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PreBiGE: Course Recommendation Using Course Prerequisite
Relation Embedding and Bipartite Graph Embedding
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A growing number of students enrol in online education to improve their skills. However, students are faced with the challenge
of finding courses that meet their individual needs. Recommender systems were introduced to help students choose the courses
that best meet their needs. To learn better representations of students and courses for improved recommendation results, existing
graph-based recommender systems utilize the high-order collaborative signals between set of students or set of courses from a
bipartite graph. However, courses also have prerequisite dependency between them, which when utilized together with collaborative
relations can improve recommendation results. On this basis, we propose a model that utilizes the high-order relation between
set of courses, the prerequisite dependency between courses, as well as the direct relation between students and courses. Using
meta-paths generated from the knowledge graph, our model extracts the prerequisite dependency between courses, which is then
used to generate a course prerequisite graph. The course prerequisite graph and the student-course bipartite graph are used to learn
the representation of the students and courses, jointly capturing the prerequisite dependency, high-order collaborative relations as
well as direct relations. The learned representations are used for recommendation. The experiments on real-world dataset show the
superiority of our proposed method, achieving 3.61% on F1@10 and 1.38% on Mrr@10.

Index Terms—course recommendation, prerequisite dependency, MOOCs, knowledge graph

I. INTRODUCTION

The Covid-19 pandemic has affected modes of teaching
leading to an increase in more independent online learning
platforms [1]. Although students enrolling on these learning
platforms have access to abundant learning resources, they can
easily become overwhelmed by the volume of information.
Therefore, recommender systems have become an effective
tool to help students obtain the appropriate resources to meet
their personal learning goals.

The most popular type of recommender systems is the
collaborative filtering (CF) techniques. In numerous domains,
many CF-based recommender systems have been implemented
(e-commerce, poi, articles etc). CF-based RS implies that
users who do similar things are likely to like the same
things (User-based CF) or that users will like items similar
to what they previously liked (Item-based CF)[2]. Model-
based CF learns the users’ and items’ representation from
the user-item interaction matrix. Existing model-based course
RS [3, 4, 5] utilized information from external sources to
learn better representations of students and courses. Graph-
Based RS [6, 7, 8] have proven that utilizing the high-
order student-student and course-course can generate better
students’ and courses’ representations thereby improving the
recommender system. Although the high-order collaborative
relations between courses are explored in existing works, they
fail to utilize the prerequisite dependencies that are between
courses. These prerequisite relations between courses represent
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the dependency among different courses. For example, two
courses with prerequisite dependency < c1, c2 > indicate that
for a student to learn c2 he/she has to learn c1 first. Therefore,
introducing the prerequisite dependency between courses is
needed to improve the effectiveness of a recommender system.

To address the above-mentioned challenge, we present a
novel model, PreBiGE short for prerequisite and bipartite
graph embedding for course recommendation. Our model
captures the prerequisite dependency between courses, the
high-order collaborative relations between set of course and
set of students, and the direct relations between students and
courses to learn their high-quality representations for better
recommendation results. The course prerequisite dependency
is generated from a knowledge graph. Specifically, we create a
knowledge graph containing entities (student, course, concept)
and relations (student-course, course-concept,concept-concept
prerequisite relation) to infer the course-course prerequisite re-
lation. Then, we utilize the direct relation between the students
and courses, high-order collaborative relationships between the
students set and courses set, and the prerequisite dependency
between courses. The representations of courses learned from
high-order collaborative relations and the prerequisite relations
between them are fused to learn a better representation of
courses.

We summarize the contributions as follows:
1) We propose a method for inferring the course level

prerequisite relations from a knowledge graph.
2) We present a method for recommending courses to stu-

dents based on the fusion of high-order collaboration
and prerequisite relations of courses, the relation between
students and the direct relations between students and
courses.

3) We conduct extensive experiments to evaluate the perfor-
mance of PreBiGE with existing recommendation meth-
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ods.
The remainder of this work is divided into the following

sections. Section II briefly discusses the related works. We
present a preliminary of the proposed work in section III. We
define the methodology of the proposed work in Section IV.
The experiment and its results are presented in Section V,
along with discussions. Section VI gives the conclusion of
our work.

II. RELATED WORKS

In this section, we present existing works on course recom-
mender systems and prerequisite relation extraction in online
education

A. Course Recommender Systems in Online Education

Collaborative filtering (CF) recommender systems are the
most widely used recommender systems in MOOCs. It predicts
which course a student may interact with based on his/her
historical interactions.

User-Based CF assumed that a student would have the
same course enrollment as the students that have similar past
enrollments while Item-Based CF assumed that students would
prefer courses that are similar to those they have previously
enrolled in. Existing User-based CF utilized information from
external sources. S. Dias et al. [9] utilized the social infor-
mation of students to identify those with the highest degree
of similarity. Jing and Tang [10], Yang et al. [11] utilized
content information in addition to the User-Based CF for
improved recommendation results. Item-based recommender
system [2] recommended courses based on the collaborative
relations between courses and their prerequisite dependencies.

