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This paper provides results of an evaluation of a fungal disease Botrytis cinerea forecast model (Model for Botrytis cinerea
appearing) in vineyards for qualitative analysis of parameters which affect the development of the disease by using data from
a network of connected sensors (air temperature and relative humidity, rain precipitation, and leaf wetness). The fungal disease
model used by agronomists was digitalized and integrated into agroNET, a decision support tool, helping farmers to decide when to
apply chemical treatments and which chemicals to use, to ensure the best growing conditions and suppress the growth of Botrytis
cinerea. The temperature and humidity contexts are used to detect the risk of the disease occurrence. In this study, the impact of
the humidity conditions (relative humidity, rain precipitation, and leaf wetness) is evaluated by assessing how different humidity
parameters correlate with the accuracy of the Botrytis cinerea fungi forecast. Each observed parameter has its own threshold that
triggers the second step of the disease modelling-risk index based on the temperature. The research showed that for relative humidity,
rain precipitation, and leaf wetness measurements, a low-cost relative humidity sensor can detect, on average, 14.61% of cases, a
leaf wetness sensor an additional 3.99% of risk cases, and finally, a precipitation sensor can detect an additional 0.59% of risk
cases (in observed period the risk was detected in 19.19% (14.61%+3.99%0.59%) of the time), which gives a guide to farmers how
to consider cost effective implementation of sensors to achieve good performance. The use of the proposed model reduced the use

of pesticides up to 20%.

Index Terms—IoT, Fungal disease forecast, Botrytis cinerea, Precise agriculture, Decision support.

I. INTRODUCTION

GRICULTURE production has evolved throughout the

years, from the family-based farms producing food
mainly for themselves, to modern, well-equipped farms and
agriculture companies that became the main food suppliers for
the growing global population. The global smart agriculture
market size is expected to reach $15.3 billion by 2025 [1],
which is directly proportional to the increase of the number
of Internet of Things (IoT) device installations in agriculture
with a 20% annual growth [2]. However, the Food and
Agriculture Organization (FAO) in [3] reports that 25% of
the world’s farmland is “highly degraded” with soil erosion,
water degradation, and biodiversity loss, following with 8%
being moderately degraded, 36% slightly degraded, and only
10% ranked as “improving”. When it comes to higher yields,
plant breeding, genetics, as well as production technologies,
we have come to the point where introducing other knowledge
and technologies is a necessity to enable crops to reach their
maximum potential, while optimizing the use of chemicals and
saving the soil.

Digital technology-based (IoT, ML/AI) solutions designed
for the agriculture domain help farmers optimize their pro-
duction by providing actionable insights generated through a
combination of built-in agriculture expertise in form of disease
models, best practices, etc., and rich sets of data acquired
directly from multiple sources (primarily farms, but also third
parties like weather forecast).
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Many crop disease models have been defined and researched
over the years, tailored to different crop varieties and climate
regions.

In this study, the focus was on fungal diseases in vineyards.
The goal of the study was to analyze the influence of the
qualitative parameters collected by low-cost sensors, on the
fungal disease forecast accuracy. The existing expert model for
fungal disease forecast (Model for Botrytis cinerea appearing
[4]) is implemented as a rule-based algorithm and applied
on the data collected from IoT sensor nodes to provide
information and recommendations that will help farmers in
the decision-making process.

The main contribution of this study is identification of
the minimum technological requirements for an effective and
reliable Botrytis cinerea disease forecast. The evaluation is
done based on the sensor systems deployed in four vineyards
in two countries (Serbia and Montenegro).

To the best of our knowledge, there are no studies that
evaluated the impact of different types of sensors on the
accuracy of fungal disease prediction models. The disease
prediction uses a state-of-the-art “almost in real-time” model,
where collected data are processed and quantified in short time
windows of 1 hour.

The rest of the paper is organized in the following manner.
In Section II, related work on fungal disease modelling using
technology is provided together with an overview of the
Botrytis cinerea academic work in the domain, including a
background on wine production. The materials and methods,
study sites, and data sources used in the study, as well as
more details on the disease forecast model quantification are
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provided in Section III. In section IV, the evaluation results
are provided, followed by the discussion in Section V. The
paper is concluded in section VI.

