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In recent years, there has been a significant increase in the demand for high-bit-rate live broadcast services, which has led to
the widespread use of edge transcoding technology. Edge transcoding can effectively reduce the throughput of streaming media
transmission, making it a popular and extensively researched technology. However, due to the real-time requirements of live
broadcasting, the edge server needs to have the sufficient computing power to ensure low-latency calculations, which makes computing
power allocation and traffic distribution become quite difficult. Inspired by the real-time and flexible computing power scheduling
ability of the Computing Power Network, this paper explores reasonable edge task offloading and efficient traffic routing path
planning to ensure overall low latency. This paper proposes a live stream transmission architecture based on the computing power
network to solve the problems mentioned above to some degree. The paper first models the computing power network in the scene
and then designs a task offloading algorithm based on Deep Reinforcement Learning (DQN) to determine the device for executing
the computing task. Furthermore, a hybrid Simulated Annealing Genetic Algorithm (SAGA) is proposed for routing decisions. The
effectiveness and superiority of the scheme are validated through simulation experiments.

Index Terms—Live streaming architecture, computing power network, DQN-based task offloading, routing path decision, simulated
annealing genetic algorithm.

I. INTRODUCTION

THE rapid development of emerging business requirements
such as the Industrial Internet, Internet of vehicles, Au-

tonomous Driving, and Live Video requires the network to
have high caching and computing capabilities to ensure normal
operation and improve user experience quality. And due to
the explosive growth in data traffic, particularly video traffic
[1], the network has been faced with significant challenges.
It is required that the network can provide a higher data
transmission rate and lower network delay, to provide users
with a better experience quality.

In order to deal with the challenges in the network, it is
necessary to solve them in terms of computing services and
transmission forms. At present, various forms of computing
emerge endlessly, such as cloud computing deployed in the
data center, edge computing deployed near the user side
etc. [2]. Although the birth of edge computing solves the
low-latency requirements of new services and reduces traffic
congestion in the network, computing nodes of various com-
puting forms are spread all over the network, lacking unified
scheduling management and utilization [3]. A major challenge
is how to integrate computing and network resources by con-
necting and managing a large number of idle resources through
the network, enabling collaborative scheduling of multi-level
resource nodes and flexible deployment of applications. And
improving network performance, reducing transmission delay,
and providing users with a consistent service experience have
become crucial. At present, various transmission methods are
mainly developed for load balancing and reducing network
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congestion. How to formulate relevant routing and forwarding
strategies in combination with distributed computing resources
on the network [4] is also an urgent research problem to be
solved.

For the field of live video, platforms such as Douyin,
Taobao, and Douyu now have very mature application-level
client apps to provide users with the convenience of watching
live content. The types of live broadcast services are rich and
diverse, such as life, shopping, sports, music, etc. Compared
with on-demand forms, live broadcasts provide users with
the possibility of real-time interaction. Consequently, live
broadcast services are growing rapidly in popularity, as they
cater to people’s increasing spiritual and cultural needs.

The network transmission architecture for live broadcasting
is also constantly being proposed and updated. In recent
years, the mainstream live video transmission architecture is
HIER [5], its main process is to push the live stream to
a centralized data center server for the host, and then the
server pushes the live stream to the viewers who subscribe
to this channel. However, this solution has some obvious
disadvantages in actual conditions. For instance, the central-
ized streaming media server may be overloaded, resulting in
significant wastage of back-to-source bandwidth from clients
to the server. Furthermore, the routing topology may be
inflexible and ill-suited to heterogeneous and dynamic network
environments. Recently, Alibaba’s research team proposed a
new live broadcast transmission architecture for Taobao’s live
broadcast business, called Livenet [5]. Livenet implements a
Content Delivery Network (CDN) server node coverage plane,
and the anchor pushes the stream to the edge CDN server.
Then Livenet proposed a concept of Streaming Brain, which
is a centralized control platform that will obtain the load
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Fig. 1. Live video transmission architecture based on computing power
network

status of network links and network nodes, then decide the
video transmission routing strategy. In addition, the Twitch live
broadcast platform proposes an Intelligent live broadcast plat-
form [6], which deploys data centers in a distributed manner,
uses access points to detect network link status information,
tracks the resource dynamics of each source station in real-
time, furthermore decides on the routing path and the size of
the forwarded traffic.

The existing live broadcast frameworks primarily concen-
trate on traffic and bandwidth allocation, while still utilizing
traditional scheduling algorithms. However, it lacks a compre-
hensive approach to scheduling and allocation of computing
resources within the network, making it challenging to satisfy
the low-latency computing requirements of live broadcast-
ing. To address this issue and meet the demands for low-
latency transcoding in complex network environments during
live broadcasting, we first propose a live video transmission
architecture based on computing power network in this paper.
Here we have two parts: Decision Brain and cloud network
equipment network. Among them, Decision Brain is a dis-
tributed data center responsible for macro-control and resource
allocation. As shown in x. 1, there are three sub-modules
in the Decision Brain module that work together. First, the
Global Discovery module obtains the bandwidth resources
and computing resources of each node in the network scene
and then passes this information to the Consumer Decision
module. We call the device that is the last mile away from the
user a consumer, which can be served by a CDN server with
computing resources.

This paper proposes a live broadcast transmission architec-
ture based on computing power network, and proposes a novel
scheduling and routing algorithm under this architecture and
its main contributions are summarized as follows:

1) First of all, we propose a set of live streaming media
transmission framework based on the computing power
network, and innovatively propose a centralized decision-
making module to macro-control the flow and the selec-
tion of computing tasks. Compared with the traditional
live stream framework, there is a more flexible way to

schedule live streams.
2) Then we proposed the DQN-based Task Offloading Algo-

rithm decision-making calculation task execution object,
and the execution of calculation tasks by this object can
maximize the benefits of the overall architecture, that is,
the calculation and transmission delay of live streams are
minimized.

3) After determining the two endpoints of the routing path,
we propose to use a hybrid Simulating Annealing Genetic
Algorithm to make routing decisions, and determine the
routing path with the smallest transmission delay.

4) We designed a series of simulation experiments to verify
the superiority of our proposed framework and algorithm.
The overall utilization of computing resources has been
significantly improved and the user delay has been sig-
nificantly reduced.

This paper is organized as follows. Section II discusses
related works. Section III introduces the system model and
section IV formalizes the problem. Section V introduces the
computing power distribution phase and corresponding algo-
rithm. Section VI introduces the routing decision phase and
proposes the hybrid genetic algorithm. Section VII presents
and discusses the simulation results and section VIII draws
conclusions.