Model-Based CF utilized machine learning techniques to
learn users’ and items’ representations from their interaction
matrix. However model-based CF learned poorer representa-
tions if the user-item interaction is sparse. To address this
challenge, Symeonidis and Malakoudis [3] utilized side infor-
mation such as external matrices and Li et al. [4] utilized social
influence. Zhang et al. [5] applied deep learning techniques to
mine students and course features. With the advent of graph
learning techniques, [8] and Ahmad et al., [6] utilized the high-
order collaborative signal to address the sparsity challenge. Al-
though the high-order collaborative relation is used to improve
the quality of course recommendations, the systems failed to
consider the prerequisite dependencies between courses.

B. Prerequisite Relation Extraction

Prerequisite relations in online education have been inferred
using different techniques in various studies. Roy et al. [12]
proposed a supervised learning approach to infer concept
prerequisite relation. The prerequisite relation between con-
cepts is inferred from the course prerequisite relations and the
labelled concept prerequisite data generated from the concept’s
representation, which is derived from a pairwise latent dirichlet
allocation model. Liu et al. [1] proposed a deep learning
based concept prerequisite dependency prediction model. The
distance between the courses vector representations learned

in the hyperbolic space using word embedding was calcu-
lated, which was further used to determine their prerequisite
relationship through hyperbolic neural networks. Pan et al.
[13] generated the latent representation between concepts
using representation learning-based method. Then utilized the
semantic relatedness between concepts, the contextual feature
as well as the structural features to help infer prerequisite
relations. Inspired by the work of Pan et al. [13], Zhao et
al. [2] predicted the prerequisite relation between concepts
from features such as the position of concept in a course,
the distribution of the feature, the appearance of concepts in
more videos and its duration as well as the co-occurrence
of concepts using a random forest classifier. They further
extracted the course prerequisite relation from the concept
relations generated. Because of the unavailability of labelled
data, Liang et al. [14] proposed an active learning approach
to predicting prerequisite relations. In [15], Yu et al., gener-
ated the prerequisite relation by training labelled prerequisite
relations generated from concept taxonomy information and
video dependency.

III. PRELIMINARY

In this section, we first formulate the problem of course
recommendation in MOOCs. To simplify the presentation, we
present some key definitions and notations used in the paper.
Table I shows the notations that were used.

A. Task Formulation

Given the set of students U = {u1, u2, ..., u|U |} and the set
of courses C = {c1, c2, ..., c|C|} and the prerequisite relations
inferred from KG. Let E = (u, c) | u ∈ U, c ∈ C indicate the
interactions between the students and the course. Our approach
aims to learn the embedding of students and courses from
the direct relations between them, the high-order collaborative
relations and the prerequisite dependency between courses
inferred from the KG. Each student is recommended Top-N
courses based on the resulting high-quality representations.

B. Definition of Terms

Definition 1 (Bipartite Graph): An student-course inter-
action graph (bipartite graph) G = (U,C,E) is a graph
containing students’ set U and courses’ set C as nodes. The
edge of the graph E ⊆ U × C denotes the direct relation
between them (Student-Course interaction data).

Definition 2 (Bipartite Graph Embedding): The task of
bipartite graph embedding is to learn the representations of
the nodes in the graph using a mapping function:

f : U ∪ C → Rd

. The mapping function ensures that the direct relations
between U and C are preserved as well as the high-order
collaborative relations between nodes U and nodes C.

Definition 3 (High-Order Collaborative Relation): The
high-order collaborative relation refers to the indirect relation
between set of courses or set of students. It is determined
using the transition probability in a random-walk generated
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TABLE I. Notations used and their descriptions.

Notations Description
G Bipartite Graph
GU Students’ Homogeneous Graph
GC Courses’ Homogeneous Graph

GCP
Courses’ Prerequisite Relation
Graph

U,C,K
Set of students, courses, and knowl-
edge concepts, respectively

E ⊆ U × C Edge set in G

Au,Ac, Acp
Adjacency matrix of GU , GC and
GCP

< ka, kb >
Prerequisite dependency between
concept pair

< ci, cj >
Prerequisite dependency between
course pair

MP (ci, cj) =
{mp1, . . . ,mps}

Paths between course pair

mp(ci, cj) =
ni → n2. . . →
nj

A path between course pair

ui,cj student and course

ui
′,cj ′

Embedding vector of student ui and
course vj

sequence. This is represented as the matrix H = R1 + R2 +
R3+ ...+Rs, where R1 denote the normalized direct relation
matrix. Rk denotes the normalized s-step probability transition
matrix. hij ∈ H denote the high-order collaborative relations
between node i and node j.

Definition 4 (Concept Prerequisite Relation): This is con-
sidered as the dependency between two concepts. Given two
concepts k1 and k2 from concept set K, students must under-
stand k1 before learning k2. Thus, we consider that < k1, k2 >
represents a prerequisite relationship between k1 and k2.

