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This paper investigates the covert communications via spectrum allocations in a cellular-enabled unmanned aerial vehicle (UAV)
network consisting of a base station (BS), UAVs, ground users (GUs), and a warden, where warden attempts to detect the transmission
from a target GU to a UAV receiver. We formulate the spectrum allocation as an optimization problem with the constraints of
covertness performance requirement and the qualities of service (QoS) of cellular communications. This is a nonlinear and nonconvex
problem, which is generally challenging to be solved. Thus, we propose a deep reinforcement learning (DRL) approach to solve
it. Under such an approach, we first model the multi-agent DRL environment in such networks. Then we define the state, action,
reward and interaction mechanism of the DRL environment. Finally, a DRL algorithm is presented for learning the optimal policy
of spectrum allocation.

Index Terms—Covert communication, cellular-enabled UAV network, spectrum allocation, deep reinforcement learning, multi-
agent reinforcement learning.

I. INTRODUCTION

CEllular-enabled UAV network, which enables UAVs to
resue spectrum resource of cellular networks for commu-

nications, has been considered as an effective way to improve
the UAV network performance [1]. UAVs have appealing
features of high mobility, low cost and flexible deployment
and are widely used in many scenarios, such as smart traf-
fic control, surveillance, delivery services and so on. To
achieve variable and complicated application scenes, UAVs
need to interact with other devices by radio, and traditional
UAV communication is point-to-point communication with
an unlicensed spectrum. To overcome this defect, we can
use the cellular spectrum resource to realize long-distance
communications in the UAV network with the assistant of
cellular networks. Cellular-enabled UAV networks have been
envisioned as a critical component in the sixth generation (6G)
wireless networks.

Unfortunately, the wireless channel characteristics of broad-
cast and openness pose unprecedented security and privacy
threats on transmitting sensitive information, especially finan-
cial and military data in the presence of adversaries. To protect
the information transmission security, the most commonly
used security methods rely on upper-layer cryptographic tech-
niques, which require high computational complexity and may
not be suitable for cellular-enabled UAV networks due to large
energy consumption. Meanwhile, these techniques may also be
infeasible with the appearance of powerful computing devices.
Covert communication, which is a promising technique to
hide the existence of wireless transmission, can provide strong
security protection for cellular-enabled UAV networks.

Manuscript received December 16, 2021; revised August 23, 2022. Corre-
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Different from encrypted communication which protects the
data of communications, the purpose of covert communication
is to hide the communication signal. The adversaries need
to figure out whether the communication occurs, other than
crack the encrypted information. After the bench-marking
work [2] proposed a square root law with Gaussian noise
channels for covert communication, extensive works have been
dedicated to the studies of the covert performances in various
scenarios. Some works focus on the performance of single-hop
covert communication such as [3] and [4]. On the other hand,
researchers analyze the covertness and covert rate of multi-
hop covert communications in [5] and [6]. Meanwhile, some
other works pay attention to the covert performance under
UAV assisted networks such as [7], [8] and [9]. The works
above put forward some schemes for covert performance
improvement like jamming and relaying, but they all focus on
simple scenarios with a pair of source and destination nodes
with/without relay nodes.

We notice that all the works above take traditional methods
in performance analysis, such as probability theory, math-
ematical statistics and mathematical optimization methods.
However, these methods can not be applied to the dynamic
and changing environment. Besides, the derivations of such
methods are very complex in scenarios with a large number
of communicators and links. Remarkably, the capability of
machine learning (ML) to learn from training data and unveil
hidden patterns has driven the recent trend of using ML for
UAV networks, especially the DRL methods. In fact, the DRL
algorithms have been widely used for communication and net-
working analysis, especially for resource allocation problems
[10]. Much research studies the performance enhancement
problems by finding the optimal resource allocation scheme
in the UAV network, such as [11], [12] and [13].

