 2n is
the total number of replicas. Adding fake access in this way
always ensures that the probability of accessing any keyword
is equal. Choose a constant δ to satisfy 0 < δ ≤ 1, and then
use the formula δ(π/R(k)) + (1 − δ)(πf (k, j)) = 1/2n to
calculate πf such that the probability of accessing any replica
(k,j) satisfies: the probability of a real access replica and a
false access replica is a set of convex combinations.

E. Query batching

Use a random process to mix fake visits with real visits.
To increase the likelihood of processing the actual access of
the client immediately, a small batch of access is sent to KV ′

here for each client request. Specifically, when a client submits
an access request to the keyword k ∈ KV , a batch algorithm
is run. It randomly selects a copy of k,j, adds (k,j) to the
query queue, and prepares a batch of access requests of size
B. By default, we set B = 3. For each access, it accesses the
real one based on the probability δ and the false one with a
probability of 1−δ. Specifically, First, when the client submits
an access request to a range query, for a range query of length
a, find a size l that satisfies 2l−1 < a ≤ 2l. Query the lth
data storage area in the database, which is sub id : l. The
process of each range query is decomposed into two subqueries
corresponding to the range endpoint, the batch process is called,

and a batch of requests of size B = 3 is sent for each subquery
access request. Access real key-value groups with probability
¦Ä in batching and fake key-value groups with a probability
of 1− δ. Next, query the access request, preserving the query
results of the subquery access request. Finally, the keywords
corresponding to the subquery results are compared with the
keywords corresponding to the query access request to obtain
the query results of the query access request.

IV. RANGE QUERY SCHEME

The present embodiment provides a specific description
of the theoretical scheme in Section III. through simulation
experiments.

In the simulation, the setup database includes plaintext data
with 16 key-value pairs (i.e., N = 16), corresponding to KV =
(km, vm) as(0,0), (1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7),
(8,8), (9,9), (10,10) , (11,11), (12,12), (13,13), (14,14), (15,15).
Among them, the access frequency corresponding to each key-
value pair is assigned as 0.125, 0.0625, 0.03125, 0.03125, 0.1,
0.05, 0.05, 0.2, 0.0625, 0.03125, 0.03125, 0.025, 0.05, 0.05,
0.05, 0.05.

A. Preprocess the data store

First, these 16 key-value pairs are stored in groups, and a
total of 5 copies need to be stored, which are recorded as
sub id : 0; sub id : 1£ sub id : 2£ sub id : 3£ sub id : 4¡£
Among them, in sub id : 0, 20 key-value pairs are grouped
and stored in the form of a group, that is, 1 key-value pair is
stored in a group, that is, all data needs to be stored in one
copy, and the data with the keywords 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15 is stored. In sub id : 0, sub id : 1,
sub id : 2, sub id : 3, sub id : 4, it is stored as a group of
21, 22, 23, 24, key-value pairs,respectively.

B. Selective replication

According to the formula R(K) = ⌈π(K) · n⌉, the number
of copies of the created keyword R(K) is calculated. This
ensures that the sum of the number of all key-value pairs n′

always guarantees that the total number of replicas n′ ≤ 2n.
namely,Under sub id : 0, the number of replicas corresponding
to the 16 keywords is 2, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1;
Under sub id : 1, the number of replicas corresponding to the
eight keywords is 2, 1, 2, 2, 1, 1, 1, 1, 1; Under sub id : 2, the
number of replicas corresponding to the four keywords is 1,
2, 1, 1, respectively; Under sub id : 3, the number of replicas
corresponding to the two keywords is 2, 1, respectively; Under
sub id : 4, one keyword corresponds to one replica.

C. Adding dummy keywords

A dummy keyword D with 2n− n′ copies is added to each
data stored under sub id, so the total number of replicas is
always exactly 2n regardless of π(k).

Use a random function to generate a dummy key for each
data stored under sub id. Under sub id : 0, sub id : 1,
sub id : 2, sub id : 3, sub id : 4, the virtual keyword key is
3112378623742493, and the number of copies is 11, 5, 3, 1,
and 1, respectively.