Definition 5 (Course Prerequisite Relation): Similar to
the concept prerequisite relation, it describes the prerequisite
dependency between two courses. We will infer the course pre-
requisite relation from the concept prerequisite relation using
a knowledge graph. For example, we may infer prerequisite
relations such as c1, c2 > indicating that for a student to learn
c2 he/she has to learn c1 first.

Definition 6 (Knowledge Graph): Let N = {n1, n2, ..., nk}
represent the set of nodes and R = {r1, r2, ..., rk} represent
set of nodes relations, a knowledge graph is a directed graph
G = (N,L) with a node type mapping function ψ : N → A
and a link type mapping function λ : L → R. Each node
n ∈ N is a node type ψ(n) ∈ A, and each link l ∈ L is a
link type λ(l) ∈ R. Because there are multiple types of nodes
and node relationships i.e., |N | > 1 and/or |R| > 1 in the
KG used in this study, it can be regarded as a heterogeneous
information network. Figure 1 provides a toy example of
KG with nodes types (courses and knowledge concept) and
links describing the node relations such as (e.g., ”contain in”,
”prerequisite of”).

Definition 7 (Meta-Path): Semantic meta-path refers to
a sequence of entities connected by relations between two
nodes ui and vj , which can be represented as mp(ui, vj) =

n0
r1−→ n1

r2−→ ...
rk−→ nk. We use MP (ni, nj) =

{mp1,mp2, ...mp|mp|} to represent the connected paths be-
tween nodes ei and ej where mp is a path and |mp| denotes
the total number of paths. Consider the KG in Figure ??, we
can infer the prerequisite relation between two courses using
meta-paths:

IV. PROPOSED METHODOLOGY

In this section, we present a model that learns the repre-
sentations of courses from their direct relations, collaborative
relations and the prerequisite relations generated from KG. Our
proposed model consists of three components: 1) Extracting
course prerequisite relations from KG and prerequisite graph
construction. 2) Learning the representations of students and
courses from their high-Order collaborative relations, direct
relations and course prerequisite relations. 3) Course recom-
mendation using the learned representations. The subsequent
subsections provide a detailed discussion of our proposed
methodology. The algorithm of our proposed method is given
in Algorithm 1.

A. Course Prerequisite Relations Extraction and Prerequi-
site Graph Construction

In this section, we start by extracting the concept-concept
prerequisite pair which is further used together with other
relations to infer course prerequisite relations from knowl-
edge graph. The course prerequisite relation is then used to
construct the course prerequisite graph.

1) Concept Prerequisite Relation Extraction
Given a set of courses C = {c1, c2, ..., c|C|}, set of videos

contained in courses V = {v1, v2, ..., v|V |} and a set of knowl-
edge concepts taught in each video K = {k1, k2, ..., k|K|},
we adapt the process used by [15] to extract the prerequi-
site relations between concepts. In each video, the 10 most
representative course concepts are extracted from subtitles.
Each concept’s description is extracted from Wikidata and
top 10 related papers through Aminer1. Word embedding is
used to calculate the most likely category of a course concept.
Some annotators are asked to label if the concept belongs to a
category. For concept pairs that are labelled ”not belong to” the
brother category of the prior one is chosen as a new candidate
and put the refreshed pair into the annotation pool. This results
in a reduced annotation pool with valid concept pair. Given the
concept annotation pool, labelling all possible concept pairs is
infeasible. Thus, a sample of candidate concept pair is created
only for concepts which occur in the same course. Annotators
label the candidate course pairs. Then a model is trained to
label the unlabelled course pairs. Another classifier is trained
to give labelled pairs with low confidence score a new label.
This result in a labelled concept pairs indicating if concept ka
is helpful to understand concept kb

1https://aminer.org
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Fig. 1. Course Prerequisite Relations Extraction

These descriptions are used to create a concept taxonomy.
Candidate concept pairs are generated by selecting concepts
which belong to the same course. The concept taxonomy
information is utilized to reduce the candidate concept pair.
Some candidates are then manually labelled by annotators to
identify if concept X is important in understanding concept
B. This result in some labelled concept pair. Then a model
is trained to classify the other unlabeled pairs. This generates
concept prerequisite pairs < ka, kb >.

2) Extracting Course Prerequisite Relation from KG
Given the prerequisite relations between concepts

< ka, kb > generated from the previous section IV-A1,
indicating that k2 is a follow-up concept of k1, the course-
concept relation, indicating that a concept is contained in a
course, and the student-course relations, we construct a di-
rected knowledge graph containing students nodes U , courses
nodes C, concepts nodes K and the relations between them
(student-course R, course-concept CK , concept-concept KK).

Based on the constructed knowledge graph, we select differ-
ent meta-paths between a course pair. The meta-path between
course pair is given as mp(ci, cj) = ni → n2. . . → nj .
After generating all meta-paths between course pairs given as
MP (ci, cj) = {mp1, . . . ,mps}. If lenght(MP (ci, cj)) ̸= 0,
then we infer that there is a prerequisite relation < ci, cj >
between them. For example, in Figure 1, we have meta-path
between c1 and c2, c1 → k1 → k2 → c2. This indicates that
there exists a prerequisite relation between k1 and k2. With k1
being a concept in c1 and k2 a concept in c2, we can infer that
c1 is a prerequisite of c2. In addition, we count the number
of paths that are between each course pair to differentiate the
strength of their relation i.e., lenght(MP (ci, cj). This number
will serve as the weight of the edge in the course prerequisite
graph to be constructed in the next section.