II. RELATED WORK

Botrytis cinerea causes gray mold disease and is the most
common among other fungi responsible for the rotting of
grapes, which highly impacts the wine quality. There are
certain wine types produced in specific regions which base the
process of wine making solely on the controlled infection of
the grape berries by the Botrytis cinerea (i.e. Botryzied wines)
[5]. For those wines, the main process is based on changing the
fruit composition, which is induced by Botrytis cinerea. For
botrytized wines, remediation practice is a complex process
of conservation, aging and stabilization, combining a number
of parameters (e.g., very specific environmental conditions)
[6]. Other wines require a Botrytis cinerea-free environment,
which makes stopping the growth of this fungus a very
necessary and demanding task. Air temperature and humidity
are the two critical parameters which influence development
of Botrytis. According to [7], the relation of the influence of
temperature and humidity on the infection can be modelled
as a multiple regression described the infection as a func-
tion of the interaction of wetness duration and temperature
(R? = 0.75, where R? is square of correlation coefficient r,
which represents the level of correlation between observed
variables. The value of 0.75 shows a quite high correlation
level). The presented field test showed the infection spreads
after 4h of wetness at all temperatures between 12— 30°C.
In [8], non-real-time models were used, by monitoring if the
temperature between 20—25°C and a relative humidity of 90%
are present for a maximum of 15 h.

In [9], the authors proposed to improve the modelling
impact of plant disease on agricultural systems by improving
the quality and availability of data for model inputs and
evaluation. The current trends in the prediction of crop pests
using machine learning technology were analyzed in [10] with
an emphasis on the use of SVM (Support Vector Machine),
Multiple Linear Regression, Neural Network, and Bayesian
Network based techniques.

In [8], the authors developed an IoT technology with four
different disease models (Gray mold, Downy mildew, Powdery
mildew, and Black rot) based on previous work and indications
to create warnings for vineyard diseases [11]-[14]. In [8]
disease warning models were adapted to run in (near) real-
time, using meteorological variables generated by IoT devices,
to inform farmers, and to enable them to tackle the infection
with the appropriate treatments.

By taking into account the number of factors collected
from low-cost sensors that could influence appearance of the
disease, new topics for research in the multidimensional field
of precision agriculture emerge. In this paper, we have selected
one disease to quantify the accuracy of the first step of the
forecast of fungal growth that bases its intelligence on the
different humidity parameters (relative humidity, rain precipi-
tation, and leaf wetness). To the best of our knowledge there
is no previous research that shows, from the perspective of

model accuracy, how humidity parameters from different types
of sensors influence the potential outcome of the forecast.

III. MATERIAL AND METHODS
A. Study sites and data sources

Presented work is done in the scope of DEMETER project
[15]. DEMETER is large scale project focused on digital
transformation of agrifood sector. Activities are organised
through 20 pilots across 18 countries focusing on: arable
crops, precision farming, fruits and vegetables, livestock and
whole food supply chain. The key project objective is to em-
power farmers to improve their existing practice by introduc-
ing digital technologies. Under DEMETER project vineyards
throughout Srem-Fruska Gora Mountain and 13. Jul-Plantaze
vineyard are equipped with adequate devices providing inputs
in expert modules as a basis for decision support to the
farmers. Job orders/spraying configurations are sent to the
orchard/vineyard sprayers in the field, and once executed, the
result of the spraying operation is made accessible in the cloud.
As mentioned, the observed and analyzed data sources in the
paper are collected at the vineyard operated by the company
13. Jul-PlantaZe located in the municipality of Podgorica in
Montenegro (Fig. 1) and vineyards operated by members of
the Association Srem-Fruska gora located on the FruSka gora
mountain in Serbia (Fig. 2). 13. Jul-PlantaZe, one of the largest
wine producers in South-Eastern Europe, operates a huge
vineyard in a single complex, covering an area of over 2300
ha. The Association Srem-Fruska gora gathered 77 members
that operate around 700 ha of vineyards that are spread through
the FruSka Gora Mountain. The microclimate diversity, from
flat to hilly terrain across the Fruska Gora Mountain in Serbia,
to the specific climate between rocky Montenegrin mountains
provides a better verification of influence that the sensor
measurements have on specific models.