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 1, MARCH 2023 15

TABLE I
INFORMATION STORED IN sub pancake (sub id : 0)

Key
Access

frequency
π(k)

Number of
replicas
R(k)

Frequency of fake
access to replicas

πf (k, j)

0 0.125 2 0
1 0.0625 1 0
2 0.03125 1 0.03125
3 0.03125 1 0.03125
4 0.1 2 0.0125
5 0.05 1 0.0125
6 0.05 1 0.0125
7 0.2 4 0.0125
8 0.0625 1 0
9 0.03125 1 0.03125
10 0.03125 1 0.03125
11 0.025 1 0.0375
12 0.05 1 0.0125
13 0.05 1 0.0125
14 0.05 1 0.0125
15 0.05 1 0.0125

3112378623742493 - 11 -

D. Calculate the frequency of fake access on replicas

According to the formulaδ(π/R(k)) + (1− δ)(πf (k, j)) =
1/2n, calculate the frequency of fake access on the replica
πf (k, j). Here let δ = 0.5, a complementary distribution of
fake access is calculated on replicas such that the sum of the
probabilities of fake access and real access for any given replica
is equal and equal to 1/2n.

Through steps 1-4 above, the information stored in the final
enclosure is summarized as shown in Table 1-Table 5.

E. Query batching

A range query for queries 11-14 is made. In the actual
code run, the range span of 11-14 is calculated as 4, which
satisfies 21 < 4 ≤ 22, so you need to find the data below
sub id : 2, In sub id : 2, the keyword keys include 0, 4, 8,
12 as well as dummy keywords. Therefore, two real requests
will be generated, one with a key of 8 and one with a key
of 12. Taking an actual run as an example, according to the
probability, four fake access requests are generated, namely
key is 3112378623742493 twice, the key is 4 once, and the
key is 12 once. At this time, the return of the fake access
request is not processed, and the return of 8-15 for the real
access request is compared with the 11-14 of the real request,
and the values corresponding to the keywords required by the
real request are returned 11, 12, 13, 14. The data returned
successfully.

V. EVALUATION

In this paper, we evaluate this method experimentally. Next,
the method of evaluation will be briefly described, and then,
the experimental results will be described in detail.

A. Experiments with different size datasets occupying memory
sizes

Experiments were performed on datasets of different sizes,
and the memory occupied size was recorded, and the experimen-

TABLE II
INFORMATION STORED IN sub pancake (sub id : 1)

Key
Access

frequency
π(k)

Number of
replicas
R(k)

Frequency of fake
access to replicas

πf (k, j)

0 0.1875 2 0.03125
2 0.0625 1 0.0625
4 0.15 2 0.05
6 0.25 2 0
8 0.09375 1 0.03125
10 0.03125 1 0.06875
12 0.1 1 0.025
14 0.1 1 0.025

3112378623742493 - 5 -

TABLE III
INFORMATION STORED IN sub pancake (sub id : 2)

Key
Access

frequency
π(k)

Number of
replicas
R(k)

Frequency of fake
access to replicas

πf (k, j)

0 0.25 1 0
4 0.4 2 0.05
8 0.15 1 0.1
12 0.2 1 0.05

3112378623742493 - 3 -

tal results are shown in Fig. 1. When the number of key-value
pairs is 10, the memory space occupied by the data store for
preprocessing of the dataset is 336 bytes. When the number
of key-value pairs is 100, the memory space occupied by the
data store for preprocessing of the dataset is 3232 bytes. When
the number of key-value pairs is 1,000, the memory space
occupied by the data store for preprocessing of the dataset is
32,016 bytes. rORAM stands for ORAM-based range query
algorithm, in which when the number of key-value pairs is 10,
the memory space occupied by the data store for preprocessing
of the dataset is 5192 bytes. When the number of key-value
pairs is 100, the memory space occupied by the data store for
preprocessing of the dataset is 9308 bytes. When the number
of key-value pairs is 1,000, the memory space occupied by
the data store for preprocessing of the dataset is 19,584 bytes.
It can be found that the algorithm proposed in this article
consumes slightly more memory than the rORAM algorithm,
but the maximum advantage is about 1.6 times.