3) Course Prerequisite Graph Construction
Given the prerequisite relations between courses pairs gen-

erated from section IV-A2, we construct a weighted homoge-
neous graph. The weights of the edges between the nodes of
the course prerequisite graph indicate the number of paths
that are between the connected course nodes. The matrix
| CP | × | CP | matrix of Acp = [aCP

ij ] are used to represent
the adjacency matrix of the prerequisite graph.

B. Direct Relation, High-Order Collaborative Relations and
Prerequisite Graph Embedding

Given the student-course interaction data, we first construct
a bipartite graph G = (U,C,E). The weight matrix of the
graph is denoted as A. A good graph embedding should
be able to preserve all the relations that are in the graph.
We utilize the direct student-course relation as well as the
high-order relations between students’ set and the high-order
relations between courses’ set. We consider jointly learning
the representations of the students and courses by preserving
these relations in the bipartite graph and the course prerequisite
graph.This section is divided into: 1) Direct relation embed-
ding and 2) High-order collaborative relations embedding and
prerequisite relation embedding.

1) Direct Relation Embedding
The goal is to learn the representations (embedding) of

the students and courses that preserves the direct relation
between them. That is, if there is an edge between them, then
the representation should encode the edge. To preserve the
direct relation, we utilize first-order proximity in LINE [16].
We model the direct relations between students and courses
by considering the direct proximity between them. The joint
probability between student ui and course j is defined as:

P (i, j) =
aij∑

eij∈E aij
(1)

where aij denote the weight of edge eij . Whenever the
weight is large, then the two nodes have a higher probability
to co-occur. To estimate the direct proximity in the embedding
space, we use the inner product to model the interaction
between two nodes inspired by Word2Vec. We use a sigmoid
function to transform the interaction into probability space:

P̂ (i, j) =
1

1 + exp(−u′i
T c′j)

(2)

where u′i and c′j represent the embedding matrices of nodes u
and c respectively. Our goal is now to minimize the difference
between the probability of the vertices and their reconstructed
embedding. We choose KL-divergence
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min L1 = KL(P ||P̂ ) =
∑

eij∈E

P (i, j)log(
P (i, j

P̂ (i, j)

∞−
∑

eij∈E

aij logP̂ (i, j) (3)

σ(·) is the sigmoid function.
2) High-Order Collaborative Relations Embedding and

Prerequisite Relation Embedding
Embedding high-order collaborative relations in recommen-

dation has proven to be effective [17, 18]. This motivates us
to explore the high-order collaborative relations in bipartite
graph. In addition, exploring the prerequisite relation has
also been effective in improving recommendation results [2].
Although exploring the direct relations can recover the high-
order relations, it is impractical to rely on them as most direct
relations are sparse in real life. As such, we speculate that
embedding the high-order relations as well as the prerequisite
relations could bring extra benefits to the direct relation
embedding.

To explore the high-order collaborative relations, we resort
to the solution of DeepWalk [19]. Specifically, the bipartite
graph is split into two corpora of node sequences by perform-
ing random walks; then the embeddings are learned from the
corpora to represent the high-order relations between nodes.
To explore the prerequisite relations, we also generate the
corpus of node sequences by performing random walks on the
prerequisite graph; then learn the embedding from the corpus.

• Constructing Corpus of Node Sequences: Homogenous
graphs such as the prerequisite relations graphs can be
converted into a corpus of node sequences by performing
random walks on the graphs. However, since the distribu-
tion of random walks on bipartite graphs is not stationary,
directly performing the walks on student-course bipartite
graph could fail. To address this issue, we generate two
collaborative relations graphs (homogeneous) between
students’ nodes and courses’ nodes from the student-
course bipartite graph. To find the collaborative relations,
we employ the concept of Co-HITS [20]. This captures
the second-order proximity between the nodes thereby
projecting the bipartite graph into two homogeneous
graphs.

aUij =
∑
k∈C

aikajk ; aCij =
∑
k∈U

akiukj (4)

where aij is the weight of the edge. Therefore, the
| U | × | U | matrix of Au = [aUij ] and the
| C | × | C | matrix of Ac = [aCij ] represent, respectively,
the adjacency matrices of the two projected homogeneous
networks.
Now we can generate two corpora for learning the high-
order collaborative relations by doing random walks on
the two homogeneous graphs. Additionally, we perform
random walks on the prerequisite relation graph. We
employ weighted random walks and negative sampling
a corpus of node sequences for each of the reconstructed
graphs and the prerequisite homogeneous graph [21].

The node sequences, walksu, walksc and walkscp, are
generated in Algorithm 1, lines 10-22.