Although we can improve the UAV network performance by
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reusing the spectrum resource of cellular networks, spectrum
reuse can cause co-channel interference (CCI), which deterio-
rates the original communication quality in cellular networks.
Besides, interference and noise also have a great influence
on the performance of covert communication. Therefore, the
spectrum allocation is of great importance to enhance the
covert performance of UAV networks. To address this issue,
we design a multi-agent DRL framework for the spectrum
allocation optimization problem. The main contributions of
this paper are summarized as follows:

• In this paper, we consider a cellular-enabled UAV net-
work consisting of a base station (BS), UAVs, GUs, and
a warden. UAVs and GUs are communicating with BS
in cellular links, while a GU is sending covert messages
to a UAV in the covert link. Due to the scarcity of spec-
trum resources, different links reuse the same spectrum
resource blocks (RBs) for communications. Our goal is
to optimize the spectrum allocation for maximizing the
covert rate subject to the covert requirement and the QoS
of cellular links. Therefore we further design a multi-
agent DRL model to address this problem.

• Based on the model, we propose a multi-agent DRL
algorithm to learn the optimal spectrum allocation. To my
best knowledge, this is the first work using multi-agent
DRL algorithms to solve the spectrum allocation prob-
lem in such network scenarios. Compared to traditional
optimization methods like mathematical analysis, DRL
methods can be applied to such a complicated network
and learn the hidden patterns in the environment.

• We program and implement our proposed DRL frame-
work based on PyTorch. Simulation results show the
impact of some key system parameters on the covert rate
performance of such network.

The rest of this paper is arranged as follows. Section II
introduces some related works about covert communication
performance analysis in detail. In Section III, we present
what covert communication is, show the network scenario
and formulate our optimization problem. In section IV, the
multi-agent DRL framework is proposed to solve the spectrum
allocation problem. Section V presents the simulation results
and corresponding analysis. At last, Section VI gives the
conclusion of this paper.

II. RELATED WORKS

Past related works about covert communication performance
analysis can be divided into two categories: one-hop covert
communication and multi-hop covert communication. The
former means the covert signal is transmitted directly from
the transmitter to the receiver, while the latter means the
covert signal passes through other nodes (e.g., relays) before
it reaches the receiver. As for one-hop situations, Jiang et al.
[3] studied the covert performance enhancement under the
device-to-device (D2D) underlaying cellular network. They
used nonorthogonal multiple access (NOMA), an emerging
technique used for throughput optimization problems such as
[14] and [15], to improve covert throughput. In [4], Zhou
et al. applied successive convex approximation techniques to

solve the UAV trajectory and transmission power optimization
problem. They proved that the method performed well in the
problem and improved the covert performance between the
UAV and the receiver.

Regarding the multi-hop scenarios, Wang et al. [5] designed
a covert link with multiple relay nodes, which supporting
long-distance covert communications. The physical layer se-
curity (PLS) was also considered combining with covert
performance. They derived the closed-form expressions of the
optimal transmit power, transmission rates and secrecy rates
with a fixed number of hops. In [6], Azadeh Sheikholeslami
et al. studied the covert performance and PLS in the middle-
scale network. The covert rate and delay time was contrasted
with a different number of relays. They also made performance
comparisons between a shared key and independent keys used
in relays.

Due to the extensive application of UAVs, scenarios of
covert communication under UAV networks are becoming
increasingly popular, like [4]. Yan et al. [7] researched the
joint optimization problem of transmission power and UAV
height when a UAV is sending the covert signal to a ground
user. In [8], Yan et al. also proposed two heuristic approaches
analyzing the covert performance under the same scenario.
In that paper, they subdivided the scenario into six different
situations and made a further analysis and comparison. In [9],
the UAV transmitter is sending confidential data to multiple
ground users and trying to hide the communication with the
location uncertainty of warden. Jiang et al. proposed a block
coordinate descent (BCD) method based iterative algorithm to
optimize the UAV trajectory and transmission power for covert
performance improvement.

Notice that none of the works above takes ML methods, we
investigate and find there are seldom few papers to analyze the
performance of covert communication using ML. Liao et al.
[16] research a power allocation problem for a cooperative
cognitive covert communication system, where the relay sec-
ondary transmitter covertly sends private information under the
supervision of the primary transmitter. The secondary trans-
mitter uses the forwarding signal sent to the primary receiver
to hide the covert signal. Authors use a deep learning (DL)
method called generative adversarial network (GAN) [17] to
find the optimal allocation scheme for covert performance
optimization. Under the proposed framework, the generator
adaptively generates the power allocation solution for covert
communication, while the discriminator judges whether to
transmit the covert signal or not. In [18], Kim et al. consider a
clever eavesdropper using a DL classifier to help the detection.
They show that signals with different modulation types can
effectively hide the covert messages, but they do not use ML
methods for the covert performance enhancement at Alice.