Fig. 1. The map showing the pilot site and agroNET sensor node locations
at 13. Jul-PlantaZe vineyard in Montenegro.

Within the research activities, weather station for monitoring
the environmental parameters was deployed at an area of 50
ha covered with the Vranac variety at the 13 Jul-PlantaZe vine-
yard. The weather station (marked with © in Fig. 1 and 2) is
equipped with sensors for monitoring air temperature, relative
air humidity, precipitation, leaf wetness, solar radiation, and
wind speed (Fig. 3.). In observed 13 Jul-PlantaZe vineyard,
the microclimatic conditions on this location are uniform and
it was considered sufficient to deploy one weather station.
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Fig. 2. Map showing the pilot site and agroNET sensor node locations at
Association Srem vineyards in Serbia.

Fig. 3. Pictures of the sensor nodes installed at the pilot site, from left to
right: a) weather station; b) soil moisture node; c) three types of soil moisture
SEensors.

At Association Srem, weather stations for monitoring
air temperature (Operating temperature range: —40°C to
+125°C, Thermometer error —10°C to +85°C : +/—0.3°C),
air humidity (Precision: 0—80% : 4+2%,81—100% : +3%)
and precipitation (Sensitivity: 1 tip per 0.2 mm. Accuracy:
+5%) were deployed at nine vineyards with calculated leaf
wetness values. Additionally, similar weather stations with
added sensors for measuring leaf wetness are deployed at three
more vineyards and in Montenegro. While the total size of
vineyards is much smaller than in Montenegro deployment,
the actual spatial distribution (approx. 100 km between the
vineyards at far ends) and the terrain configuration demanded
a larger number of weather stations to account for varying
microclimate conditions. The size of areas covered by one
weather station varies in the range 1—100 ha. Weather station
uses LoRa communication for transferring data to the cloud
where data is stored and processed.

The measurements from the weather stations are used as
inputs for prediction model for gray mold (Botritys Cinerea
[4]) disease appearance.

B. Disease prediction model for Botrytis cinerea

Different fungal diseases have a huge influence on grape
production reflecting in the decrease of yield and grape quality.
One of them is grey mold disease, caused by Botrytis cinerea.
In order to avoid disease spreading, fungicides are applied.
The most challenging part of treatment is defining the right

moment for the spraying. The timing depends on the fungal
life cycle, plant development phenophase, environmental con-
ditions, sensitivity of different grape types, production goals,
etc. There are different prediction models that represent a
mathematical relationship between the pathogen life cycle,
plant growing period, and environment conditions calculating
the risk of disease appearance. These models are scientifically
proven and validated by the end users over many years in
different climate regions. However, their interpretation requires
expertise, usually provided by agronomy consultants.

The development of sensors and IoT technology enable
relevant data collection to the model which detect, and provide
a timely reaction for controlling different diseases, minimizing
the farmers’ in-field effort. The model used in this study
[4] quantifies a risk index (RI) used to identify the need
for corrective measures, that triggers notifications, with ade-
quate recommendations included, to farmers. The model takes
into account temperature and humidity conditions which are
specific for observed fungus, or even each phase in fungus
development. The first step in the process, is assessment if the
disease conditions are met based on the humidity parameters.
Then, the RI quantification is done by measuring temperature
over a period of time. The humidity parameters considered
are the relative air humidity, precipitation (amount and/or
duration), and the leaf wetness.

The model works in near real-time, calculating the infection
risk every hour.

The grey mold disease model starts with the calculation of
the infection risks once the following humidity conditions are
met:

o the leaf is moist (LM) for at least 30 minutes during one

hour or

« the relative air humidity (RH) is at least 90% or

o the duration of the rainfall (RF) is at least 30 minutes

during one hour or

o the amount of rainfall (ARF) is greater than 0.4 mm

during one hour.