• High-order Collaborative Relations and Prerequisite Re-
lations Embedding: After performing random walks on
the three homogeneous graphs, we obtain three corpora
of node sequences each for the student collaborative
relations, courses collaborative relations and courses pre-
requisite relations, respectively. We then employ the Skip-
gram model [22] on the three corpora to learn node
embeddings. The goal is to capture the high-order re-
lations in the graph, implying that similar representations
should be given to nodes sharing context nodes in the
sequences. The context is the ws nodes before node ui
and after node ui in node sequence S. The same applies
to node cj . Another node sequence from the prerequisite
graph, SC, is connected to the node cj . The node cj is
also associated with another node sequence SC from the
prerequisite graph. Therefore, it is also associated with
ws context nodes before cj and after cj in SC. Each
node is associated with a context vector θi (or Θj or
ϑj) to denote its role as a context. For each node cj in
C, we preserve both its high-order collaborative relations
and the prerequisite relation. For each node ui in U , we
preserve only its high-order collaborative relations. For
the corpus walksu,walksc, and walkscp we maximize
the conditional probability:

max M2 =
∏

ui∈S∧S∈walksu

∏
ud∈DS(ui)

P (ud | ui) (5)

where DS(ui) indicates the node ui’s context nodes in
sequence S. We also get the objective vector of each node
type in walksc

max M3 =
∏

cj∈S∧S∈walksc

∏
cd∈DS(cj)

P (cd | cj) (6)

We then get another objective vector of node cj using
walkscp. DSC(cj) denotes the context nodes of node cj
in sequence SC.

max M4 =
∏

cj∈SC∧SC∈walkscp

∏
cdc∈DSC(cj)

P (cdc | cj)

(7)
The conditional probability is parameterize P (ud | ui),
P (cj | cj) and P (cdc | cj) using softmax for output
[21, 19]:

P (ud | ui) =
exp(u′i

T
θ′d)∑|U |

l=1 exp(u
′
i
T θ′l)

,

P (cd | cj) =
exp(c′j

T
Θ′

d)∑|C|
l=1 exp(c

′
j
TΘ′

l)
,

P (cdc | cj)) =
exp(c′j

T
ϑ′dc))∑|C|

l=1 exp(c
′
j
Tϑ′l)

(8)

where P (ud | ui) represents the likelihood that ud would
be observed in the contexts of ui. Same applies to P (cd |
cj) and P (cdc | cj)).
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Fig. 2. The Overall Framework of PreBiGE. It consists of the process of learning the representations of students and courses from
a student-course bipartite graph and course prerequisite graph using random walk and skip-gram Model. The representations
are further used to estimate the missing values in the student-course rating matrix, which is further used to provide a ranked
list of recommended courses.

3) Joint Optimization
To preserve the prerequisite relations, high-order collabo-

rative relations and direct relations, we need to optimize an
objective function. We adopt the concept of [17] to jointly
optimize their objective functions.

max L = αlogM2 + β(logM3 + LogM4)− γM1 (9)

where parameters α, β and γ are hyper-parameters in the joint
optimization process specified to combine various compo-
nents. We use Stochastic gradient ascent (SGA) to optimize the
model jointly. Each component in Equation 9 have a different
training instance. The SGA is modified as follows:

i) Step 1: To learn the representations of the direct relations,
we update the vectors u′i and c′j using SGA to maximize
the last component L1 = −γM1 as follows:

u′i = u′i + λ{γaij [1− σ(u′i
T
c′j)] · c′j} (10)

c′j = c′i + λ{γaij [1− σ(u′i
T
c′j)] · u′i} (11)

where λ represents the learning rate.
ii) Step 2: To learn the representations of the high-order

collaborative relations and course prerequisite relations,
we treat nodes ui, cj as the centre nodes. Then use SGA
to maximize the objective functions L2 = αlogM2 ,
L3 = βlogM3 and L4 = βlogM4. Given the nodes ui,
cj and their context vertex ud, cd, cdc, we update their
corresponding embedding vectors u′i ,c′j , as follows:

u′i = u′i+λ{
∑

z∈{ud}∪Nns
S (ui)

α[I(z, ui)−σ(u′i
T
θ′z)] · θ′z)}

(12)

c′j = c′j+λ{
∑

z∈{cd}∪Nns
S (cj)

β[I(z, vj)−σ(c′j
T
Θ′

z)] ·Θ′
z)}

(13)
Update cj again as follows:

c′j = c′j+λ{
∑

zc∈{cdc}∪Nns
SC(cj)

β[I(zc, vj)−σ(c′j
T
ϑ′zc)]·ϑ′zc)}

(14)
where Nns

S (ui) represents the negative samples ns for a
node at the center ui. The same holds true for Nns

S (cj)
and Nns

SC(cj). I(z, ui) is a function that assesses whether
or not node z is in the context of ui; I(z, cj) and
I(zc, cj) have the same meaning. In addition, the positive
context vectors and negative context vectors are updated
as follows:

θ′z = θ′z + λ{α[I(z, ui)− σ((u′i)
T θ′z)] · u′i)} (15)

Θ′
z = Θ′

z + λ{β[I(z, cj)− σ((c′j)
TΘ′

z)] · c′j)} (16)