II. RELATED WORK

Live content delivery has attracted the attention of many
related researchers due to its wide range of applications. This
section provides an overview of related work and explains how
the work presented in this paper differs.

A. Edge Computing and Computing Power Network

At present, both academia and industry are actively pro-
moting research and development in this field for the deep
integration of computing and networks. For the industry, major
operators and network equipment manufacturers are promoting
the formulation of Compute First Networking (CFN) standards
and the formation of technical solutions [7][8], and have
released several CFN-related Technical white paper. In terms
of standardization, the Internet Engineering Task Force (IETF)
established the Computing in the Networking Research Group
(COINRG), which is dedicated to research on the integrated
use of computing and network technologies, so as to improve
the performance, flexibility, security and privacy of networks
and applications. And a related forum has been set up for
discussion and research. In academia, major universities and
research institutes have also put forward their own plans and
ideas for this problem. In the literature [9], for the stream-
ing service of the image business, the researchers combined
Dispersed Computing (DC) to perform calculation processing
during transmission in the network. In the literature [10], the
joint scheduling and allocation of multi-dimensional resources
is mainly aimed at the integrated architecture of network,
computing and storage, so as to improve the network trans-
mission and processing capabilities. In literature [11]-[16], on
the basis of edge computing, by formulating corresponding
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caching strategies to process video stream data, the delay of
computing and services is reduced.

In live broadcast scenarios, video transcoding tasks must be
executed in real-time. However, current computing offloading
solutions lack the ability to dynamically adapt to real-time live
streaming. Therefore, this paper proposes an edge computing
task offloading strategy based on a computing power network
to achieve real-time scheduling of dynamic computing power.
Specifically, a task offloading algorithm based on Deep Q-
Network (DQN) [17] is designed. The algorithm utilizes DQN
to determine the optimal equipment for performing computing
tasks and then employs a dynamic adaptive mechanism to
allocate specific computing resources. Further details of the
algorithm will be presented in Section V.

B. Routing Strategy Based on Computing Power Network

At present, various routing strategies on the network are
relatively mature, whose main aim is increasing the data trans-
mission rate and reducing the transmission delay overhead.
There are research on routing and forwarding strategies based
on CDN. And an ant colony routing strategy is proposed for
decision-making based on the uniformity of distribution [18].
There are research on routing and forwarding strategies based
on Named Data Networking (NDN), and the formulation and
research of routing strategies for energy consumption in wire-
less networks [19]. At present, the research on the computing
power network is mainly on the scheduling and allocation of
resources. The research on the routing and forwarding strategy
of the computing power network is currently in its infancy and
needs to be analyzed in combination with the specific resource
scheduling situation. Moreover, the design of routing strategies
for live-streaming scenarios is still relatively rare.

This paper designs a hybrid simulated annealing genetic
algorithm (SAGA) to solve the routing problem of live stream-
ing media in this computing power network scenario. We
model the routing path scheme as an individual in the genetic
algorithm, and design a fitness function based on streaming
media transmission delay to screen individuals, and combine
the annealing algorithm to obtain the optimal routing scheme.
Section VI details the detailed algorithm design.

III. SYSTEM MODEL

A. Network Model

The main network elements in this scenario include broad-
casters, cloud servers, edge servers, terminal devices, users
(i.e. viewers) and relay networks. The basic network architec-
ture is shown in Fig. 1. The broadcaster pushes the video
stream to an access point which is a device connected to
the relay network. The devices in this relay network are
relays devices such as routers which have a flexible topology.
Through the relay network, the video stream can be forwarded
to the edge servers which are close to viewers. These servers
can process the stream and then deliver it to the users. It
is worth noticing that the procedure of video streaming is
transcoding which means reducing high-bitrate video to low-
bitrate video. Later in this subsection, we give a mathematical
description of the elements above. The set of broadcasters(i.e.

anchors) is represented as A = {1, 2, ...a, ..., A}. The access
points which receive the streams are named producers. The
set of producers which receive the streams from broadcasters
is denoted as P = {P1, P2, ...Pa, ..., PA}. These produc-
ers forward the video streams to the next hop which is
included in the relay network. The devices included in the
relay network are relay devices. The set of relays is denoted
as O = {1, 2, ...o, ..., O}. Through the relay network, the
edge servers which are considered to be consumers receive
streams and process them. These consumers are denoted as
C = {1, 2, ...c, ..., C}. The set of Viewers is represented as
V = {1, 2, ...v, ..., V }. In the real scenario, multiple consumers
with similar transmission delays can provide services for a
certain user. We define these alternative consumer devices with
similar transmission delays as Cv = {Cv

1 , C
v
2 , ...C

v
i , ...} where

v ∈ V . And we define the number of consumers which can
serve view v as |Cv|.

B. Resource Module

In this network architecture, the resources mainly includes
bandwidth and computing power resources. In this live stream-
ing media transmission scenario, bandwidth resources are
mainly considered in the relay devices O, and computing
resources are mainly considered in the consumer devices C.

1) Bandwidth Module
The delay devices in the relay network have a flexible

topology, which is similar to a software-defined network.
Therefore, how to decide the path of media traffic is a problem
that needs to be solved. We take the bandwidth condition of the
link between different O into consideration. To this end, in the
following part of this section, we give a mathematical descrip-
tion of the bandwidth condition of relays in the relay network.
The actual bandwidth is expressed as the transmission rate.
We define the bandwidth resources which will be used at
the time t + 1 1as bmn between node m and n(m,n ∈ O).
And the predictable link bandwidth which is already occupied
between two nodes expressed as B′

mn. It is worth noting
that bmn is decided by the sender of the media stream(i.e.
the broadcaster). Besides the link bandwidth bottleneck is
mathematically denoted as Bmn. Obviously, B′

mn <= Bmn

hengs established.
2) Computing Power Resource
In this live streaming media transmission scenario, the

computing task is video transcoding which converts the high
bitrate(e.g. 1080p) to low bitrate(e.g. 720p) to dynamically
adapt to real network conditions. It is worth noting that
whether to perform the calculation task of transcoding depends
on the real-time bit rate adaptive decision of clients. In the
following part of this section, a mathematical description of
computing power resources of consumer devices C. We define
computing resource pool as

rv = {r1, r2, ...ri, ...r|Cv|} (1)

1we define t as the current unit period and t+1 as the next unit moment.
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Where rv denotes the set of resource pools of viewers v, i ∈
Cv . And ri represents the resource occupied in resource pool
i as shown in equation (2).

ri = {r_CPUi, r_RAMi, r_HDi} (2)

Where r_CPUi, r_RAMi and r_HDi represent the CPU,
RAM and hard disk respectively. The computing power of
CPU can be denoted in (3).

r_CPUi = Ncore × Frecore × FP (3)

The Ncore represents the number of cores of CPU, Frecore
denotes the frequency of a single core, and FP denotes the
floating point calculation value of a single cycle. Here we
simply define the amount of data to be processed in the unit
period as datai. Sometimes the memory space of the resource
pool cannot accommodate all data, which means r_RAMi ≤
datai. Thus datai may be stored in the hard disk, and then
replaced in memory after the original data has been finished
processing. It is worth noting that this computing resource
allocation will be dynamically regulated based on the volume
of datai.