When at least one of the above conditions is fulfilled,
the model begins calculating the risk of infection. The risk
increases when the temperature ranges from 10°C to 23°C.
However, the further air temperature increase decreases the
disease risks. The model summarizes the risk percentage for
each hour and the system creates instructions when the sum
of the risk percentage reaches predefined threshold levels. If a
humidity condition is not fulfilled in three hours after the risk
calculation was initiated, the risk calculation is reinitiated and
starts from 0O, otherwise calculated sum is updated with new
risk value. If one of the humidity conditions are met during
these 3 hours, the risk percentage is taken from Table I and
aggregated until it reaches 100%.

The used model is graphically presented in the form of
algorithm in Fig. 4.

IV. RESULTS

In this section, the collected data are analyzed to assess how
different qualitative humidity parameters used for a fungal
Botrytis cinerea disease forecast model correlate with the
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TABLE I
RISK INDEX FOR TEMPERATURE ON ONE HOUR BASIS FOR BOTRYTIS
CINEREA
Risk [%] 4 6 8 10 12 14
T [°C] 10 11-12 13 14-16 17-19  20-23
Risk [%] 12 10 8 6 4 2
T[°C] 2426 2729 30 31 32 33

Set aggregated RI=0

Data processing
(1 hour)

<

<
» <
<

If

is recognized by which sensor. The values shown in figures
are averaged monthly values of the measurements given in the
corresponding tables.

M Relative
humidity
m Leaf wetness

Precipitation

No risk values

Fig. 5. Vineyard 1 Fruska gora, Serbia.

(RH>90%
or LM>30 minutes
or RF>30 minutes
or ARF>0.4mm)

Yes
Rl calucaltion
RI aggregation

If
(aggregated

No

If 3 consequtive
times

NO risk, then set

aggregated RI=0

TABLE I

HUMIDITY RESULTS FOR VINEYARD 1 AT FRUSKA GORA MOUNTAIN

RI=100%)

Yes

Set aggregated RI=0

Fig. 4. Algorithm for risk index calculation.

model accuracy to provide information and help in decision
making. In order to understand the influence of these sensors
on the model accuracy it is of interest to analyze the influence
of every single sensor, i.e. relative humidity, rain precipitation,
and leaf wetness on the model.

In order to trigger the model, just one of three moisture mea-
surements (relative air humidity, leaf wetness, precipitation)
must be above the threshold level. Based on the experiment
results in most of observed cases, relative air humidity was the
trigger, i.e. above the threshold level. The other two parameters
triggered the model less often. The leaf wetness measurements
will trigger the model when reach threshold levels and the
other two parameters did not. This is also the case when it
comes to precipitation. Those cases show the influence of
leaf wetness and precipitation sensors on the prediction model
accuracy. As the analysis was done using data gathered from
vineyards from different climatic conditions, better verification
of the proposed model was secured.

The influence of different moisture measurements on trig-
gering of the disease prediction model is shown in Figures (5-
8) and Tables (II-V), respectively for all observed vineyards.
The percentages in the tables give insight into influence of
each parameter on triggering the model, i.e., when the risk

Month Relative humidity = Leaf wetness  Precipitation
April 2020 2.1% 0.7% 0.5%
May 2020 9.9% 4.9% 0.6%
June 2020 31.4% 8.1% 0.5%
July 2020 20.1% 4.3% 0.7%

August 2020 19.6% 2.9% 0.3%
Sept. 2020 9.4% 3.3% 0.2%
m Relative
humidity
m Leaf wetness

Precipitation

No risk values

Fig. 6. Vineyard 2 Fruska gora, Serbia.

TABLE III
HUMIDITY RESULTS FOR VINEYARD 2 AT FRUSKA GORA MOUNTAIN

Month Relative humidity = Leaf wetness  Precipitation
April 2020 1.7% 1.39% 0.8%
May 2020 13% 7.3% 1.1%
June 2020 29.6% 8.9% 0.6%
July 2020 15.5% 3.6% 1,3%

August 2020 14.8% 4.7% 0.3%
Sept. 2020 12.6% 4% 0.4%

Looking at Figures 5-8, it can be noted that the average
monthly values have almost the same behavior for all observed
sites. It is also notable that the relative air humidity sensor
triggers the risk calculation in the most cases (up to 33.9%
of total observed time), the leaf wetness sensor is highly
desirable to increase the number of risk cases (up to 10.5%
of total observed time), while the precipitation sensor could
be an added value, but its contribution is rather limited, up to
1.4%. It is obvious that the measurements highly depend on the
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M Relative
humidity
’ Leaf wetness

Precipitation

No risk values

Fig. 7. Vineyard 3 Fruska gora, Serbia.

