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Due to the monetary value of Bitcoin, the most influential digital cryptocurrency in the world, Bitcoin has naturally become a
valuable target of attacks, resulting in the emergence of many attack strategies on it. Among those attack strategies, selfish mining
and block withholding attacks are two typical ones and attackers can obtain higher revenues under certain conditions than with an
honest mining strategy. However, the combination of them will be a new type and more serious attack, which has not been analyzed
in depth. In this paper, we propose GenSelfHolding, a general combined attack model with one selfish mining pool and random
multiple honest pools on Bitcoin. Based on Markov chain, a general state transition graph and a general state distribution probability
are presented to describe the internal features of our model. A general principle is then provided to calculate the attacker’s revenue.
In addition, we give a detailed proof of the unique stable distribution of state transition probabilities. Such proof is an essential
prerequisite for us to further present stable attacker revenue expressions under two specific scenarios, the GenSelfHolding model
with two/three honest mining pools. Simulation results validate that the revenues of the attacker in these two specific models can
reach up to 40% higher than those of classic selfish attackers in some cases.

Index Terms—Bitcoin, Selfish mining attack, Block withholding attack, Combined attack, Markov chain.

I. INTRODUCTION

Decentralized cryptocurrencies such as Bitcoin [1][2],
Ethereum, Monero, and other altcoins have attracted the
public’s attention [3]. In April 2013, the Economist claimed
that Bitcoin, regarded as “digital gold”, has the potential to
construct the future of payment and finance [4]. Based on
cryptography and other secure techniques, Bitcoin has been
the world’s most popular electronic payment system due to its
anonymity and decentralization [5] [6]. On Aug. 28, 2021, the
value of one Bitcoin was $49,049.00

The underlying technology behind Bitcoin is blockchain,
which is regarded as the trust machine by the Economist
or in the industry [7]. It can build the peer-to-peer trust
relationship among a set of nodes that distrust each other
without the involvement of a trusted third party [8]. In the
process of Bitcoin consensus namely Proof of Work (PoW),
these network nodes are also termed as miners participant
in the competition for the accounting right by solving a
computational puzzle [9]. Any node that first gets the solution
can package the transactions into a block and broadcast it to
others. Once verified, it would be rewarded a certain amount
of Bitcoin. This process for creating a new block is considered
to be mining.

To implement a decentralized financial system, no central-
ized organization is allowed to exist in the Bitcoin protocol.
However, Bitcoin is far from completely decentralized in
practice [10]. Due to the limitation of a single mining node’s
computation power, the probability of successful mining is
low, and the revenue is unstable. As a result, miners are
inclined to unite into a mining pool for stable and higher
revenues [11]. Thus, all miners in a pool will cooperate to
mine and share revenue [12]. To a certain extent, this behavior
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violates the decentralization of Bitcoin and results in vulner-
ability [13] [14]. Besides undermining Bitcoin’s principle of
decentralization, mining pools has also been regarded as one
of attack strategies’ prerequisites.

Since cryptocurrencies such as Bitcoin are always accom-
panied by monetary value, they naturally become valuable
attack targets. Among existing attack strategies [15] [16]
against the Bitcoin protocol, selfish mining [17] [18] and block
withholding [19] [20] are the two typical ones. Theoretically,
an honest miner’s revenue in the Bitcoin system is proportional
to its computing power. However, contrast to an honest miner,
higher revenues can be obtained by a dishonest miner with
the selfish mining strategy. In a selfish mining attack, the
fairness of the Bitcoin system will be attacked through a
specific broadcasting block time strategy. After analyzing the
characteristics of block generation, the authors in [17] utilize
a state transition model to represent the selfish mining process
of the Bitcoin network, deduce the probability of states, then
derive the expected revenue of the attacker. Analysis results
of the selfish mining strategy show that the computing power
will gradually centralize, leading to selfish miners’ domination
of the entire Bitcoin network.