Compared to all works mentioned above, we propose a
DRL-based framework for the spectrum allocation optimiza-
tion problem in the cellular-enabled UAV network, which is a
novel idea that has never been considered in any past work.
The DRL framework will be illustrated in Section IV.
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Fig. 1: Network model.

III. SYSTEM MODEL

In this section, we firstly introduce the network model and
channel model in our work. Then the detection mechanism at
warden is illustrated. Finally, we give the formulation of the
optimization problem in this paper.

A. Network Model

As illustrated in Fig. 1, we consider a cellular-enabled UAV
network consisting of a warden, M UAVs and N GUs within
the coverage of BS. More specifically, each GU is a point
uniformly and randomly distributed in the circle with the BS as
the center and a fixed radius on the ground, and each UAV is a
random point uniformly distributed in the intersection space of
the airspace within a certain altitude range and the sphere with
the BS as the center and a fixed radius. The value of radius
and altitude range are listed in Table I. There is a fixed GU
(Alice) sending covert signals to a UAV (Bob), while warden
tries to detect the transmission from Alice to Bob. Alice can
only have one covert link and Bob may change in each time
step. Considering a limited number K of orthogonal spectrum
RBs, each UAV/GU can reuse an RB to communicate with
BS in cellular links, and the covert link also reuses one RB.

Due to the frequency reuse, the co-channel interference
(CCI) will be generated between the links using the same RB
simultaneously. It will result in the performance degradation of
wireless communications. But to some extent, the interference
is conducive to enhancing covert communication performance.
In Fig. 1, one UAV uses the same RB of frequency f1 as Alice,
thus generating CCI to the warden (also to Bob). And the GU
using another RB of frequency f2 does not generate CCI to
warden. A fundamental issue is how to allocate these RBs for
achieving the optimal covert performance (e.g., covert rate)
in cellular-enabled UAV networks. Therefore, we plan to for-
mulate it as a nonlinear and nonconvex optimization problem,
which is challenging to be solved. We will propose a novel
theoretical framework to solve this challenging optimization
problem based on a DRL algorithm.

B. Channel Model

We consider all channels of cellular and covert links as
Rayleigh fading channels. The channel gain between nodes
i and j is denoted as gi,j , here nodes include the BS, the
warden, UAVs and GUs. Similarly, di,j denotes the distance
between nodes i and j. Then the pass loss is expressed as
d−α
i,j , where α is the pass-loss exponent. Thus, the channel

gain is an random variable subject to exponential distribution
with mean d−α

i,j . That is, gi,j ∼ E(d−α
i,j ),∀i, j ∈ U, i ̸= j,

where U denotes the set of all nodes and α is usually set to
4 in typical urban macrocell environment.

C. Detection at warden

Private and critical information travels in the communication
network every second. To keep our privacy secret, encrypted
communication is used in most protocols. The plaintext is
converted to ciphertext by a password, which means the eaves-
dropper can not get the content directly. However, sometimes
the eavesdropper just cares about whether the communication
occurs like military cases, and encrypted communication can
not avoid it. To address this problem, the emerging concept
of covert communication is proposed. Assuming that Alice
sends messages to Bob, and warden is detecting from the radio
environment. warden judges whether Alice is transmitting or
not based on the radio power received.

For warden, the detection process is hypothesis testing.
H0 denotes that Alice is transmitting covert signals, and H1

denotes the opposite. The judgment is made by whether the
received power PW is smaller than a threshold τ or not.

That is, PW

H1

≷
H0

τ . warden makes mistakes when he gives

wrong judgments, and we use PFA denotes the probability
of rejecting H0 when H0 is true, and PMD denotes the
probability of rejecting H1 when H1 is true. Then warden’s
error probability is Perr = PFA + PMD. For Alice, her
communication is covert if she can make Perr > 1 − ϵ for
any ϵ > 0. This is the definition of covertness performance.
And covert rate means the data rate of covert communication.