B. Experiment with the time required for 1000 range queries
of different range sizes on different size datasets

Experiments were performed on datasets of different sizes,
recording the time required to execute 1000 queries of different
ranges under each dataset, and the experimental results are
shown in Fig. 2. When the number of key-value pairs is 10
and the maximum range of a range query is 10 key-value pairs,
the time required to execute 1000 range queries is 474.517 ms.
When the number of key-value pairs is 100 and the maximum
range of the query is 10 key-value pairs, the time required to
execute 1000 range queries is 1025.68ms; when the maximum
range of the query is 100 key-value pairs, the time required to



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 1, MARCH 2023 16

TABLE IV
INFORMATION STORED IN sub pancake (sub id : 3)

Key
Access

frequency
π(k)

Number of
replicas
R(k)

Frequency of fake
access to replicas

πf (k, j)

0 0.65 2 0.175
8 0.35 1 0.15

3112378623742493 - 1 -

TABLE V
INFORMATION STORED IN sub pancake (sub id : 4)

Key
Access

frequency
π(k)

Number of
replicas
R(k)

Frequency of fake
access to replicas

πf (k, j)

0 1 1 0
3112378623742493 - 1 -

execute 1000 range queries is 2718.24 ms. When the number
of key-value pairs is 1000 and the maximum range of the query
is 10 key-value pairs, the time required to execute 1000 range
queries is 2996.9ms; when the maximum range of the query is
100 key-value pairs, the time required to execute 1000 range
queries is 11788.06 ms, and when the maximum range of a
query is 1,000 key-value pairs, the time required to execute
1,000 range queries is 70,579ms. In this experiment, you can
see that the size of the range in the range query has a large
impact on the query results. The larger the range, the longer it
takes to make a query.

rORAM stands for ORAM-based range query algorithm,
in which when the number of key-value pairs is 10, the time
required for range query of this dataset is 18832.533 ms; When
the number of key-value pairs is 100, the time required for
range query of the dataset is 293052.911 ms. When the number
of key-value pairs is 1000, the time required for range query of
the dataset is 32239257.11 ms. The results of the comparative
experiment are shown in Fig. 3. In this experiment, it can be
seen that with the increase of data blocks, the proposed method
in this paper is more than 456 times faster than the rORAM
algorithm in terms of time.

Just 1,000 range queries on a database containing 1,000
blocks, the execution time of the rORAM algorithm is nearly
9 hours, although the security is guaranteed, but this time cost
is too high. This is the real reason why the rORAM algorithm
has been proposed, but it has not been applied in real life.

Through the comparison of these two experiments, it can
be seen that the algorithm proposed in this paper uses the
idea of exchanging space for time, and uses slightly more
memory overhead than the existing methods in exchange for
time overhead.Through experimental comparison, it can be
found that this method is very feasible and very successful.

C. Experiment with the time it takes to make multiple times
range queries on datasets of different sizes

Experiments were performed on datasets of different sizes,
and the time required for multiple queries under each dataset

5192

9308

19584

336

3232

32016

0

5000

10000

15000

20000

25000

30000

35000

10 100 1000

M
e

m
o

ry
 O

v
e

rh
e

a
d

(B
)

Data Size

The rORAM algorithm

The proposed algorithm

Fig. 1. Comparison of the memory overhead of the proposed algorithm and
the rORAM algorithm when executing range queries on datasets of different
sizes.(rORAM is an oram-based range query)

was recorded, and the experimental results are shown in Fig. 4.
When the number of key-value pairs is 10, the time required for
10 range queries to record the dataset is 25.794ms, 60.374ms
for 100 range queries, and 474.517ms for 1000 range queries.
When the number of key-value pairs is 100, the time required to
record 10 range queries on the dataset is 237.793ms, 715.95ms
for 100 range queries, and 2718.24ms for 1000 range queries.
When the number of key-value pairs is 1000, the time required
for 10 range queries on the dataset is 4712.8ms, 9411.74ms
for 100 range queries, and 70579ms for 1000 range queries.

The analysis data shows that when the number of key-value
pairs is 10, 10 range queries are performed, with an average
time of 2.579ms on each range query, 100 range queries are
performed, the average time is 0.6037ms, and 1000 range
queries are performed, with an average time of 0.474ms. When
the number of key-value pairs is 100, 10 range queries are
performed, with an average time of 23.779ms on each range
query, 100 range queries with an average time of 7.159ms, and
1000 range queries with an average time of 2.718ms. When
the number of key-value pairs is 1000, 10 range queries are
performed, with an average time of 471.28ms on each range
query, 100 range queries are performed, an average time is
94.117ms, and 1000 range queries are performed, with an
average time of 70.579ms. In the three sets of experiments,
it can be seen that as the number of range queries increases
under the same conditions, the average time to each query has
the same decreasing trend. Therefore, it can be analyzed that
when faced with the same batch of data, the more frequently
the range is queried, the higher the fitness of the method.