Similarly, we define the occupied computing resources at
this unit time as R′

v = {R′
1, R

′
2, ...R

′
i, ...R

′
|Cv|}. Besides the

upper limit of computing resources of devices is mathemati-
cally represented as Rv = {R1, R2, ...Ri, ...R|Cv|}. In the real
scene, there is a pre-defined target of the utilization u (default
80%) of computing power resources to guarantee the ability
to handle surges in computing tasks.

C. Content Model

In the living media stream, broadcasters push their content
to viewers who subscrible these channels. The mainstream
streaming method is using the Real Time Messaging Pro-
tocol(e.i. RTMP) [20] for broadcasters. RTMP is a TCP-
based low-latency transmission protocol which is suitable
for live broadcasting. In practice, video is transmitted and
processed in the form of chunks, which has great benefits.
Taking advantage of this feature, we use chunk as the smallest
data execution and decision-making unit in this paper. As
for the bit rate level of video, broadcasters push streams at
certain bit rate based on their own device configuration. The
following part of this sectioin, we describe the video content
in a mathematical way. Some standard bit rate levels are set
here D = {1, 2, ..., d, ...,D}, which means the video exist in
different versions. The set of chunks of a video stream at d
bit rate level is denoted as Gd = {1, 2, ..., g, ..., G}(the g-th
video chunk is denoted as Gd,g).

IV. PROBLEM FORMULATION

First, in this section, the content delivery process is summa-
rized as follows. When a viewer tries to subscribe to a video
stream, firstly the decision brain confirms the information of
this stream(e.g. bitrate level and the amount of data in a video
chunk). Secondly, according to the resource usage conditions
of consumers, the decision brain makes the decision on which
consumer serves that viewer from the set of Cv . Thirdly the
decision brain makes a routing plan between the producer and

consumer which is decided before. As for the specific delivery
path, at time t, the g-th video chunk at d bitrate level Gd,g

begins to be a push from the broadcaster to the consumer Cv
i

and the viewer v. Then this Gd,g goes through the Pb into the
relay network. Through the set of OCi = {1, 2, ..., o, ...} in
which the OCi

1 is the first relay device in the routing path, this
Gd,g achieves the consumer Cv

i and execute transcoding task
if necessary. Finally Cv

i transfer Gd,g to v. Next, we discuss
the specific optimization goals.

A. Optimization goals in Consumer

As mentioned above, the video streams will be transcoded
by the consumers if decided to be necessary. Therefore, we
propose two optimization objectives for consumer devices.

1) Computing Resource Utilization
The computing power resource utilization is a ratio of the

computing resources occupied at a certain moment to the
resources owned by the consumer device. In the real-time
transmission of streams, computing tasks are always changing
dynamically. Therefore, in order to prevent the computing
power of a certain node from being overloaded(computing
tasks performed exceed the computing resources it has), the
decision-making center needs to allocate computing tasks to
different computing devices in real-time. In this process, the
average computing resource utilization of all devices is a very
useful indicator to measure the rationality and fairness of re-
source allocation. The average computing resource utilization
can reflect the performance of the overall system to a certain
extent.

The computing power resource utilization of consumer Ci

can be denoted as

Ui =
R′_CPUi

R_CPUi
(4)

Since the device most directly involved in computing tasks
is the CPU, we use the ratio of the occupied CPU to the
total CPU to represent the computing resource utilization. In
addition, it can be considered that the memory and hard disk
mainly play an auxiliary role in computing tasks, so they can
be ignored in the consideration of computing resource utiliza-
tion without negatively affecting the overall performance. It is
worth noting that in the same CPU of a device, the frequency
Frecore and the floating-point calculation value of a single
cycle FP of different cores are equal. Thus R′_CPUi

R_CPUi
in the

(4) can be simplified to
N ′

core,i

Ncore,i
.

We express the average computing power resource utiliza-
tion in equation (5).

Uavg =

∑|C|
i=1 Ui

|C|
(5)

2) Computing Latency
Computing latency is defined here. Transcoding latency is a

factor that must be considered when consumer devices need to
perform transcoding tasks. The time consumed by transcoding
directly affects the waiting time for users to watch the live
broadcast, which in turn affects the user’s viewing experience.
Obviously, in the case of limited hardware resources, the task
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scheduling scheme with a lower transcoding delay is better.
So we set the transcoding latency on the consumer server as
one of the optimization goals.

We take a certain video chunk Gd at bitrate d as an example
to describe the transcoding delay. According to the decision
of the bit rate adaptive algorithm [21] on the user side, the
consumer server converts the video chunk from the bit rate
level d to the bit rate level d′. This process requires calculating
the Datai,dd′ amount of data and requires NFLO,i,dd′ floating
point operations at the consumer server i. Thus the processing
time of the resource pool in i to process this task is represented
in equation (6).

cti =
NFLO,i,dd′

r_CPUi
(6)

Sometimes, the memory space of the consumer device cannot
accommodate all data at the same time, that is r_RAMi <
Datai,dd′ . So Datai,dd′ can be stored in the hard disk, and
replaced in the memory when operation processing is required.
The storage replacement time is denoted by equation (7).

sti = (
Datai,dd′

r_RAMi
− 1)× tm,i (7)

Where tm,i represents a single replacement time in this
consumer server i. Therefore, the overall processing time for
a chunk Gd is expressed in equation (8).

ProcessT ime(Gd, ri) = cti + a · sti (8)

Where l is an indicator function to denote whether there is st
time, that is, whether the data to be processed is larger than
the size of the memory space or not.

a =

{
0 r_RAMi ≥ Datai,dd′

1 r_RAMi < Datai,dd′
(9)

We define the average transcoding delay at some point the in
equation (10).