D. Problem Formulation

In this paper, we aim to solve the spectrum allocation
optimization problem in the cellular-enabled UAV network.
The objective of the spectrum allocation is to maximize
the covert rate of covert communication while obeying the
covertness performance requirement and guaranteeing the QoS
of cellular communications. We use ai,j denoting the index
of RB used in the link between node i and j. ai,j = 0
if the link is not active. Notice that we allocate RBs to
newly created cellular and covert links only, we use L =
{(i, j)|i and j are both nodes of each new link} to represent
the set of new links in a time step. Therefore the spectrum
allocation can be defined as a = {ai,j |(i, j) ∈ L}. Generally,
we set the minimal signal to interference plus noise ratio
(SINR) threshold as the lowest QoS requirement. For each
link, SINR ξ = S

I+N , where S is the signal power, I is the
interference of the link and N is the noise power (in other
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parts of this paper, N denotes the number of GUs). Then the
problem is formulated as follows:

argmax
a∗∈A

Cco

s.t. Perr > 1− ϵ, ∀ϵ > 0

ξce ≥ ξmin, for each cellular link

In the above formulas, Cco = W log (1 + ξco) denotes the
covert rate and W denotes the bandwidth of an RB. A is
the set of all possible spectrum allocations and a∗ is the
optimal spectrum allocation of A with the maximal Cco. We
use ξ denoting the SINR of a link, thus ξco and ξce denotes
the SINR of the covert link and cellular link respectively.
ξmin means the minimal SINR threshold for cellular links.
As illustrated before, the covertness performance requirement
can be presented as Perr > 1− ϵ for any ϵ > 0. In our work,
Perr is the rate of the number of detection errors and the
total number of detections at warden, which are measured by
simulation experiments using Monte Carlo methods. With the
model learning, Perr will meet the covertness requirement.

For the link between nodes i and j, the SINR of the link
is calculated by ξi,j =

Pigi,j
Ii,j+σ2

j
where Pi is the transmission

power of node i, gi,j is the channel gain of current link, Ii,j
is the interference received by node j and σ2

j is a constant
representing the received noise power at node j. If the link
is a cellular link, Pi = Pce, and Pi = Pco for a covert link.
The interference is the sum of received power at node j of all
other signals using the same RB as node i.

IV. MULTI-AGENT DEEP REINFORCEMENT LEARNING
BASED SPECTRUM ALLOCATION FRAMEWORK

In this section, we list and compare some popular algorithms
in DRL and multi-agent reinforcement learning first. Then we
give the multi-agent environment model under the network
scenario. The proposed DRL framework based on the model
is illustrated at last.

A. Deep Reinforcement Learning
Reinforcement learning (RL) is an emerging method in

artificial intelligence (AI). The agent (learning entity) will
explore and understand what the best action is by taking
possible actions and getting the corresponding reward from
the environment. Nevertheless, as for problems with high
dimensions of state space and action space, the computational
complexity of RL becomes unacceptably huge. It’s often called
”the Curse of Dimensionality”. Therefore deep reinforcement
learning (DRL) is proposed to dispel the curse. In RL, the
agent selects action by comparing the recorded values of all
actions under the given state, while the amount of records is
huge with high dimension problems. Thus the neuron network
(NN) is introduced to replace the value table of actions
and states in RL due to its strong presentation ability. In
this way, we can just input the state into NNs and get the
values of actions, thus avoiding the problems caused by high
dimensional space.

Deep Q-Network (DQN) is the first DRL method that
integrates DL and RL into the novel DRL framework. It per-
forms well in Atari games with large discrete state space and

limited discrete action space. Later, deep deterministic policy
gradient (DDPG) is declared to deal with the continuous action
space. Notice that although there are many related works, no
DRL method has a good and steady performance with high
dimensional discrete action space, which is a problem in our
work. Therefore we can not simply apply a single-agent DRL
algorithm in this paper.

B. Multi-agent Reinforcement Learning

In traditional RL algorithms, there is usually a single agent
interacting with the environment. We assume the environment
is static, that is, the state transition probabilities with actions
are fixed. Thus the optimal policy for the agent will not
change while learning, which ensures the convergence and
effectiveness of RL algorithms.

However, we often face cooperative or competitive tasks
with one or more participants, such as prisoner’s dilemma. In
such tasks, the maximization of individual interests and col-
lective interests are often contradictory. Besides, one agent’s
action may change the state of the environment, resulting in a
non-static environment for another agent. To solve these prob-
lems, multi-agent reinforcement learning (MARL) is proposed.
MARL is suitable for the complicated tasks stated above,
aiming to make each agent learn with the consideration of
other agents’ behaviors. By this method, the algorithm can
reach the maximal collective interests, not personal ones.