Another typical attack strategy in the Bitcoin protocol is the
block withholding attack [21]. The attacking pool with a block
withholding strategy takes out some computing power, whose
action is somewhat similar to a “spy”, in an honest pool. The
spy-acting computing power will return its part of the revenue
to the attacking pool. The authors of [22] model this attack
strategy and give a detailed analysis of the attack revenue.
As stated in [22], the total revenue of the pool will not be
reduce by this strategy, whereas the honest pool will obtain
a less revenue than deserved according to the proportion of
computing power.

An attacker in the Bitcoin network may try any strategy to
obtain more revenues. If a combined attack can return more
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profits, the attacker tends to choose it. However, the combina-
tion of them is not sufficiently considered. Our previous work
Ref. [23] have present a combined attack model “SelfHolding”
by selfish mining and block withholding strategies. However,
the random number of block withholding pools and thorough
theoretical analysis of the attackers’ revenue has not been
considered. In this work, we rethink the combination of
above two attack strategies in more depth and for a more
general scenario, and propose a combined attack model, named
GenSelfHolding, in which an attacking pool attacks multiple
random honest pools. Theoretical analysis and experiments
show that the attacker with our GenSelfHolding strategy can
obtain up to 40% higher revenues than those with the general
selfish mining strategy, within a certain range of computing
power. The contribution of our work is as follows:

(1) We propose a general combined attack model, named
GenSelfHolding with random multiple honest pools, on the
original selfish mining attack and block withholding attack.
Based on the architectural diagram of the general model, we
provide the state transition diagram of the general model, and
deduce the general state calculation expression and the general
analysis principle of the attacker’s revenue.

(2) To our knowledge, we are the first to give a detailed
proof of the irreducibility, aperiodicity and state separability
of the Markov chain in the state transition diagram. Based
on those three properties, we can conclude that there is
a unique stable distribution of state transition probabilities
in that diagram, which is an essential prerequisite before
deducing stable attacker revenue expressions.

(3)We present the attacker revenue expressions of our
proposed model under two scenarios: two honest mining
pools and three honest mining pools. Through the theoretical
analysis and simulations, the attacker’s practical revenues are
in accordance with theoretical ones.

(4) We give detailed analyses of the influence of different
factors, such as the attacker’s entire computing power and the
allocation proportion of computing power among attackers,
on the attacker’s revenues under different models. Moreover,
revenue differences between the GenSelfHolding models under
different scenarios are compared, with emphasis on changes
in attackers’ profitability.

This paper is organized as follows. In Section II, we briefly
introduce the related works. In Section III, we propose our
general combined attack model GenSelfHolding in detail. In
Section IV and Section V, we verify our proposed model under
two specific scenarios: the GenSelfHolding model with two
honest mining pools and the GenSelfHolding model with three
honest mining pools, and evaluate the factors affecting the
attacker’s revenue. Finally, we conclude this paper in Section
VI.

II. RELATED WORKS

Cryptocurrencies, especially Bitcoin, have been a great suc-
cess and attack strategies on Bitcoin have attracted researchers’
interest [24]. We sketchily divide existing attack strategies into
two categories, namely attacks from the Bitcoin backbone
network [25] [26] and attacks on the Bitcoin protocol itself
[27].

In attacks from the underlying network, DDoS attacks
[28] and eclipse attacks [29] are the two most-typical attack
strategies against the Bitcoin network. DDoS attacks are a
common attack that exists in the Bitcoin and other networks
[30]. The zombies, controlled by the attacker, send the victim
a considerable volume of meaningless information, and halt
the victim from carrying out normal network communication.
The other classic attack strategy against the Bitcoin backbone
network is the eclipse attack strategy, in which the attacker can
control the communication channel between the victim and the
Bitcoin nodes. As a result, the attacker’s blockchain can easily
become the longest chain and will be accepted by the victim,
causing an increase in the profits of the attacker under certain
conditions. EREBUS attack[31], an Eclipse-type attack, can
partition and control the Bitcoin network through abundant
network address resources between autonomous systems.