Since the range span size of the range query in this
experiment takes the case of a random range, the size of
the range in each range query will also have a great impact on
the variable query time in the final experimental result, (as can
be seen from Fig. 4), so the above result will be the average
value obtained by taking 10 range queries for each case.

The results of the statistics, analyzed and calculated, show
that in the use of this method for range query, when the number
of range queries is increasing, the average time and memory
overhead on each range query are getting smaller and smaller.



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 1, MARCH 2023 17

2996.9

11788.06

70579

1025.68 2718.24

474.517

0

10000

20000

30000

40000

50000

60000

70000

80000

10 100 1000

T
im

e
 O

v
e

rh
e

a
d

(m
s)

Range Size

1000 sets of data

100 sets of data

10 sets of data

Fig. 2. Experiment with the time required for 1000 range queries of different
range sizes on different size datasets.

474.517

2718.24 70579

18832.533

293052.911
32239257.11

1

10

100

1000

10000

100000

1000000

10000000

100000000

10 100 1000

T
im

e
 O

v
e

rh
e

a
d

(m
s)

Data Size

The rORAM algorithm

The proposed algorithm

Fig. 3. Comparison of the time overhead of the proposed algorithm and
the rORAM algorithm when executing range queries on datasets of different
sizes.(rORAM is an oram-based range query)

VI. CONCLUSIONS

In this paper, we summarize a range query method for data
access pattern protection based on uniform access frequency
distribution, and the beneficial effects of this method compared
with existing technologies are: First, the range query method of
data access mode protection based on uniform access frequency
of this method uses the method of uniform access distribution
frequency to achieve uniform distribution of data block access
frequency in the database, and has strong security and privacy
protection functions. Second, it can quickly implement range
query and can find in the stored data according to the start
and end point of the range query, to improve query efficiency.
Third, compared with range queries that do not provide data
access mode protection, its network communication overhead
ratio is constant level, and it has high query performance. In
summary, this method can support database-wide queries, so
that the query algorithm can achieve a balance between ”data
security” and ”query efficiency”.

ACKNOWLEDGMENT

This work was supported in part by the National Key R&D
Program of China under grant No. 2021YFB3101100, the
Natural Science Basic Research Program of Shaanxi under
Grant No. 2019JC-17, the Key Research and Development

25.794 60.374 474.517

237.793 715.95
2718.24

4712.8
9411.74

70579

0

10000

20000

30000

40000

50000

60000

70000

80000

10 100 1000

T
im

e
O
v
e
rh
e
a
d
(m

s)

Number of Total Queries

1000 sets of data

100 sets of data

10 sets of data

Fig. 4. Experiment with the time it takes to make multiple times range queries
on datasets of different sizes.

Program of Shaanxi under Grant No. 2022KXJ-093, the Jinan
¡®New Universities 20 Items¡¯ Introduced Innovation Team
Project under Grant No. 2021GXRC064, and the Fundamental
Research Funds for the Central Universities under grant
No.XJSJ23040.

REFERENCES

[1] A. Arasu, K. Eguro, M. Joglekar, R. Kaushik, D. Kossmann, and
R. Ramamurthy, “Transaction processing on confidential data using
Cipherbase,” in ICDE, 2015, pp. 435–446.

[2] A. Arasu, S. Blanas, K. Eguro, M. Joglekar, R. Kaushik, D. Kossmann,
R. Ramamurthy, P. Upadhyaya, and R. Venkatesan, “Secure database-as-
a-service with Cipherbase,” in SIGMOD, 2013, pp. 1033–1036.

[3] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: Protecting confidentiality with encrypted query processing,”
in SOSP, 2011, pp. 85–100.

[4] S. Bajaj and R. Sion, “TrustedDB: A trusted hardware-based database
with privacy and data confidentiality,” TKDE, vol. 26, no. 3, pp. 752–765,
2014.

[5] Z. He, W. K. Wong, B. Kao, D. W. Cheung, R. Li, S. Yiu, and E. Lo,
“SDB: A secure query processing system with data interoperability,”
PVLDB, vol. 8, no. 12, pp. 1876–1879, 2015.

[6] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing
analytical queries over encrypted data,” PVLDB, vol. 6, no. 5, pp. 289–
300, 2013.

[7] A. Arasu, K. Eguro, R. Kaushik, and R. Ramamurthy, “Querying
encrypted data,” in SIGMOD, 2014, pp. 1259–1261.