QMIX is a MARL algorithm based on value approximation
[19]. In QMIX, each agent use DQN for learning, while
there is a mixing network approximating the Q value of all
agents’ observations and their actions. Thus the algorithm can
learn a good policy for all agents. Besides, multi-agent deep
deterministic policy gradient (MADDPG) is another famous
MARL algorithm that relying on the policy gradient [20]. The
algorithm applies the deterministic policy and demonstrates
that the multi-agent environment is stable when the actions
of all agents are determined. The performance is proved by
simulations.

C. Modeling of Multi-Agent Environment

Since the action space of spectrum allocation is discrete,
MADDPG does not perform well in our scenario. Gumbel
softmax is a choice, but it is not always effective. As for
QMIX, it needs Q-values of all agents in each time step and
approximates the Q-value of global state and actions. Because
the cellular link may not transmit information and thus need
no RB, one cellular agent may not choose action and output
Q-value, thus makes QMIX unavailable.

Therefore, we propose a multi-agent DRL framework for
our problem. In our scenario, each cellular link and the covert
link play the role of an agent. We assume that each UAV
and GU has only one cellular link communicating with BS,
and only the target GU has a covert link communicating
with a random UAV in different time steps. Cellular links
transmit messages with a preconfigured probability, and the
covert link transmits data all the time. Each agent has an
evaluation net and a target net for learning, as shown in Fig.
2. In each time step, all agents observe the current state of the
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Fig. 2: Multi-agent DRL framework.

environment and take their actions (i.e., spectrum allocation)
independently. By interacting with the environment, each agent
gets the reward reflecting the value of action and state.

To learn the optimal policy on the system level, we take the
used RB and interference of all agents in the last time step
as a part of the NN input. Besides, we will give the average
reward of all agents to each one after they take actions. Then
the transitions of the states, actions, rewards and the following
states are stored in the experience replay buffer. After the
buffer is full, agents start the learning process in each time
step based on the mini-batch of historical transitions. When
the loss value of a DQN converges or the maximum number
of episodes is reached, the learning process of the agent is
terminated.

The definitions of the state, the action and the reward in the
DRL framework are given as follows:

State: In each time step, the state of the environment
consists of the global state information and the local state
information. The global information includes the RB used and
the interference received for each agent in a single time step,
and the positions of all UAVs and GUs. Since we assume
all UAVs and GUs are static, the position of all nodes are
fixed during simulations. Location information is known to all
nodes before simulations. The information of the RB used and
interference received in last time step is known to BS and BS
can send it to all nodes before the beginning of a time step.
Notice that agents do not know where warden is. The local
information for each agent contains the indexes, the equivalent
of node ID, of the transmitter and the receiver in a time step.
The local information of a node is assumed to be known only
to the node itself.

Action: The action of an agent in a time step is the behavior
of choosing an RB for its communication to the responding
receiver. Since RBs are less than the number of links, spectrum
reusing is inevitable. The actions of all agents constitute the

spectrum allocation of the algorithm in a certain time slot. The
objective of the framework is to give the optimal allocation of
all agents to achieve the maximum covert rate with constraints.

Reward: According to the actions (i.e., spectrum allocation)
given, we allocate the RBs to all links and then make a
certain number of simulations (e.g., a thousand times). For
each cellular link, we calculate the SINR in each simulation.
The reward of agent is given based on the following rules:

1. If the covert communication is detected by warden, the
agent receives a fixed minus reward (e.g., -10).

2. If the covert communication is not detected, but the SINR
of the cellular link does not satisfy the threshold requirement,
the agent receives a smaller fixed minus reward (e.g., -1).

3. If the covert communication is not detected and the
cellular link satisfies the SINR threshold requirement, the
reward is the value of covert rate. A higher covert rate means
a higher reward.

For the covert link, we calculate the covert rate in each sim-
ulation. The reward of agent is given based on the following
rules:

1. If the covert communication is detected by warden, the
agent receives a fixed minus reward (e.g., -10).

2. If the covert communication is not detected, the reward
is the value of covert rate.

D. Proposed DRL Algorithm

The proposed DRL algorithm is illustrated in Algorithm 1.