Besides, attacks are more threatening on the Bitcoin pro-
tocol itself than on the underlying network. Selfish mining
attacks, block withholding attacks, FAW attacks and stubborn
mining attacks are four classic attack strategies against the
Bitcoin protocol. These four types of attack strategies are
on the basis of the existence of mining pools. In the selfish
mining attack, according to the difference between the public
blockchain and his/her own private blockchain, the attacking
pool or will not adopt different strategies to publish her
newly discovered blocks. The stubborn mining, another typical
Bitcoin mining attack, expands the strategic space of the
selfish mining strategy. When the private chain of the stubborn
mining attacker fails to lead in the race, that attacker will still
mining on her private chain [32]. A stubborn mining pool at a
disadvantage, under certain conditions, can turn into victory in
the end. In a block withholding attack[22], the attacking pool
takes out some computing power, which acts as a “spy”, in an
honest pool. The spy-acting computing power will return its
part of the revenue to the attacking pool, leading to an increase
in the attacker’s revenue. Authors in [33] provide a detailed
quantitative analysis of the monetary incentive that an attacker
can earn by adopting a block withholding attack strategy, and
they present a “sponsored block withholding attack” strategy
that can effectively counter a block withholding attack in any
mining pool. The FAW strategy [34] is a cooperative attacking
approach. In the FAW strategy, some computing power is
required to enter the victim mining pool and perform a block
withholding attack. When the honest miner discovers a new
block, attackers outside the victim mining pool will fork the
blockchain. Through cooperation between the outside attackers
and the inside “spy”, the attacker can obtain higher revenues
than by honest mining.

In one of our previous works Ref. [23], a combined attack
model “SelfHolding” by selfish mining and block withholding
strategies is proposed, in which we deduce and validate the
revenue of the attacker under one selfish mining pool and
limited honest pools with block withholding attackers. How-
ever, SelfHolding does not support random multiple pools with
block withholding attackers. More over, theoretical analysis of
the revenue calculation is missing, especially the proof that a
stable distribution can be achieved by the Markov chain of
the SelfHolding model with two honest mining pools, which
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is the foundation of revenue calculation.
In addition, in all the previously proposed models, only a

small number of mining pools are considered. In this paper,
we rethink the combination of above two attack strategies in
more depth and for a more general scenario, and present a
combined model GenSelfHolding under one selfish mining
pool and random multiple honest mining pools with block
withholding attackers. Moreover, we give a detail proof that
the Markov chain of the SelfHolding model with two/three
honest mining pools owns a stable distribution, and then
validate the attacker revenues of our GenSelfHolding model
under those two scenarios.

III. GENERAL MODEL OVERVIEW

In this section, we present the model of the GenSelfHold-
ing attack strategy and provide the general state probability
calculation formula and the principle of the attacker’s revenue
calculation. In this paper, we assume that authors have profes-
sional knowledge about Bitcoin mining process, and classic
Bitcoin attack strategies, including the selfish mining attack
strategy [17] and block withholding attack strategy [35].

A. Miners and Pools

Generally, the Bitcoin network contains a lot of miners
with her own computing power, most of which are united
into mining pools. In our GenSelfHolding attack model, there
exists three kinds of miners, sketched as follows:

1) A selfish mining pool: The pool performs mining under
the selfish mining strategy (i.e., lie in wait attack in [36]),
which attackers maintain two blockchains: a public chain
synchronizing with other Bitcoin users, and a private chain
which contains new legal blocks are discovered and selectively
published by the attacker for obtaining a higher revenue.
Due to the private chain general leading the public chain,
the selfish mining pool can increase her revenue with honest
miners wasting their computing power. There is only one
selfish mining pool in the GenSelfHolding attack model, with
computing power α(0 < α < 1).