[8] H. Hacigümüs, B. R. Iyer, C. Li, and S. Mehrotra, “Executing SQL over
encrypted data in the database-service-provider model,” in SIGMOD,
2002, pp. 216–227.

[9] B. Yao, F. Li, and X. Xiao, “Secure nearest neighbor revisited,” in ICDE,
2013, pp. 733–744.

[10] W. K. Wong, B. Kao, D. W. Cheung, R. Li, and S. Yiu, “Secure query
processing with data interoperability in a cloud database environment,”
in SIGMOD, 2014, pp. 1395–1406.

[11] Z. Chang, D. Xie, and F. Li, “Oblivious RAM: A dissection and
experimental evaluation,” PVLDB, vol. 9, no. 12, pp. 1113–1124, 2016.

[12] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An oblivious and encrypted distributed analytics
platform,” in NSDI, 2017, pp. 283–298.

[13] A. Arasu and R. Kaushik, “Oblivious query processing,” in ICDT, 2014,
pp. 26–37.

[14] T. Hoang, C. D. Ozkaptan, G. Hackebeil, and A. A. Yavuz, “Efficient
oblivious data structures for database services on the cloud,” IEEE Trans.
Cloud Computing, 2018.

[15] Z. Chang, D. Xie, F. Li, J. M. Phillips, and R. Balasubramonian, “Efficient
oblivious query processing for range and knn queries,” IEEE Trans. Knowl.
Data Eng., vol. 34, no. 12, pp. 5741–5754, 2022.

[16] O. Goldreich, “Towards a theory of software protection and simulation
by oblivious RAMs,” in STOC, 1987, pp. 182–194.

[17] R. Ostrovsky, “Efficient computation on oblivious RAMs,” in STOC,
1990, pp. 514–523.



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 3, ISSUE 1, MARCH 2023 18

[18] P. Grubbs, A. Khandelwal, M. Lacharité, L. Brown, L. Li, R. Agarwal,
and T. Ristenpart, “Pancake: Frequency smoothing for encrypted data
stores,” in 29th USENIX Security Symposium, USENIX Security 2020,
August 12-14, 2020, S. Capkun and F. Roesner, Eds., 2020, pp. 2451–
2468.

[19] A. Nadeem and M. Y. Javed, “A performance comparison of data
encryption algorithms,” in 2005 international Conference on information
and communication technologies. IEEE, 2005, pp. 84–89.

[20] L. Bouganim et al., “Database encryption,” 2009.
[21] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and

S. Devadas, “Path ORAM: An extremely simple oblivious RAM protocol,”
in CCS, 2013, pp. 299–310.

[22] P. Williams, R. Sion, and A. Tomescu, “PrivateFS: A parallel oblivious
file system,” in CCS, 2012, pp. 977–988.

[23] J. R. Lorch, B. Parno, J. W. Mickens, M. Raykova, and J. Schiffman,
“Shroud: Ensuring private access to large-scale data in the data center,”
in FAST, 2013, pp. 199–214.

[24] E. Stefanov and E. Shi, “ObliviStore: High performance oblivious cloud
storage,” in S&P, 2013, pp. 253–267.

[25] E. Stefanov, E. Shi, and D. X. Song, “Towards practical oblivious RAM,”
in NDSS, 2012.

[26] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang, “Practicing
oblivious access on cloud storage: the gap, the fallacy, and the new way
forward,” in CCS, 2015, pp. 837–849.

[27] C. Sahin, V. Zakhary, A. E. Abbadi, H. Lin, and S. Tessaro, “TaoStore:
Overcoming asynchronicity in oblivious data storage,” in S&P, 2016, pp.
198–217.

[28] A. Shafiee, R. Balasubramonian, M. Tiwari, and F. Li, “Secure DIMM:
moving ORAM primitives closer to memory,” in HPCA, 2018, pp. 428–
440.

[29] Y. Li and M. Chen, “Privacy preserving joins,” in ICDE, 2008, pp.
1352–1354.

[30] D. Xie, G. Li, B. Yao, X. Wei, X. Xiao, Y. Gao, and M. Guo, “Practical
private shortest path computation based on oblivious storage,” in ICDE,
2016, pp. 361–372.

[31] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information
retrieval,” J. ACM, vol. 45, no. 6, pp. 965–981, 1998.