TABLE IV
HUMIDITY RESULTS FOR VINEYARD 3 AT FRUSKA GORA MOUNTAIN

Month Relative humidity  Leaf wetness  Precipitation
April 2020 2.2% 1.6% 1.4%
May 2020 6.5% 6.4% 1.1%
June 2020 33.9% 10.5% 0.6%
July 2020 19.8% 3.8% 0.4%

August 2020 20.2% 2.7% 0.3%
Sept. 2020 10.6% 4% 0.1%
M Relative
humidity
Leaf wetness

p

Precipitation

No risk values

Fig. 8. Vineyard Montenegro.

TABLE V
HUMIDITY RESULTS FOR VINEYARD PLANTAZE, MONTENEGRO

Month Relative humidity  Leaf wetness  Precipitation
April 2020 13.1% 2.1% 0.4%
May 2020 11.9% 1.9% 0.4%
June 2020 21.6% 2.8% 1.1%
July 2020 5.4% 2.9% 0.5%

August 2020 9.2% 1.1% 0.6%
Sept. 2020 16.5% 2.1% 0.7%

observed months and vineyard locations, and it is not feasible
to do a straightforward mutual comparison of the results. For
example, the level of relative air humidity and leaf wetness
per month are quite different in the Serbia and Montenegro
vineyards. In Serbia, the relative air humidity is the lowest
in April, while in Montenegro these values are moderate in
April, whereas the relative air humidity is quite lower in July
and August than in Serbia. In Montenegro, the contribution of
the leaf wetness to the algorithm is almost the same throughout
the period under the analysis and is much lower than in Serbia.
In all the observed months, June is the month with the highest
detected relative air humidity periods in both countries. The
observed influence of precipitation on the algorithm is almost
the same in all vineyards.

In the following Table, the results of analysis are presented

for every vineyard, by averaging contributions per sensors
per months per vineyard, and by averaging results from all
vineyards (percentages given in table present the percentage of
the observed time when model is triggered for risk calculation
for monitored sensors, otherwise there is no risk).

TABLE VI
OVERALL AVERAGE VALUES

Month Relative humidity  Leaf wetness Precipitation
Vineyard 1, FG 15.42% 4.03% 0.47%
Vineyard 2, FG 14.53% 4.98% 0.64%
Vineyard 3, FG 15.53% 4.83% 0.65%
Vineyard, MN 12.95% 2.15% 0.62%
All vineyards 14.61% 3.99% 0.59%

Note. FG: Fruska Gora, MN: Montenegro.

The average values for all results are graphically shown as
the pie charts in Fig. 9:

p

M Relative
humidity
Leaf wetness

Precipitation

No risk values

Fig. 9. Overall average values for all vineyards.

The average values are quite similar for vineyards in Serbia
which was expected, since they are in the same area, but still
micro climate conditions could affect monitored values. Also,
the vineyard in Montenegro in average shows very similar
behavior, although it is obviously a dryer area than in the
Serbian vineyards. It is clear that air humidity is of huge
importance for the accuracy of the prediction models (Table
VI). The leaf wetness measurements increase the accuracy
on average by 2.15—4.98% (it is of interest to note that
in the Serbian vineyards this sensor gives more contribution
3.99—4.98% than in Montenegro 2.15%), while precipitation
measurements have the lowest contribution.

V. DISCUSSION

Data gathering, as the first step of the smart agriculture
approach, relies heavily on the accuracy of the data coming
from devices deployed in the field.

For the fungal forecast models, temperature and humidity
are the two contexts used i to predict if disease conditions
are met. When humidity condition is met, risk percentage is
calculated based on the measured temperature. This means, if
there is no humidity condition met, there is no risk. If there
is humidity condition met (section III-B), the risk is higher or
lower, it depends on the temperature. In this study, we have
collected data to assess humidity using relative air humidity,
rain precipitation, and leaf wetness sensors.