ProcessT imeavg =

∑|C|
i=1 ProcessT ime(G, ri)

|C|
(10)

In general, for consumer equipment, the optimization goal
can be expressed in equation (11).

min −α · Uavg + β · ProcessT imeavg
s.t. ∀i, Ui < u

(11)

Where parameter α and parameter β represent the balance
between the average computing resources utilization and the
average process time in consumers. Simply, we set α and β to
represent the normalized ratio of two dimension information
in actual operation.

B. Optimization goals in Relay Network

After determining which consumer device serves the user,
the decision brain decides how traffic in the relay network
reaches the consumer server. It is equivalent to deciding the
routing path in the determined producer node and consumer
node. We hope that this routing decision can minimize the
transmission delay in the relay network. The content trans-
mission delay in the relay network is also a very important

part of the user’s viewing delay, which directly determines
the viewing experience of the viewer. Therefore, we take this
part of the transmission delay as the optimization target of the
relay network.

The specific plan is as follows: the decision brain obtains the
link traffic between relay device nodes in the relay network.
On the premise that the link is not overloaded, the routing
selection scheme is optimized to minimize the transmission
delay in the relay network. The link bandwidth utilization
between nodes m and n is expressed in equation (12).

UB,mn =
B′

mn

Bmn
(12)

Assume that the routing path of a certain media stream
whose destination is consumer server i is determined as
Oi = {Oi

1, O
i
2, ..., O

i
o, ...}. Take a chunk Gd that contains

Datai,d amount in this stream as an example, the transmission
delay in link li1 from node Oi

1 to node Oi
2 is represented as

Datai,d
Bli1

where Bli1
is equivalent to BOi

1,O
i
2
. Obviously, the

lij denotes the link from node Oi
j to node Oi

j+1. Further, we
describe the transmission delay on this routing scheme Oi in
equation (13).

TransmissionT ime(Gd,Oi) =

|Oi|∑
j=1

Datai,d
Blij

(13)

In general, for the relay network, the optimization goal can
be expressed in equation (14).

min TransmissionT ime
s.t. ∀j, UB,lj < 1

(14)

V. COMPUTING POWER DISTRIBUTION PHASE

This section introduces the computing power distribution
phase. After the global discovery module obtains the consumer
device information, the consumer decision module decides
the most suitable consumer device for the user according
to the streaming situation of the live broadcaster and the
bandwidth of the last mile link. And allocate appropriate
computing resources for transcoding tasks. To describe the
dynamic process of computing resource allocation, we model
it as a Markov Process. Besides, we deploy the DQN-based
Computing Resource Allocation Algorithm in the Consumer
Decision module.

A. Markov Decision Process Description of Consumer

The MDP for the consumer decision module can be de-
scribed as four-tuple M = {S,A, P,R}.

1) State of MDP
In the consumer, the states S of the MDP M is set

to the computing resource status of each device plus the
state information of the flow. The set of S is denoted as
S = {r1, r2, ...ri, ...r|Cv|, Datadd′}. Obviously, according to
(1), the computing resource state set of the consumer device
that provides services for a user is the first part of the MDP
state. The second part is the amount of data to be processed
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Algorithm 1: DQN-based Task Offloading Algorithm
Input: The computing power state of consumer

devices {rv}, the information of the video
streamings {Gd}

Output: The result of action decision at(e.i. the result
of consumer decision module)

// Initialization
Initialize Q-function Q, target Q-function Q′ = Q
// Execute Epoch
while Epoch is not over do

for For each time step t do
1) Given state st which means the computing

power state of consumers, take action at
which means the result of chosen consumer,
based on π according to the equation (15);

2) Obtain reward rt according to the equation
(17), and reach new state st+1;

3) Store (st, at, rt, st+1) into buffer;
4) Sample (si, ai, ri, si+1) from buffer;
5) Target y = ri +maxa Q

′(si+1, a);
6) Update the parameters of Q to make
Q(si, ai) close to y (regression);

7) Every 5 steps reset Q′ = Q
end

end

for this stream. Based on these two parts of information, it
can be effectively analyzed, and a reasonable computing task
offloading decision can be made.

2) Action of MDP
A stands for action. In this MDP process, the action rep-

resents the specific device selection of the consumer decision
module, that is, which edge device the actual calculation task
of this flow is offloaded to. The set of action here is represented
as A = {a1, a2, ...ai, ..., a|Cv|}, where i ∈ Cv stands for the
i-th device, and the ai denotes the action of i-th device. The
ai ∈ {0, 1} is a binary number, 1 indicates that the device i
executes the transcoding task, and 0 indicates not. Simply, the
action dimension is |Cv|.

3) Transition Probability of MDP
P represents the state transition probability. We use

P (s′|s, a) to denote the probability that the current state s
transitions to the next state s′ given the action a is taken. In
the consumer task decision-making scenario, this means the
impact of the decision result of the target device based on
the computing resource status of the network edge device and
the size of the media stream data on the overall computing
resource status and even traffic conditions.

4) Reward of MDP
R represents the reward, which means the benefits resulting

from the above decisions. This reward is mainly to indicate
the direction of MDP iterative development, which means that
if the decision is incorrect or the result is not ideal, the reward
value can be negative to gradually correct the wrong decision.
According to (11), This reward can be set as maxα · Uavg −
β · ProcessT imeavg .

The above four-tuple is also the basis of reinforcement
learning DQN.

B. DQN-based Computing Power Distribution Algorithm

We deploy the DQN reinforcement learning algorithm in the
consumer decision module. The centralized training feature
of the DQN algorithm fits perfectly with the decision brain
architecture of the computing power network. And as shown
in the action of the MDP section above, the consumer action
selection is discrete, which also provides convenience for the
deployment of the DQN algorithm. Below we introduce the
task offloading algorithm based on DQN.

1) DQN-based Task Offloading Algorithm
A deep Q-network(DQN) Algorithm is a kind of deep

reinforcement learning algorithm that is a way for the agent
to iterate with the environment to learn better policies. In
the face of the dynamic nature of the network environment
and node status, traditional mechanism-based methods lack
corresponding robustness. The online learning strategy of
reinforcement learning can perform adaptive optimization on
dynamic conditions in real-time, so as to achieve better results.

In the reinforcement learning algorithm, an agent interacts
with the environment, the agent explores the information in
the environment, and uses this information to update the
parameters inside the learning agent to make the agent perform
better in this environment. DQN is a value-based method [17],
and the object of the update iteration is a value function Q,
which is used to evaluate the value of the action selected by
the agent. A higher value for an action means a better effect
achieved in the environment.