[32] P. Williams and R. Sion, “Usable PIR,” in NDSS, 2008.
[33] S. Sasy, S. Gorbunov, and C. W. Fletcher, “ZeroTrace: Oblivious memory

primitives from intel SGX,” in NDSS, 2018.
[34] N. Crooks, M. Burke, E. Cecchetti, S. Harel, R. Agarwal, and L. Alvisi,

“Obladi: Oblivious serializable transactions in the cloud,” in OSDI, 2018,
pp. 727–743.

[35] X. S. Wang, Y. Huang, T.-H. H. Chan, A. Shelat, and E. Shi, “SCORAM:
Oblivious RAM for secure computation,” in CCS, 2014, pp. 191–202.

[36] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “ObliVM: A
programming framework for secure computation,” in S&P, 2015, pp.
359–376.

[37] J. Bater, G. Elliott, C. Eggen, S. Goel, A. N. Kho, and J. Rogers,
“SMCQL: secure query processing for private data networks,” PVLDB,
vol. 10, no. 6, pp. 673–684, 2017.

[38] N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia, A. Lapets, and
A. Bestavros, “Conclave: Secure multi-party computation on big data,”
in EuroSys, 2019, pp. 3:1–3:18.

[39] Q. Ye, H. Hu, X. Meng, and H. Zheng, “PrivKV: Key-value data
collection with local differential privacy,” in S&P, 2019.

[40] C. Sahin, T. Allard, R. Akbarinia, A. E. Abbadi, and E. Pacitti, “A
differentially private index for range query processing in clouds,” in
ICDE, 2018, pp. 857–868.

[41] N. M. Johnson, J. P. Near, and D. Song, “Towards practical differential
privacy for SQL queries,” PVLDB, vol. 11, no. 5, pp. 526–539, 2018.

[42] J. Bater, X. He, W. Ehrich, A. Machanavajjhala, and J. Rogers,
“Shrinkwrap: Efficient SQL query processing in differentially private
data federations,” PVLDB, vol. 12, no. 3, pp. 307–320, 2018.

[43] G. Cormode, S. Jha, T. Kulkarni, N. Li, D. Srivastava, and T. Wang,
“Privacy at scale: Local differential privacy in practice,” in SIGMOD,
2018, pp. 1655–1658.

[44] T. Wang, J. Blocki, N. Li, and S. Jha, “Locally differentially private
protocols for frequency estimation,” in USENIX Security, 2017, pp. 729–
745.

[45] R. Chen, H. Li, A. K. Qin, S. P. Kasiviswanathan, and H. Jin, “Private
spatial data aggregation in the local setting,” in ICDE, 2016, pp. 289–300.

[46] N. Wang, X. Xiao, Y. Yang, J. Zhao, S. C. Hui, H. Shin, J. Shin,
and G. Yu, “Collecting and analyzing multidimensional data with local
differential privacy,” in ICDE, 2019, pp. 638–649.

[47] T. Wang, B. Ding, J. Zhou, C. Hong, Z. Huang, N. Li, and S. Jha, 
“Answering multi-dimensional analytical queries under local differential 
privacy,” in SIGMOD, 2019, pp. 159–176.

[48] F. X. Standaert, “Introduction to side-channel attacks,” in Secure 
inte-grated circuits and systems. Springer, 2010, pp. 27–42.

Jing Yan received her B.S. degree from Xi¡¯an
University of Technology, Xi’an, China, in 2019.
She is currently working toward the M.S. degree in
computer science at the School of Computer Science
and Technology, Xidian University, Xi’an, China. Her
research interests focus on security and privacy issues
in large-scale data management.

Zhao Chang received a BS degree in computer
science and technology from Peking University
in 2013, and a PhD degree in computing from
University of Utah in 2021. He currently works as
an associate professor in the School of Computer
Science and Technology at Xidian University. His
research interests focus on security and privacy issues
in large-scale data management.

Ke Cheng is a lecturer in the School of Computer
Science and Technology at Xidian University. He
received his B.S. and M.S. degree from Anhui Uni-
versity, Hefei, China, in 2015 and 2018, respectively.
He received Ph.D. degree in computer science and
technology from Xidian University in 2022. His
research interests include cloud computing security,
data security, and privacy protection.

Shuguang Wang is a senior engineer in Shandong
Institute of Standardization, Jinan, China. He received
his B.S. and M.S. degree from Shandong University,
Jinan, China, in 1998 and 2010, respectively. He is
studying for a doctorate in the School of Computer
Science and Technology at Xidian University. His
research interests include smart city, cyber security,
and data security.