2) Block withholding miners: In an honest pool, after miners
discovering a new block and reporting to the pool manager,
the pool manager will record the workload proof and share
the revenues to all the miners. However, pretending to be an
unlucky miner in a mining pool, the block witholding attacker
in it just discards her new discovered blocks, which reduces
the total revenue of the pool. It is noted that, in this paper,
block withholding attack is same to the sabotage attack in [36].

In the GenSelfHolding attack model, the block withholding
attackers’ total computing power is denoted as τ(0 < τ < 1).

3) Honest mining pools: In the GenSelfHolding model,
without realizing the existence of attacking, honest mining
pools are the victims of block withholding and selfish mining
attacks. We use β(0 < β < 1) to denote the sum of the honest
mining pools’ computing power in the GenSelfHolding model.

4) The relationship of miners: the sum of miners’ computing
powers is 1.

α+ β + τ = 1. (1)

The following relationship is satisfied by the above three
characters, otherwise, the attacker can control the entire Bit-
coin network, resulting in meaningless revenue analysis.

α+ τ < β. (2)

B. General Model

By exploiting the advantages of the selfish mining attack
and block withholding attack, we propose a general combined
attack model, GenSelfHolding, on one attacking pool and
random multiple honest pools.

In Figure 1, as described earlier, the selfish mining pool’s
computing power is α. In addition, there are n honest mining
pools, whose calculation power is expressed in terms of
βk(1 ≤ k ≤ n). At the same time, there is one block
withholding attacker in each honest mining pool. Each block
withholding attacker attacks the honest mining pool where
it locates. Reducing the revenue of honest miners, the block
withholding attackers return the shared revenue to the selfish
mining pool.

C. Representation of State

The general attack model can be abstracted as a Markov
chain. Required by the Markov chain, we discuss the definition
of state, state space, and transition probability.

• State definition: A state presents blockchains’ length
information and the blockchain fork information. Since
there are several selfish mining pools besides of honest
miners, a state is a tuple. Currently, there are two ways
of expressing states: one regards the blockchain length
difference information between the selfish attackers’ pri-
vate chains and the honest miners’ public chain, and
a superscript blockchain fork information as a state.
The other way is to express the honest miner’s public
chain length, the attacker’s private chain lengths, and a
superscript blockchain fork information as a tuple [37].
In our combined attack model, the first method is used
to describe the state. Since there exist multiple honest
mining pools in our model, our state also appears as a
tuple. For example, the state (1, 1, ..., 1) indicates that the
attackers’ private chains overlength the honest miner’s
public chain by 1; the blockchain is not in a forked state
at this time. The state (0, 0, ..., 0)fork represents that the
attackers’ private chains are consistent with the honest
miner’s public chain in length. However, the public chain
and the private chain are in a forked state.

• State transition probability: While a new block is
created/generated, the Markov chain will move from one
state to another, which is an uncertain event for different
start and end states. When establishing a Markov chain,
it is necessary to give a transition probability between
states. In our general model, the probability of transition
between states is directly associated to the computing
power of the attacker or of the honest mining pools.
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Fig. 1: GenSelfHolding model architecture diagram

D. General State Transition Diagram

We regard the general model as a Markov chain model and
express the Markov chain as a state transition graph. Because
the number of honest mining pools differs in different models,
it cannot be represented by a single state; therefore we use
a unified state (0, 0, ..., 0)fork to represent the state of an
attacker when the private chain of the attacker and the public
chain of the honest mining pool are forked. The general state
transition diagram is shown in Figure 2.

In Figure 2, the state transferring from state (0, 0, 0.., 0)
to state (1, 1, 1.., 1) happens when the attacker finds a new
block; thus the probability of this state transferring is α, the
computing power of the attacker. The probability of state
(0, 0, 0.., 0)fork transferring to state (0, 0, 0.., 0) is denoted
as pfork. At this point, due to the emergence of new blocks,
revenues of the attacking pool and honest mining pools appear,
so the value of pfork is critical to calculating the revenues of
the attacker and honest pools under different specific scenarios.