Here we use the DQN-based task offloading algorithm to
solve the consumer device selection problem. The algorithm
is deployed in the Consumer Decision module. First, the
Consumer Decision module decides which consumer device
the current transcoding task is to execute, obtains the state
information S and action information A, and then uses the
information to update the value function Q with the Temporal-
Difference learning algorithm [22] and finally use the new
value function to determine a better decision policy.

Specifically, the state is denoted as S = {s1, s2, ..., st, ...} =
{rv,1, rv,2, ..., rv,t, ...}, where st = rv,t represents the resource
occupancy status of the resource pool of viewer v in the t-th
time slot. The action is represented as A = {a1, a2, ..., at, ...},
in which at means the decision result at the t-th time slot.
Obviously, at is a vector in one-hot form and |at| = |Cv|.
And the element with a value of 1 is the selected consumer
device.

The strategy function is denoted by π, and the strategy
function decides the action selected by the agent at the next
moment. π(st) denotes the next action which means the action
decision made by the current policy with the function π at state
s at time t. And We denote the value function by Qπ(st, at),
which means under strategy π, the value of taking action at in
state st at time t. Firstly, we use a greedy algorithm to design
policy function π

π′(s) = argmax
a

Qπ(s, a) (15)
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Fig. 2. Adaptive Computing Power Allocation Algorithm

which means we choose the action that yields the most value
every time. And we use the Temporal-Difference learning
algorithm to update the value function Q

Qπ (st, at) = rt +Qπ (st+1, π (st+1)) (16)

Among them, reward rt is represented by the optimization
objective defined in the fourth section. Since we usually use
the term maximizing the reward, the optimization objective is
reversed here.

rt = α · Uavg − β · ProcessT imeavg (17)

In this way, under the iteration of the DQN algorithm, the
selection of consumer devices will become more and more
superior.

Additionally, we employ the target network technique. Dur-
ing training, the parameters in the Q network on the right
side of equation (16) are fixed, because the Q network on the
right is responsible for generating the target, so it is called
the target network. Because the target network is fixed, the
value of target rt +Qπ (st+1, π (st+1)) obtained now is also
fixed. We only tune the parameters of the left Q-network and
it becomes a regression problem. We want the output of the
model to be as close to the target as possible, so as to minimize
its mean square error. When implementing, we will update the
Q network on the left multiple times, and then replace the
target network with the updated Q network.

The pseudocode is introduced in Algorithm 1. This solves
the computing task offloading problem in the Computing
Power Distribution process.

2) Computing Allocation Algorithm
In this section, we will introduce the computing power

distribution algorithm that we have designed. Our approach
is based on an iterative adaptive optimization algorithm that
takes into account various factors. The objective of this al-
gorithm is to optimize the allocation of computing resources
so that existing resources are used as effectively as possible.
Specifically, the resource allocation scheme needs to satisfy
two main criteria: it must minimize task execution time while
also maximizing the utilization of computing resources.

The flow chart of the algorithm is shown in Fig. 2. We
designed a mechanism-based iterative adaptive optimization
algorithm. First, after the task offloading algorithm in the pre-
vious section decides which consumer the computing task will
be executed in, the consumer decides how many computing
resources to use to perform the transcoding task.

When the chunk Gd,g of the live stream with the video bit
rate level d arrives at this consumer, the amount of computing
data needed to calculate the transcoding task is Datai,dd′ .
The consumer obtains this information, first performs the
initialization process, and sets the computing resources used
to 1, that is r_CPUi = 1. Then we calculate the processing
time ProcessT ime that will be spent according to Equation
(6)(7)(8). The concept of time-threshold is introduced here,
and the time threshold is represented as tthreshold, which is
usually set to the video length of the chunk. In actual live
broadcasting, the video processing time is shorter than the
length of the video itself, which is a prerequisite for the video
to be played without lag. Of course, if the processing time of a
small number of video chunks is longer than the length of the
chunk itself, it does not mean that there must be a freeze, but
it will definitely consume the length of the video buffer and
adversely affect video playback. So we set tthreshold here to be
the length of the chunk. If at this time, TranscodeT ime >=
tthreshold, the processing state is transformed from the initial
state to the Increasing State. If TranscodeT ime < tthreshold,
the processing state is transformed to Steady State which
means keep the current allocation. Besides, in the Increasing
State, the number of CPUs originally allocated is increased by
1, and then it is checked whether the TranscodeTime is greater
than the threshold time. Continue this loop until the number of
CPUs makes the processing time meet the threshold condition
or the number of CPUs reaches the maximum limit for this
device. And then the state is transformed to the Steady State.

VI. ROUTING DECISION PHASE

In this section we introduce the routing process. After the
decision-making process of the computing power distribution
process, the decision brain has obtained the target consumer
device, and the anchor who pushes the streaming media con-
tent is also determined. Therefore, we need to make a decision
to determine the streaming media transmission routing scheme
between the two points. Since the increase in the number of
routing hops will lead to an increase in transmission delay,
we set the number of routing hops to 3 hops [5]. We design
a hybrid Simulated Annealing Genetic Algorithm(SAGA) to
perform the routing decision task. This algorithm is deployed
in the Relay Routing module. This module will first obtain the
bandwidth resource occupancy of each routing node from the
Global Discovery module, and then make routing decisions
based on the size of the transmitted video block.

A. Introduction to Genetic Algorithm

Genetic Algorithm is a randomized search method that
draws on natural selection and natural genetic mechanisms
in the biological world [23]. Since the algorithm uses random
selection, it has no special requirements on the search space,
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has the advantages of simple operation and fast convergence
speed, and is suitable for dealing with complex and nonlinear
problems that are difficult to solve by traditional search
methods. The main feature of the genetic algorithm is the
group search strategy and the information exchange between
individuals in the group. It actually simulates the overall
learning process of the group composed of individuals, and
each individual corresponds to a solution to the research
problem. The genetic algorithm starts from an initial group,
through selection(making the outstanding individuals in the
group have more opportunities to be passed on to the next
generation), crossover(reflecting the information exchange be-
tween individuals in the group in nature), and mutation(in the
group Genetic operations such as introducing new variants to
ensure the diversity of information in the population) allow the
population to evolve from generation to generation to better
and better regions in the search space. Genetic algorithms in-
clude elements such as encoding, initial population generation,
fitness assessment, selection, crossover, and mutation.