ϑ′zc = ϑ′zc + λ{β[I(zc, cj)− σ((c′j)
Tϑ′zc)] · c′j)} (17)

4) Computational Complexity Analysis
We have introduced PreBiGE Learning Algorithm 1, which

includes the following three steps. Firstly, we design a strat-
egyfor extracting prerequisite relations between two courses
by generating meta-paths from the knowledge graph (lines 2-
8). We then generate corpora node sequences from the three
graphs, one from the prerequisite relation and the other two
from the students and courses collaborative relations graphs
((lines 13-25). Finally, we jointly learn the representations of
students and courses encoding all the relations between them.
(26-40).
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Algorithm 1 PreBiGE Learning Algorithm

Require: U,C,K, Rating Matrix R, course-concept relations
Ck, concept-concept relations Kk, window size w, walks
per node r, embedding dimension dim, walk length l

Ensure: Embedding of nodes U and C
1: Create a knowledge graph KG using U , C, K, R Ck,
Kk.

2: for each (ci, cj) pair do
3: mine connected paths MP (ci, cj) from KG
4: if MP (ci, cj) ̸= 0 then
5: Create a prerequisite relation < ci, cj >
6: Count the number p of paths between them
7: end if
8: end for
9: Create a weighted homogeneous course prerequisite graph
Gcp using < ci, cj > with p as edge weight and with
adjacency matrix Acp

10: Create a Bipartite Graph G = U,C,E with weight matrix
A using U,C,R

11: Generate two homogeneous graph GU and GC for U and
C, respectively and obtain two adjacency matrix Au and
Ac for each graph using Equation 4

12: Initialize embedding vectors and context vectors u′i, c
′
j ,

θ′i,Θ
′
j ,ϑ′j

13: Initialize a list walksu, walksc, walkscp,⇐ [ ], [ ], [ ]
14: for all ui ∈ A do
15: walku ⇐ RandomWalk(R, ui, l)
16: Append walku to walksu
17: end for
18: for all vj ∈ A do
19: walkc ⇐ RandomWalk(R, cj , l)
20: Append walkv to walksv
21: end for
22: for all ck ∈ Acp do
23: walkcp ⇐ RandomWalk(Acp, ck, l)
24: Append walkcp to walkscp
25: end for
26: for each edge(ui, cj) do
27: update u′i and c′j using Equation 10 and 11
28: for each (ui, ud) in the sequence S ∈ walksu do
29: Generate Nns

S (ui) using negative sampling
30: Update u′i and θ′z using Equation 12 and 15,

respectively. where z ∈ {ud} ∪Nns
S (ui)

31: end for
32: for each (cj , ud) in the sequence S ∈ walksc do
33: Generate Nns

S (cj) using negative sampling
34: Update c′j and Θ′

z using Equation 13 and 16,
respectively. where z ∈ {cd} ∪Nns

S (cj)
35: end for
36: for each (cj , cdc) in the sequence SC ∈ walkscp do
37: Generate Nns

S C(cj) using negative sampling
38: Update c′j and ϑ′z using Equation 14 and 17,

respectively. where z ∈ {cdc} ∪Nns
S C(cj)

39: end for
40: end for
41: return node embedding of U and C

The time complexity includes three key parts: (1) Generat-
ing the meta paths: the time complexity of generating the meta-
paths is related to the average degree of the entities d̄ in the
knowledge graph and the number of courses |C|. (2) Corpus
Generation: Given the walk length of generating the corpus l,
the visitation number of nodes in a graph n and the number of
walks per node, the time complexity of generating the corpus
of each graph is O(rln). (3) Joint Optimization: Given the
generated corpus, suppose the visitation count of node v in the
generated corpus is vc. The context size is therefore vc · 3ws.
The time complexity is (|E| · bs · 3ws · (ns+ 1)).

C. Top-N Course Recommendation

The previous section generated high-quality embedding for
all students and courses. The course embedding encodes the
course prerequisite dependency between the courses, the high-
order collaborative relations as well as the direct relations be-
tween the courses and the students. This results in high-quality
embedding that can improve the recommendation result. Also,
the students’ embedding encodes the high-order collaborative
relations as well as the direct relations between the courses
and the students. To generate the recommendation result, we
calculate the similarity between each student’s embedding with
all other courses embedding using the dot product. To get
the Top-N courses, we sort the similarity result in descending
order and choose the first N courses.

V. EXPERIMENTS AND ANALYSIS

We aim to answer the following research questions through
experiments:

i) RQ I: How does our model, PreBiGE, compare with state-
of-the-art graph embedding methods and graph-based
course recommender systems?

ii) RQ II: Does including the course prerequisite relations
improve the quality of course recommendation results?

iii) RQ III: How do different strengths of the prerequisite
relation affect the recommendation result?

iv) RQ IV: How do hyper-parameters affect the performance
of our proposed model?

The experimental setup and answers to the aforementioned
research questions are described in the sections that follow.