One example illustrating the influence of relative air humid-
ity, rain precipitation, and leaf wetness sensors on the model
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is the case of Vineyard 1 in Serbia in June 2020, where the
model was triggered by relative air humidity measurements in
31.4% of the observed time, in 8.1% by leaf wetness sensor
measurements, and finally, in 0.5% by precipitation sensor
measurements. If the relative air humidity sensor is the only
one used, the prediction model will be triggered in 31.4% cases
of the observed time. When the leaf wetness sensor is added,
an additional 8.1% cases when moisture condition is fulfilled
were detected. Lastly, by adding the precipitation sensor 0.5%
more cases were detected. So, for June 2020, the overall cases
for triggering the model were in 31.44+8.140.5 = 40% of the
time, while in 60% of the time there were no risk detected..
It is obvious that vineyards in Fruska gora have quite similar
results (although they are not collocated, but distanced 50 km),
and that the vineyard in Montenegro shows similar behavior,
with a slightly lower relative air humidity.

By averaging all the obtained results, the main conclusion
of the study is that a cheap relative air humidity sensor in
average will trigger risk calculations in 14.61% of the observed
period, a leaf wetness sensor an additional 3.99% of risk
cases, and finally, a precipitation sensor will detect only an
additional 0.59% risk cases (it also means that in 80.81%
of the time (100% —14.61% —3.99% —0.59%) there were no
risk conditions for disease appearance). It is obvious that the
leaf wetness sensor provides more reliable risk detection as an
additional sensor, while contribution of the precipitation sensor
is rather low. On the other hand, these two sensors require
more maintenance than the relative humidity sensor, especially
the precipitation sensor, as it should be checked regularly and
cleaned from leaves and similar plant pieces. Keeping in mind
the low detection accuracy of the precipitation sensor, in the
deployment scenario this sensor could be left out to optimize
the final cost of the installation and service. Activities based
on the analyzed data, can help farmers to optimize production,
better use all of the inputs, increase product quality, predict
potential problems, better plan activities, optimize costs, and
consequently achieve higher profit.

In the conventional method of spraying vines, farmers
mainly use general treatment recommendations created for the
wider region, and use their experience to adapt the recom-
mendations specifically for their plot. The application of the
proposed method increased the precision of determining the
optimal period of treatment and crop protection against dis-
ease, which is an improvement over the conventional method.
Greater precision ensures the timely application of pesticides,
which achieves savings and additionally positively affects the
quality of the product. The use of data on leaf humidity
increases the precision of the analysis of environmental con-
ditions for the development of the disease, and it is desirable
to use this sensor. The use of the proposed model reduced the
use of pesticides by up to 20%, which resulted in a reduction
in costs and an increase in crop quality.

VI. CONCLUSIONS

The precision agriculture concept is being increasingly
adopted by large and medium size farmers. With the further
reduction of the technology costs, it is expected that the

smaller farmers will start adopting digital solutions on a larger
scale.

The concrete and documented benefits achieved by intro-
duction of digital solutions will further accelerate adoption.
To maximize the benefits, it is important to optimize the
amount of technology needed (e.g, the number and the type
of sensors), i.e. to avoid deploying technological components
(hardware or software) which do not bring additional value to
farmers.

To that end, we have the outcomes of a study focusing
on definition of a minimal set of sensors required to reli-
ably predict the risk of appearance of the Botrytis cinerea
disease. The impact of temperature, relative air humidity, rain
precipitation, and leaf wetness measurements on the accuracy
of the forecast modelling was evaluated. Validation was done
using deployments in vineyards in two regions with different
climate conditions and different terrain configurations. The
study showed that using low-cost sensors for decision support
was more accurate when a relative air humidity sensor was
used: on average 14.61% risk values were detected; leaf
wetness sensor detected additional 3.99% risk cases, and
finally, the precipitation sensor detected only an additional
0.59% risk cases (in the observed period the risk was detected
in 19.19% (14.61% + 3.99%0.59%) of the time). Application
of the proposed model reduced the use of pesticides up to 20%
which consequently reduced costs and increased crop quality.
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