Since self-loop states is allowed, our general state transition
diagram of the GenSelfHolding model becomes a nonperiodic
Markov chain. In the classic selfish mining strategy, the
attacker’s state transition diagram is a periodic Markov chain.
In our GenSelfHolding model, the nonperiodic Markov chain
is more likely to reach a stable state, which provides a certain
extent of convenience when calculating state probabilities.

E. Calculation of State Probability

Because the revenue of the attacker and the honest mining
pool is always generated when the state transitions, if you
want to compute the attacker’s expected revenue, you must
first deduce the attacker’s distribution probability. When the
Markov chain model runs to a steady state, for each state, the
probability of leaving that state is the same as the probability
of entering it. Therefore, we can deduce the probability
expression of each state. The specific expression is shown
below.



pforkp((0, 0, ..., 0)fork) + (
∑n

i=1 βi)p(k+1,k+1,...,k+1) =
αp(0, 0, ..., 0) + (

∑n
i=1 βi)p(k+1,k+1,...,k+1)

(
∑n

i=1 βi + τi)p(k+1,k+1,...,k+1)p((0, 0, 0..., 0)
fork)+

αp((0, 0, 0..., 0)fork) = pforkp((0, 0, ..., 0)fork)+
(
∑n

i=1 βi + τi)

p(k+1,k+1,...,k+1)p((0, 0, 0..., 0)
fork)

αp(0, 0, ..., 0) + (
∑n

i=1 βi)p(2, 2, ..., 2) = αp(1, 1, ..., 1)
+(

∑n
i=1 βi)p(1, 1, ..., 1)

∀k ≥ 2 : αp(k,k,..k) = (
∑n

i=1 βi)p(k+1,k+1,...,k+1)
(3)

In Equation (3), p((0, 0, ..., 0)fork) denotes the probability
of the Markov chain being in state (0, 0, ..., 0)fork after the
Markov chain reaches a stable state, and pfork represents the
probability of transition from state (0, 0, ..., 0)fork to state
(0, 0, ..., 0). Other states can be deduced by analogy. The first
formula in Equation (3) comes from the state flow balance
of state (0, 0, 0, ..., 0)fork. The second and third formulas
imply the state flow balance of state (1, 1, 1, ..., 1) and state
(0, 0, 0, ..., 0), respectively. The fourth formula expresses the
state flow balance of state (2, 2, 2, ..., 2) and the succeeding
states.

The above formulas in Equation (3) can be simplified as
follows:



pforkp((0, 0, ..., 0)fork) = αp(0, 0, ..., 0)

(
∑n

i=1 βi)p(1, 1, ..., 1) = pforkp((0, 0, ..., 0)fork)

αp(0, 0, ..., 0) + (
∑n

i=1 βi)p(2, 2, ..., 2) = αp(1, 1, ..., 1)
+(

∑n
i=1 βi)p(1, 1, ..., 1)

∀k ≥ 2 : αp(k,k,..k) = (
∑n

i=1 βi)p(k+1,k+1,...,k+1)
(4)

Since the sum of all states’ probabilities is 1, the probability
of each state can be calculated.
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Fig. 2: General state transition diagram

F. Calculation Principle of Attacker’s Revenue

Unlike the general state transition probability calculation,
the calculation of the attacker’s revenue cannot be expressed as
a general formula, because the attacker’s revenue is generated
between specific state transitions with different transition prob-
abilities, under GenSelfholiding models with different num-
bers of honest pools. Therefore, the analysis of the attacker’s
revenue must be specifically performed under each model.
However, the calculation principle of the attacker’s revenue
can be given: when new blocks are generated, the number of
new blocks belonging to the attack or the honest mining pools
can be counted, and then the revenue of the attacker can be
calculated.