B. Introduction to Simulated Annealing Algorithm

The simulated annealing algorithm is an effective approx-
imation algorithm for solving large-scale combinatorial op-
timization problems, especially NP complete combinatorial
optimization [24]. The physical image and statistical properties
of the solid annealing process are the physical background of
the simulated annealing algorithm. The Metrolpis acceptance
criterion makes the algorithm jump out of the "trap" of local
optimum, and the reasonable selection of the cooling schedule
is the premise of the algorithm application. Solid annealing is
a thermodynamic process in which a solid is first heated to
melt, and then slowly cooled to solidify into a regular crystal.
From the point of view of statistical physics, as the temperature
decreases, the energy of matter will gradually approach a lower
state, and finally reach a certain balance. The solid temperature
parameter T , the state transition process is repeated, and the
acceptance probability P (x) of the new state obeys the Gibbs
distribution:

P (x) =
1

z
exp

(
−E(x)

T

)
(18)

In the formula (18), z is the probability regularization coeffi-
cient, and E(x) is the energy of state x. It can be seen from the
above formula that as the temperature parameter decreases, the
acceptance probability also decreases, that is, the possibility of
increasing the energy function also gradually decreases, and
finally the system will converge to a state with the minimum
energy. Simulating such a solid annealing process applies it to
function optimization.

C. The Process of Routing Decision

Genetic Simulated Annealing Algorithm is an optimization
algorithm that combines a genetic algorithm and a simulated
annealing algorithm. The local search ability of the genetic
algorithm is poor, but the ability to grasp the overall search
process is strong; while the simulated annealing method has a
strong local search ability, and can prevent the search process
from falling into the local optimal solution, but the simulated

Fig. 3. Hybrid Genetic Simulated Annealing Algorithm Process

annealing algorithm has no effect on the entire search process.
Not much is known about the state of the search space.
It is not convenient to make the search process enter the
most promising search area so that the operation efficiency
of the simulated annealing algorithm is not high. However, if
the genetic algorithm and simulated annealing algorithm are
combined to learn from each other, it is possible to develop a
new global search algorithm with excellent performance. This
is the basic idea of the genetic simulated annealing algorithm.
We use the genetic simulated annealing algorithm to make
routing decisions, the specific process is shown in Fig. 3.

1) Population Modeling
For the encoding method of the genetic algorithm, we

propose a two-tuple encoding method in combination with
the scene characteristics of routing selection. Take producer
Pb and consumer Cv as an example, the set of O =
{1, 2, ..., o, ...} is the relay routing node. We extract two nodes
from the relay routing set to form a two-tuple, for example,
[Oi,Oj ], which is an individual in a genetic algorithm. A col-
lection of randomly selected individuals is called a population,
in which we generate N individuals. Thus the population is
represented as S = {s1, s2, ..., sk, ..., sN}.

2) Fitness Function Design
We design a fitness function that can reflect the routing

delay. First, the bandwidth between producer Pb and relay
routing device Oi is maintained in the relationship matrix of
Pb and O. Similarly, the relationship matrix between O and O
and the relationship matrix between O and Cv both maintain
the bandwidth status between nodes. We design the fitness
function based on the equation (13).

F ([Oi,Oj ]) = −Datad
BPb,Oi

− Datad
BOi,Oj

− Datad
BOi,Cv

(19)

We evaluate individuals in the population and sort them
according to this fitness function. According to the results
of the fitness ranking, we use the strategy of combining the
best individual retention and roulette selection for individual
selection. Firstly, the individual whose fitness ranks first has
the best performance in this generation, and it is directly
copied to the next generation. The other N-1 individuals of
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Algorithm 2: Simulated Annealing Algorithm

// Initialization
Initialize solution S = S[0], iteration step k = N
// Iteration Begin
while k >= 1 do

1) Generate S′ = S[k].
2) Calculate ∆F = F (S′)− F (S).
3) Prob = min(1, e−

∆F
k )

4) if Prob > random(0, 1) then
S = S′, F (S) = F (S′)
end

5) k = k − 1
end

the next generation are generated by the roulette selection
method according to the fitness of the previous generation
population. Specifically, calculate the proportion of the fitness
of the previous generation of individuals to the total fitness as
equation (20).

Ratiok =
Fk∑N
k=1 Fk

(20)

This ratio is the probability of the individual surviving, which
means the probability of being saved for the next generation.
This selection method can ensure that the optimal individual
can be preserved for the next generation, and at the same
time, the individual with high fitness has a greater probability
of surviving to the next generation.

3) Crossover and Mutation
Firstly, the crossover operation is introduced. For the new

population generated by the selection operation in the previous
step, in addition to the optimal individual ranked first, the
other N-1 individuals are paired and cross-recombined with
the probability of Pc. This probability Pc is the set hyperpa-
rameter. Since the individual genes in this scenario are in the
form of binary groups [Oi,Oj ], the gene crossover operation
between individuals is easy to implement. Next, introduce the
mutation operation. I still retain the individual with the best
fitness, and then generate gene mutations for the other N-1
individuals with the probability Pm. Specifically, a gene is
randomly selected in the gene bank to replace one of the
binary groups [Oi,Oj ] in the individual. It is worth noting that
during the operation of crossover and mutation, individuals
that cannot exist will be actively eliminated, such as two
individuals with the same gene. Through the cross-mutation
operation, while retaining the best performing individuals, it
promotes the generation of species diversity.

4) Simulated Annealing Algorithm
This section introduces the simulated annealing algorithm,

and its algorithm flow is shown in Algorithm 2. First, we
obtain the individual with the highest fitness in the population,
that is the individual S[0] that ranks first in the set S. Then we
iterate over the individuals in N-1 individuals, and use S[k] to
represent the k-th individual in the population. Calculate the
fitness F (S[k]) of this individual and compare it with F (S[0]).