A. Dataset Description

We used the dataset provided by MOOCCube [15]. It is
a dataset collected from XuatengX2 MOOC platform. The
statistics of the used dataset are given in Table II. We select
the course interaction behaviour occurring from 1st September
2018 to 10th December 2018 from the dataset. To train the
model, we randomly sample 60% of the dataset. We then
test the model with the remaining 40%. 10 folds of the train-
test split are used to avoid overfitting. The hyper-parameters
settings are tuned on the first fold only. The optimal hyper-
parameter settings are used and then the average performance
of all folds is reported. This method of the train-test split is a
valid sampling approach [23].

2https://next.xuetangx.com/
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TABLE II. Description of the dataset.

Nodes/Relations Name Statistics
Students 884

Nodes Course 307
Knowledge Concept 17,614
student-course 5,921
course-concept 77,091

Relations concept-concept 905

B. Experimental Settings

1) Comparison Methods
Our model uses high-order collaborative relations between

students’ set and courses’ set, course prerequisite dependen-
cies, and direct student-course relations to improve course
recommendations. To choose the comparison method, we
identify the recommendation methods that perform similar
tasks. In the field of education, there is limited availability
of reference datasets and many recommender systems were
based on private institutional datasets [9, 24]. In addition, [25]
observed that the accuracy of models varies according to the
dataset used. Models with good recommendation results on
three datasets may not provide good results in other datasets.
Based on this, we select domain-independent models:
1) BPRMF [26]: a baseline recommendation approach that

optimizes a pairwise loss function suitable for a ranking-
based recommendation.

2) NeuMF [27]: a method that substitutes the inner product’s
MF function with a nonlinear neural network in a neural
collaborative filtering method.

3) NGCF [18]: is a graph convolution network-based method
that stacked multiple embedding propagation layers to
capture the interaction graph’s collaborative signal.

4) LightGCN [28]: simplifies the GCN used in NGCF to make
it appropriate for recommendation.

5) BiNE [17]: a bipartite graph embedding method that uti-
lizes the direct relation between users and items and the
indirect collaborative relations between users and items in
the graph.
2) Evaluation Metrics
Given the recommended list of student Ru and the corre-

sponding ground truth enrollment set of student u in the test
set, C ′

u, we compare our proposed model’s performance to that
of existing models using the following evaluation metrics:

i) Mean Reciprocal Rank(MRR@N): evaluates a recom-
mender system that predicts a ranked list of items. N
denote the number of items that are at the top of the rec-
ommendation list to be evaluated. For example, MRR@10
evaluates a recommended list containing the Top 10 items.
It is defined by:

MRR@N =
1

| C ′
u |

∑
u∈U

RR(u)

RR(u) =
∑
c∈C′

u

1

ranku(d)
(18)

where C ′
u is the enrollment set of student u in the test

set and ranku(d) is the rank of course c in the Top-N
recommendation result for student u, which is Ru.

ii) Recall@N: is the proportion of relevant items in the Top-
N recommendation list.

RECALL@N =
∑
u∈U

1

| U |

∑
c∈Ru

(c ∈ C ′
u)

min(N, | C ′
u |)

(19)

iii) Precision@N (Prec@N): the fraction of relevant items in
the top k recommendations

PREC@N =
∑
u∈U

1

| U |

∑
c∈Ru

(c ∈ C ′
u)

min(N, | Ru |)
(20)

iv) F1 Score (F1@N): combines recall and precision in a sin-
gle number evaluation metric. This makes the comparison
across different models much more straightforward.

F1@N = 2 ∗ Prec@10 ∗Recall@10

Prec@10 +Recall@10
(21)

3) Parameter settings
For comparison, we determined the ideal parameters for

each technique either by following the recommendations in
the related articles or by conducting a grid search in our
experiments. For the bipartite graph-based methods, BiNE
[17] and our proposed model, PreBiGE, the parameters
searched include γ and β since they play an important
role in balancing the impact of the high-order relations and
the prerequisite relations, as well as the direct relations. β
is searched from [0.0001, 0.0001, 0.001, 0.01, 0.1], γ is also
searched from γ [0.0001, 0.0001, 0.001, 0.01, 0.1]. The result
is shown in Figure 3a and 3b. The learning rate and regularizer
were also searched. The learning rate λ is searched from
[0.01, 0.025, 0.05, 0.01, 0.1] and the regularizer δ is searched
from [0.01.0.025, 0.01, 0.1]

The dimension of the latent components is set to 128 for
all techniques. Based on the grid search the optimal setting
of β and γ as seen in Figure 3a and 3b is set to 0.01
and 0.1, respectively. This setting applies to BiNE [17] and
our proposed model. The learning rate and regulariser are
also set to 0.1 and 0.1, respectively for BiNE [17] and our
proposed model, PreBiGE. The dropout rate, learning rate
and regularization coefficient is set to 10−1, 10−3 and 10−4,
respectively for NGCF [18] and LightGCN [28]. For NeuMF
and BPR, the learning rate is set to 10−2.