IV. GENSELFHOLDING ATTACK MODEL WITH
TWO HONEST POOLS

Considering that more than one mining pool may be at-
tacked in reality, in this section, we present a specific attack
model GenSelfHolding with two honest mining pools. We will
verify the proposed GenSelfHolding attack model under this
specific scenario and deduce the attacker’s revenue.

It is noted that we have presented the revenue of the
GenSelfHolding attack model with two honest pools in our
previous work Ref. [23]. However, in Ref. [23], we do not pro-
vide the proof that the Markov chain of the SelfHolding model
with two honest mining pools has a stable distribution, which
is the foundation of revenue calculation. To guarantee the
self-explanation property of this paper, we simply introduce
the attack model and the revenue calculation of the attacker
in this scenario, and then demonstrate revenue results with
more details. Part of introduction sentences may be with high
similarity to those in Ref. [23].

A. Attack Model

Figure 3 shows a specific GenSelfHolding model when the
attacker attacks two honest mining pools. Pools A and B are
two honest mining pools with computing power β1and β2,
respectively. Pool C is a selfish mining pool with computing
power α. D and E are two block withholding attackers with

Fig. 3: Architecture of the GenSelfHolding model with two
honest pools

computing power τ1 and τ2, which respectively conduct block
withholding attacks on A and B, and return the shared revenues
to C. Meanwhile, C carries out selfish mining attacks on A and
B, also resulting in the reduction of A’s and B’s revenues. In
our GenSelfHolding attack model with two honest pools, γ1
and γ2 are used to denote the splitting coefficients of the two
honest mining pools when the blockchain forks.

Based on the classic selfish mining strategy, a selfish mining
pool’s actions are actually triggered by honest mining pools’
actions. Since two honest pools are contained in this model,
thus there exists two honest roles triggering selfish mining.

B. GenSelfHolding Attack Model with two honest pools

The GenSelfHolding attack model with two honest pools
can be illustrated as a Markov chain model.

• State space: Due to the existence of two honest mining
pools, a two-tuples and superscript are used to represent
the state: (La, Lb)

fork. La, Lb respectively denote the
length difference between the private chain of the attacker
and the public chain of the first/second honest miner.
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Based on the statement in Section III-C, (0, 0)
′′

implies
that the second honest pool’s public chain is forked by the
private chain. While (0, 0) means that no fork exists at
this time with the private chain consistent with the public
chain.

• State transition diagram: The state transition diagram
of the GenSelfHolding attack model with two honest
pools is shown in Figure 4. The GenSelfHolding attack
model takes two cases of blockchain forking into account,
leading to the complexity of the state transition diagram.

p(0,0)′ is used to denote the probability of the private
blockchain detaching from the first honest pool. p(1,1) means
the probability that the length difference between the private
chain and the public chain is 1. As a result, the state proba-
bilities satisfy the following equation.

(β1 + β2)p(1,1) + αp(1,1) = αp(0,0)
(β1 + β2)p(2,2) = αp(1,1)

p(0,0)′ =
β1

α+ β1 + β2
p(1,1)

p(0,0)′′ =
β2

α+ β1 + β2
p(1,1)

∀k ≥ 2 : αp(k,k) = (β1 + β2)p(k+1,k+1)

(5)

For Equation (5), the first formula implies the state flow
balance of state (1, 1). The second, third and fourth formulas
are derived from the flow balance of state (2, 2), state (0, 0)

′

and state (0, 0)
′′

, respectively. The last one indicates the flow
balance of succeeding states.

Thus, we can obtain an expression for p(1,1).

p(1,1) =
α(β1 + β2 − a)(β1 + β2 + a)

2α(β1 + β2)2 + (β1 + β2 − α)(β1 + β2 + α)2

Since other states’ probabilities can be deduced from p(1,1).
Thus, the probabilities of all states can be obtained.