∆F = F (S[k])− F (S[0]) (21)

Then we judge that if ∆F ≤ 0, it means that the fitness of the
k-th individual is better than the initial individual, so this k-th
individual is replaced by the highest-ranked individual in the
population set. If it is judged that ∆F > 0, which means that
the k-th individual is less adaptable, but in order to retain the
exploration ability, a certain probability is still used to replace
the k-th individual with the optimal solution. This probability
is expressed as e

∆F
k . In summary, the replacement probability

can be expressed as

Prob =

{
1 ∆F ≤ 0

e
∆F
k ∆F > 0

(22)

As shown in Algorithm 2, the value of k decreases from N
to 1, which means that the replacement probability decreases
gradually when ∆F > 0. Then iterate until exiting the loop.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
task offloading algorithm and routing algorithm under the
computing power network-based live streaming transmission
architecture. The experimental procedure is as follows: First
initialize the network device status in the scene, including
the definition of the video block requested by a user at the
current moment, the computing resource occupancy of 10
consumer devices, and the bandwidth resource occupancy of
a limited number of relay devices. Secondly, according to the
task offloading algorithm proposed in Section V, the consumer
device that performs the transcoding task is decided and its
computing resources are allocated. Finally, on the basis of
the above, a routing algorithm is proposed in Section VI to
decide the relay path. Next in this section, we introduce the
experimental environment of the simulation setup, and then
present the experimental results and analyze them.

A. Simulation Environment

We use a PC with an Intel Core i5-8250 CPU 1.8 GHz
and 20GB of RAM for numerical simulations. The simulated
data is based on watching the live broadcast on the PC in the
laboratory environment, and the bandwidth resource design
in the simulation is based on 3GPP standardization. We use
several most popular resolutions {2k, 1080p, 720p, 360p} as
target resolutions. The corresponding bit rates and required
computing resources are based on [25]. This is based on the
fact that RTMP protocol is generally used for live streaming
nowadays. For the convenience of experimental testing, we set
a single chunk of live video streaming to 0.5s. We consider a
scene focusing on a region, as shown in Fig. 1.

Edge consumer settings: For a certain user, we set up 10
edge devices (i.e. consumers). As described in the computing
resources in the second subsection of Section III, edge devices
include CPU, memory RAM, and hardware disk status. In
the simulation environment, for example, we simulate the
parameters of the common intel Core i5 8300h processor on
the market, the number of CPU cores is 4, that is, Ncore = 4,
and the number of threads is 8. The basic frequency of the
processor is 2.30GHz, that is, Frecore = 2.30GHz. The
emulation setting memory is 16G. For the convenience of
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Fig. 4. The trend of training process Fig. 5. Average Reward

experimental design, regardless of the capacity of the hard
disk, here we reasonably assume that the hard disk space of
the device will not be full during the live broadcast. In fact,
the bottleneck of the usual live broadcast user experience will
appear in the processing speed of the CPU in the edge server
and the reading speed of the memory from the hard disk, but
not in the capacity of the hard disk. The resource occupancy
of edge devices is related to user requests. The frequency of
available computing resources obeys a normal distribution at
λ = 2GHz, and the processing frequency range is [0, 4GHz].
The number of CPU cores is chosen randomly on the set of
[2,4,8,16]. It is worth noting that the upper limit of computing
resource utilization mentioned in Section III is set to u = 0.8,
and if the decision exceeds this upper limit, a huge penalty
will be obtained.

Router settings: As described in Section III, the routers of
the relay network have the attributes of bandwidth occupation
and remaining available bandwidth. The available bandwidth
resources obey the normal distribution with λ = 5MHz,
and the bandwidth range is [0, 10MHz] [26]. Considering the
number of routers, we set up 9-81 relay nodes to try to test
the influence of the number of routers on the routing decision
algorithm.

Time setting: Each time slot is set to 0.5s, so one video
chunk will be processed in one-time slot. The process of a
chunk being processed is a step in reinforcement learning
training.

B. Performance and Result Analysis

This section introduces the algorithm performance and re-
sult analysis. It is divided into two parts. First, we introduce the
decision-making process of task offloading, and then introduce
the routing selection process.

1) Decision-Making Process of Task Offloading
Training analysis: The reward is a linear combination

of the Calculation Delay in the consumer and the Resource
Utilization rate of the consumer, and the specific calculation
is shown in equation (11). The basic trend is that the smaller
the calculation delay and the greater the resource utilization
cause the greater the total reward. The specific DQN-based

Task Offloading Algorithm training performance is shown in
Fig. 4. Computing delay calculation is represented by equation
(10), and computing resource utilization is represented by
equation (5). The DQN-based Task Offloading Algorithm is
trained for 500 time slots. During training, the absolute value
of the calculation delay in the consumer device gradually
decreases with each iteration of the training step, and even-
tually converges at around -0.75. In contrast, the computing
resource utilization starts low at the beginning of the task, but
increases steadily with each iteration until it finally converges
to a level close to 0.8. It’s worth noting that we have set an
upper limit of 0.8 for the utilization of computing resources, in
order to ensure that the device’s computing power can handle
sudden surges in computing tasks. As a result, the reward
during training also increases with the number of slots, until it
eventually converges to around 0. During the training process,
the reward may fluctuate, but this indicates that the DQN-
based Task Offloading Algorithm is gradually learning from
its environment through exploration, and ultimately selects
actions that yield excellent returns.

Computing task processing delay: Fig. 6 describes the
training trend of the specific two sub-elements in the comput-
ing task processing delay. Calculation latency is the processing
time ct of computing tasks in the CPU and the replacement
time st for reading data from the hard disk when the memory
space is insufficient. The latency of these two dimensions
is also the average latency of the overall environment. The
shaded part in Fig. 6 is the actual value interval of multiple
pieces of training, and the solid line is the average value of
multiple pieces of training. It can be observed that the overall
trend of multiple pieces of training is consistent, and the CPU
processing time and Storage Replacement Time both decrease
as the time slot (number of training iterations) increases.
Among them, the CPU processing time finally converges to
about 0.75s, and the Storage Replacement Time can converge
to about 0. It shows that with exploration and learning, the
Consumer Decision module can determine a better consumer
server through the DQN-based Task Offloading Algorithm.
This better consumer server is most suitable for processing the
current transcoding task. Specifically, the currently schedulable
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Fig. 6. The trend of Process Time and Replacement Time Fig. 7. The ratio of Resource Utilization

CPU resources on the Consumer device are most suitable
for processing this task, which can minimize the average
computing delay in the overall environment. At the same time,
the convergence of the Storage Replacement Time to 0 also
means that the currently selected Consumer device can rely on
the memory space to complete the storage when processing
the transcoding task. The data to be processed does not need
to be stored on the hard disk without generating Storage Re-
placement Time. The changing trend of the overall Computing
Latency in Fig. 4 can be combined with the processing delays
of these two dimensions in one-to-one correspondence.