E. Structure of Deep Neuron Network

Based on the definitions in IV-C , the structure of the deep
neuron network (DNN) for each agent is shown in Fig. 3.
We use a four-layer DNN structure which has two hidden
layers inside. There are (M +N)l +K neurons in the input
layer, where M and N are defined in Section III-A. l is the
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information dimension of each agent, which includes the state
in the last step st−1, the action in the last step at−1 and the
state in the current step st. The output of the DNN is the
spectrum allocation for the current agent, and the size of the
output layer is the number of RBs K. The dimension of each
hidden layer is the square root of the dimension product of the
input layer and output layer, which is

√
((M +N)l +K)K

here. All layers are fully connected.
Algorithm 1: proposed DRL algorithm for spectrum
allocation

Input: M , N , K
Output: trained DNN models

1 Generate the locations of UAVs, GUs and warden
randomly and evenly;

2 For cellular links of all agents, create a trained DQN
and a target DQN with weights θ and θ′ respectively,
initialize θ randomly, let θ′ = θ;

3 For the covert link of Alice, create a trained DQN and
a target DQN with weights θA and θ′A, initialize θA
randomly, let θ′A = θA;

4 Let p = 1, t = 1, initialize other parameters of the
environment and algorithm;

5 for p < pmax do
6 Reset the environment;
7 for t < tmax do
8 Generate link connection requests randomly for

all links;
9 Define Ut as the set of the covert link and the

cellular links taking communication in current
time step;

10 for each agent in Ut do
11 Get state info st;
12 Input st−1, at−1 and st into the trained

DQN;
13 Get action at;
14 end
15 Calculate the covert performance;
16 Get transferred state after taking actions st+1;
17 for each agent in Ut do
18 Get reward rt;
19 Store transition (st, at, rt, st+1) into the

experience buffer;
20 Model learning;
21 end
22 Update the global state information;
23 end
24 if covertness is satisfied and the covert rate

difference is small enough then
25 break;
26 end
27 end

V. NUMERICAL RESULTS

In order to verify the performance of the proposed frame-
work, we implement the framework based on PyTorch. All
UAVs and GUs are within the coverage of BS. The channels of
all links are assumed to be Rayleigh fading channels, and their

Fig. 3: Structure of the neuron network for each agent.

channel gains are random variables subject to an exponential
distribution. All links expire and are released after one time
step, thus the occupied RBs are released too. In each time step,
the algorithm procedure consists of observing state, choosing
actions, interacting with the environment, getting rewards and
learning.

As for the detection threshold, warden will try to take the
best threshold to make his detection as accurate as possible.
Since Alice and Bob do not know the detection mechanisms of
warden, we assume that warden knows the value of the optimal
threshold all the time, which is the worst situation for Alice. To
achieve this assumption, the program computes the received
signal power at warden based on the spectrum allocation given
by DNNs. Then different thresholds within a valid range will
be applied to calculate the corresponding error probabilities.
By comparing the probabilities, the optimal threshold with the
minimal error probability will be picked and used for warden’s
detection in the current time step. Only after warden makes
his judgment, the framework can calculate the rewards of all
agents.

For the DRL algorithm, we configure the exploration prob-
ability and the learning rate to 0.1. The discount factor is 0.9.
The size of the experience replay buffer for each agent is set
to 1000, and the mini-batch size is 32. Notice that in many
DL-based works, the learning rate and exploration probability
are becoming smaller and smaller with the training process
for more effective learning. We have tried this trick in our
program, but it seems does not make obvious improvement,
thus we do not apply the trick in simulations. As for the
communication environment, major parameters are listed in
Table I below.

Due to the randomness of channel gains and agents’ be-
haviors, covert rate of a single time step shows an uncertain
fluctuation, which makes a difficult numerical analysis. Thus,
we analyze the average of maximum covert rate in massive
simulations instead after the convergence of the algorithm.