C. Model Analysis

Based on the general state transition graph in Fig. 1, we can
construct a state transition graph, as shown in Figure 4. Before
we provide the revenues of attackers and honest pools, we need
to prove that there is a stable distribution in the state transition
graph. We will now prove some mathematical properties of the
Markov chain in Figure 4.

Lemma 1. The Markov chain of the GenSelfHolding model
with two honest mining pools is an irreducible Markov chain.

Proof. Using state (2, 2) as the cut point, Figure 4 is divided
into two state sets. We use C1 and C2 to denote these two
sets of states.

C1 = {(0, 0), (0, 0)
′
, (0, 0)

′′
, (1, 1)}

C2 = {(k, k)|k >= 3}
(6)

For state (2, 2), states to its left are a finite number of states and
are ring-shaped, so the elements in set C1 and state (2,2) are
all interlinked. According to the random process convention,
we have

∃n, p(n)(i,i)(2,2) > 0. (7)

For the state to the right of the cut point, assuming that state
(2, 2) continues to shift to the right, then,

∃m, p
(m)
(2,2)(j,j) ≥ α(j−2) > 0. (8)

Similarly, it can be proved that the states on the right side of
the cut point can reach state (2,2), so state (2,2) and the states
on the right side are in an interworking relationship. From the
above process, it can be directly proved that the states con-
tained in the set C1 and the set C2 belong to the interworking
relationship. For any two states {x, y : x ∈ C1, y ∈ C2}, the
following expression can be obtained according to the C-K
equation.

∃(m,n),p[(x, x)(y, y)]m+n =
∑

k∈N+

p[(x, x)(k, k)]p[(k, k)(y, y)].

(9)
Substituting formula(7) and formula(8), we have the follow-

ing expression.

∃(m,n),p[(x, x)(y, y)]m+n ≥ p[(x, x)(2, 2)]mp[(2, 2)(y, y)]n.
(10)

This expression proves that set C1 can be transferred to set
C2. Similarly, the reverse state transition is also provable. As a
result, there is only one connected domain in the Markov chain
abstracted by the simple GenSelfHolding model, and all states
in this connected domain are bidirectionally interconnected.

Lemma 2. The Markov chain of the GenSelfHolding model
with two honest mining pools is an aperiodic Markov chain.

Proof. According to the definition of periodic Markov chain,
it is necessary to prove that for any i ∈ S, there is a set of
positive integers {n|n >= 1; p

(n)
(i,i)(i,i) > 0} where the smallest

n is the period of the Markov chain. For the Markov chain
shown in Figure 4, for each state, there is the following state
transition probability expression.

p
(n)
(i,i)(i,i) ≥ τn. (11)

For any i ∈ S, there is a set of positive integers {n|n =

1; p
(n)
(i,i)(i,i) >= τ > 0}. It can be proved that the Markov

chain shown in Figure 4 is a Markov chain with a period of
1. According to the definition of nonperiodic Markov chain,
the Markov chain abstracted by this GenSelfHolding model
shown in Figure 4 is an aperiodic Markov chain.

Lemma 3. The Markov chain of the GenSelfHolding model
with two honest mining pools is a Markov chain with state
separability.

Proof. Since the succeeding lemmas will split the state transi-
tion diagram of this GenSelfHolding model, divisibility of the
state transition diagram needs to be proved. For state (2,2),
we need to discuss the state split of its recurrence proof. We
use E2(T ) to denote the expected return time for state (2,2)
and can deduce the following expression from the Markov
property.
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Fig. 4: State transition diagrams under the GenSelfHolding attack model with two honest pools

E(2,2)(T ) = E(2,2)(Tx1=(2,2)) + E(2,2)(Tx1=(3,3))

+ E(2,2)(Tx1=(0,0))

= p[(2, 2)(2, 2)] + p[(2, 2)(3, 3)]E(3,3)(T )

+ p[(2, 2)(0, 0)]E(0,0)(T )

= 1 + p[(2, 2)(3, 3)]E(3,3)(T ) + p[(2, 2)(0, 0)]E(0,0)(T ).
(12)

As seen from expression 12, the limited return time of state
(2,2) depends on the limited return time of passing state (0,0)
and passing state (3,3). Thus, for state (2,2), the limitation of
its return time can be proved by splitting the state space.