Comparative algorithm performance analysis: Fig. 5
depicts the performance comparison between two mainstream
task offloading schemes and our proposed DQN-based Task
Offloading Algorithm. To analyze the reward level more
clearly, the average reward of 20 steps is depicted in this
figure. The blue line represents the polling algorithm [27],
which is a commonly used load-balancing strategy in task
offloading scenarios. Specifically, the polling algorithm se-
quentially distributes computing tasks to consumer devices in
the set of devices that can participate in providing services.
The yellow line in Fig. (5) represents the reward performance
of the Nearest Neighbor Algorithm. This algorithm is also a
commonly used decision-making scheme in edge computing
task offloading. In detail, the Nearest Neighbor Algorithm
assigns computing tasks to the edge device closest to the
user. In practice, the consumer device will be prioritized
according to the geographical distance, and the device with
the highest priority will provide computing services to the
user first. When the amount of calculated data exceeds the
load capacity of the device, the algorithm selects the second-
priority device to perform the calculation task and then iterates
with the same logic. Fig. 5 compares the performance of
the three algorithms. The overall reward of the DQN-based
Task Offloading Algorithm proposed by us is higher than the
other two algorithms, and the volatility is lower than the other
two algorithms. The reward level of the Polling Algorithm is
higher than that of the Nearest Neighbor Algorithm, but they
are all below the 0 levels. The DQN-based Task Offloading
Algorithm proposed by us has been explored and learned in

the early stage, and the final performance is more suitable
for the dynamic live network conditions, and better consumer
devices can be selected.

Fig. 7 records the average computing resource utilization
of 10 consumers in a certain video stream. The red bar
graph is the performance of the DQN-based Task Offloading
Algorithm algorithm proposed by us. The computing resource
utilization rate of each consumer will be higher than that of
the other two algorithms. Among them, the utilization rate
of the Nearest Neighbor Algorithm on the No. 4 consumer
is particularly high, almost close to 1, which means that
the No. 4 consumer device is almost overloaded beyond this
time. Obviously, edge device No. 4 is the consumer closest
to the user at this time, so the Nearest Neighbor Algorithm
prioritizes almost all computing tasks of this flow to device
No. 4. Secondly, the utilization rate of equipment No. 2, 3,
and 5 is relatively high. However, the utilization rate of the
rest of the consumer devices is very low, which leads to a low
overall average computing resource utilization rate, and the
computing pressure of some devices is very high. The overall
distribution of computing resource utilization using the Polling
Algorithm is uniform, but the level is significantly lower
than our proposed scheduling algorithm. Mechanically cycling
through all devices can balance the load status of the devices
well, but because the actual dynamic live broadcast situation
is not considered, some consumer devices with remaining
processing capacity are not selected, resulting in longer overall
processing time and certain waste of computing resources. In
general, the DQN-based Task Offloading Algorithm proposed
by us is both robust and efficient in computing resource
utilization and is superior to the other two algorithms.

2) Routing Selection Process
Iteration process: SAGA algorithm based on generation

iterative optimization. Fig. 8 describes the fitness change trend
of SAGA, traditional Genetic Algorithm, and Simulated An-
nealing Algorithm. The fitness calculation, such as Equation
(19), is a direct description of the transmission delay in the
relay network. The horizontal axis of Fig. 8 is the number
of iterations, and the vertical axis is the fitness, which also
represents the opposite number of transmission delays. The
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Fig. 8. The trend of Fitness Fig. 9. The trend of Transmission Latency

fitness of the optimal individuals determined by the three
algorithms will increase as the number of iterations increases,
and will eventually converge to the optimal solution that the
algorithm can find. Obviously, under the same number of
iterations, SAGA can find individuals with better fitness than
GA and SAA. SAGA combines the advantages of GA and
SAA. GA benefits from the search of the entire population,
and the general trend of combinatorial optimization is more
inclined toward individuals with greater fitness. In the early
stage, it is easy to spread individual good individuals to
the entire population, but in the later stage of GA iteration,
the fitness of each individual tends to be consistent, which
makes iterative optimization of the population stagnant. On
the contrary, SAA has a strong local search ability, but it is
easy to fall into the dilemma of local optimum and cannot
produce individuals with higher fitness. In summary, SAGA
has a stronger ability to generate individuals with higher fitness
and can find routing paths with lower transmission delays more
effectively.

Comparative algorithm performance analysis: Fig. 9
shows the performance comparison between the SAGA algo-
rithm and the traditional routing decision algorithm Routing
Information Protocol (RIP) [28] and Open Shortest Path First
(OSPF) [29]. The results of the curves in the figure are the
optimal results of the algorithm iteration. The horizontal axis
is the number of router devices in the current scene, and the
vertical axis is the transmission delay of the relay network.
The basic idea of the RIP algorithm is greedy, and each
hop selects the link with the optimal bandwidth resource.
OSPF maintains the routing table in the relay device and
automatically calculates the update of the topology state of
the route with a small weight. As shown in Fig. 9, when the
number of optional relay routers in the scenario is relatively
small, such as 9-40, all three algorithms can determine the
optimal routing selection, and the overall performance is
almost the same. This is because the overall environment
is simple and the algorithm is easy to calculate the optimal
solution. However, as the number of optional relay devices
increases, the routing environment becomes complex, and both
RIP and OSPF are gradually unable to calculate the optimal

routing path solution. At least in the case of 81 routing devices,
our proposed SAGA algorithm can still obtain the optimal
solution through iteration. It is worth admitting that SAGA
is a centralized calculation, so the calculation speed is faster,
but iteration is required, and the cost will be relatively higher.
On the other hand, OSPF decentralized computing has slow
computing speed and inferior performance to SAGA, but the
foreseeable cost is lower.

VIII. CONCLUSION

This paper introduces a novel architecture for live stream
transmission based on a computing power network to address
the challenge of real-time scheduling in live broadcast sce-
narios. We approach content delivery of live media streaming
by breaking it down into two subproblems: transcoding and
compiling, and routing path selection in relay networks. To
enhance the viewing experience of audiences, we propose two
optimization algorithms to solve these problems. Firstly, we
suggest a DQN-based task offloading algorithm that considers
the computing power of edge devices to optimize comput-
ing delay and computing resource utilization. Secondly, we
design a simulated annealing genetic algorithm that takes
into account node and link bandwidth resources to determine
the routing path. The proposed algorithm is rigorously tested
and validated through simulation experiments, and compared
with a benchmark algorithm. The results demonstrate that our
solution outperforms current common solutions in terms of
computing processing delay, computing resource utilization,
and transmission delay. Our work in this paper lacks validation
of algorithm deployment loads, which should be considered
additionally in future work.
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