The relation between the maximum covert rate and the
number of UAVs M is shown in Fig. 4 where K is fixed
and M = N . The positions of all roles are immutable during
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TABLE I: Communication Parameters

Parameter name Value
BS coverage radius 300m
UAV height 50∼120m
Carrier frequency 2GHz
RB bandwidth 150KHz
Minimal cellular communication SINR -5dB
Path-loss exponent 4
Thermal noise density -174dBm/Hz
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Fig. 4: Maximum covert rate with different M when
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the learning process. pce denotes the probability of a cellular
link transmitting messages. As illustrated in this figure, we
find the covert rate decreases with the increase of M and N
when pce is fixed. This is easy to understand, because with
the increase of the number of links, the spectrum resources
become more and more scarce, which will increase the CCI
of the covert link. According to Shannon formula, SINR
decreases as the interference increases, thus the upper limit
of covert rate decreases. Besides, we find that covert rate does

4 5 6 7 8 9 10
Number of UAVs (and GUs)

2

4

6

8

10

12

M
ax

im
um

 c
ov

er
t r

at
e 

(b
its

/u
ni

t b
an

dw
id

th
)

Maximum covert rate with different M where M = N, K = 10
pce = 1.0
pce = 0.8

Fig. 5: Maximum covert rate with different K when
M = N = 5.
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Fig. 6: Maximum covert rate with different ϵ when
M = N = 5 and K = 8.

not show obvious changes and patterns with different values
of pce when M , N and K are the same.

Fig. 5 shows the relation between the maximum covert rate
and the number of RBs K when M is fixed and M = N . Here
we set M = N = 5, thus we have 10 cellular links in total and
one covert link as the warden’s target. We can find that the
covert rate shows an irregular fluctuation with the changing
parameter K. The deviation of fluctuation is small compared
with the absolute value of maximum covert rate. Theoretically,
more spectrum resources mean less interference, thus the data
rate should increase. We think the reason why the covert rate
does not increase is that the interference can not decrease to
meet the covertness performance requirement, although the
number of RBs increases. Thus the patterns between the covert
rate and K is not obvious. Similarly with Fig. 4, the patterns
of covert rate and pce is not clear too in Fig. 5. We will make
a further analysis of these patterns in future work.

Fig. 6 shows the value of maximum covert rate with
different ϵ after algorithm convergence when M = N = 5 and
K = 8. We can see that maximum covert rate increases while
ϵ increases because higher covertness requirement means a
lower covert rate. In addition, covert rate rises slower when ϵ
becomes bigger.

Loss is an index used to measure whether the model is
trained to an acceptable state, and can be used to judge whether
the model converges. In Pytorch, we can get the loss of
NN model by library functions easily. The mean loss values
of an agent corresponding to a cellular link and the agent
corresponding to the covert link in all episodes are shown in
Fig. 7. Regarding to the cellular agent, the mean loss value
does not change obviously in about the first 5 episodes. Then
the value decreases with shakes while models learning, and
it goes down very quickly at first, then the descent speed
becomes slower and slower. In the last 10 episodes, the mean
loss value is relatively stable which means the model achieves
convergence. The trend of the mean loss value with the model
of the covert link is very similar to the model of the cellular
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Fig. 7: Mean loss of NNs for cellular link and covert link
when M = N = 5 and K = 8.

link.
Since the spectrum allocation scheme is the objective in

this paper, we assume the power of all communicators is
fixed. This may be the reason why the framework is not
very effective in some cases, because signal power plays an
important role in covert communication. The action space of
multi-agent spectrum allocation is huge and discrete, which
makes the solution space not continuous. Even only a single
different RB allocation of one agent can cause an apparent
difference on covert performance. This will influence the
convergence of DNN and affect the simulation results.

VI. CONCLUSION AND FUTURE WORK

In this paper, we explore the spectrum allocation problem
of covert performance optimization in the cellular-enabled
UAV network. The objective is to give the optimal spectrum
allocation with maximum covert rate, while preventing the
covert signal from being detected and guaranteeing the QoS
of cellular communications. To address this problem, we
propose a multi-agent DRL framework to learn the hidden
patterns about the spectrum allocation and solve the nonconvex
problem.

We program the proposed framework based on Pytorch
to verify its performance by experiments. Simulation results
show that our framework can effectively solve the problem,
but there are some cases in which the framework can not
converge quickly and well, and even can not give an effective
allocation. This is the problem we need to solve in the future.
We will check and find out how to improve the framework
performance in the future, such as the environment parameters,
DRL algorithms, and so on.

Furthermore, considering the problem stated in the last
paragraph in Section V, we plan to take into account the factor
of variable power in the following work, which will make the
system much more complicated. The DRL algorithm would
also become much harder to design. Regardless of these future
works, this paper can still provide some ideas and models for
other works using ML, especially DRL methods.
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