C. Performance Comparison (RQI)

We compare the performance of our model with existing
recommendation methods. Table III shows the performance
comparison. We have the following observations:

The result of the best baseline on each metric is marked
with † while our model, PreBiGE, is marked with ∗. The
last row is the percentage improvement of PreBiGE compared
to the best baseline, defined as PreBiGE−baseline

baseline . We make
several observations on the baselines. We can see that the
models, BiNE, NGCF and LightGCN, utilizing the high-
order collaborative relations perform better compared to the
models, NeuMF and BPR, utilizing only the direct relation
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(a) F1@10 Vs β (b) F1@10 Vs γ

Fig. 3. Parameters β and γ analysis

TABLE III. Performance comparison of PreBiGE with existing
models (in %).

Models Prec@10 Recall@10 F1@10 Mrr@10
BPR [26] 4.09 17.64 6.64 14.94
NMF [27] 4.42 18.91 7.16 15.26
BiNE [17] 5.76 24.89 9.36 17.83
NGCF [18] 6.49 27.29 10.48 19.21
LightGCN
[28]

†6.56 † 28.22 †10.64 †19.23

PreBiGE *6.81 *29.18 *11.04 *19.50
Improv. 3.68 3.29 3.61 1.38

’*’ and ’Improv.’ denote the statistical significance at
p < 0.01 with a paired t-test and improvement of our
model compared to the best method (†), respectively

between entities. Furthermore, PreBiGE utilizing the high-
order relations, prerequisite dependency and direct relations,
outperforms baselines, BiNE, NGCF and LightGCN, utilizing
high-order relations and direct relation only. Table III also
shows that our model, PreBiGE, outperforms all baselines.
This shows the benefit of utilizing the prerequisite relation
between courses. In summary, our model outperforms all
baselines which answer the research question (RQI).

D. Influence of Course Prerequisite Dependency (RQ II)

In this section, we analyze how the prerequisite relations
between courses influence the performance of the recommen-
dation model. Table IV shows the performance of our model,
PreBiGE, utilizing the prerequisite dependency and its vari-
ant, PreBiGEWOP , that does not utilize the prerequisite
dependency between courses extracted from the knowledge
graph. It can be seen that the model utilizing the prerequisite
dependency significantly outperforms the other model. This
indicates that capturing the prerequisite dependency greatly
influence the performance of recommendation result answer-
ing our research question (RQII).

TABLE IV. Influence of Course Prerequisite Dependency (in
%).

Models Prec@10 Recall@10 F1@10 Mrr@10
PreBiGEWOP 6.54 27.75 10.58 18.52

PreBiGE 6.81 29.18 11.04 19.50
Improv. 3.99 4.90 4.17 5.03

E. Influence of Weighted Course Prerequisite Graph (RQ
III)

In this section, we analyze whether giving different
strengths to the prerequisite relation between course pair
influence the recommendation result. To demonstrate the ef-
fectiveness of giving different strengths to the prerequisite
relations between pairs, we compare our model, PreBiGE,
whose course prerequisite graph contains edge weights rep-
resenting the number of paths between the pairs and another
variant, PreBiGEUW , in which the prerequisite graph is an
unweighted graph in which the relations between all course
pairs are equal. The number of paths between course pairs
represented as weights in the course prerequisite graph dif-
ferentiates the strength of the prerequisite relations. Table V
shows the performance between these two variants. It can be
seen that our model, PreBiGE, utilizing a weighted prerequi-
site relation significantly outperforms the other variant which
is unweighted. This indicates that assigning different weights
between course pairs in the prerequisite graph influence the
performance of recommendation result answering our research
question (RQIII).

TABLE V. Influence of Weighted Course Prerequisite Graph
(in %).

Models Prec@10 Recall@10 F1@10 Mrr@10
PreBiGEUW 6.56 28.27 10.65 19.29
PreBiGE 6.81 29.18 11.04 19.50

Improv. 3.63 3.12 3.53 1.07
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F. Parameters sensitivity analysis (RQIV)

In this section, we investigate the influence of hyperpa-
rameters β and γ (we fix α = 0.1). These two parameters
play a crucial role in balancing the prerequisite relation, the
high-order relations and the direct relations between nodes in
the graph. Except for the parameters being tested, we assume
default values for other hyperparameters. From Figure 3a, we
observe that with the decrease in β, the performance increases
and then drastically starts to decrease showing the highest
performance at 0.01. From Figure 3b, we observe that with
the decrease in γ the performance is decreasing significantly
showing highest performance at 0.1. We report the result of
our model with these two settings.

VI. CONCLUSION

We have presented a novel model for recommending courses
using course prerequisite relation graph and student-course bi-
partite graph embedding. Our model, PreBiGE, jointly utilizes
the direct relation between students and courses, the high-
order collaborative relation between sets of students and sets
of courses in the bipartite graph, as well as the prerequisite
relation between the set of courses in the course prerequi-
site graph. Our model augments the high-order collaborative
relations between courses with their prerequisite relations.
Experiments on real-world dataset show that it significantly
improves the recommendation result compared with other
baseline methods.

In future study, we will consider the chronological order by
which each student interacts with the content of a course to
understand the users’ behaviour for better personalization.
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