Lemma 4. All states in the Markov chain of the GenSelfHold-
ing model with two honest mining pools are normal reverse
states.

Proof. Since the divisibility of the state transition graph has
been proved, the normal reversion of the transition graph can
be investigated by means of the split of the transition graph.
Examining the state transition of state (2,2), the chain can
be divided into left and right parts. State (2,2) shifts to the
left, and its shape is a finite state aperiodic Markov chain.
According to the Markov chain finite normal return theorem
[38], this chain must be a normal Markov chain; thus the time
from state (2,2) to state (2,2) is a finite constant.

When state (2, 2) transitions to the left, it is a finite state and
aperiodic Markov chain. To prove that the return time of state
(2, 2) is limited, one only needs to prove that the return time
of the transition to the right is limited. Hypothesis methods
can be used to substitute verification. We use β instead of∑2

i=1 βi; we then have

v[(k, k)] = (1− α

β
)(
α

β
)k−2, (13)

where v(k) is based on the stochastic process convention
and represents the stable distribution probability of the Markov
chain in state k. The following uses the substitution method
to verify the correctness of the conjecture. The correctness of
formula 13 is verified below.∑

k∈S

v[(k, k)]p[(k, k)(l, l)] = v[(j, j)]. (14)

For j = 2

v[(2, 2)]p[(2, 2)(2, 2)] + v[(3, 3)]p[(3, 3)(2, 2)]

= (1− α

β
)(1− α) + (1− α

β
)(
α

β
)β

= 1− α

β
.

(15)

For j > 2

v[(j − 1), (j − 1)]p[(j − 1, j − 1)(j, j)] + v[(j, j)]p[(j, j)(j, j)]

+ v[(j + 1, j + 1)]p[(j + 1, j + 1)(j, j)]

= (1− α

β
)(
α

β
)k−2.

(16)
The above shows that both Equation (15) and Equation (16)

have stable distributions; therefore state (2,2) is the normal
return state. According to the Markov chain connectivity
theorem [38], all states in the Markov chain shown in figure
4 are normal return states.

Theorem 1. The Markov chain of the GenSelfHolding model
with two honest mining pools has a stable distribution.

Proof. Based on Markov’s theorem [38] that a single con-
nected domain, non-periodic, and normally return Markov
chain must have a unique stable distribution, we can prove
the theorem 1.

D. Expected Revenues

After we prove that the Markov chain of the GenSelfHold-
ing model with two honest mining pools has a stable distribu-
tion, then it is meaningful to calculate the expected revenues of
the attackers and honest pools. According to the state transition
diagram in Figure 4, the expression of each state can be
deduced. Equation (17) is the expected revenue expression of
the attackers and honest mining pools at this time. In Equation
(17), Rhonesttemp1 and Rhonest1 means the temporary revenue
and the final revenue of honest mining pool A, respectively.
Rattacktemp and Rattacker are the temporary revenue and the
final revenue of the attacker, respectively. We take the first
formula Rhonesttemp1 as an example to show the meaning of
the revenue expression.
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When the attacker’s private chain forks with an honest
mining pool’s public chain and a new block is discovered in
this honest mining pool, then this honest mining pool obtains
the revenues of the two blocks. The first item 2p(0,0)′β1(1−γ1)
in the fist formula Rhonesttemp1 reflects the obtained revenue
in this situation.

When the attacker’s private chain forks with an honest
mining pool’s public chain and another honest mining pool
simultaneously discovers a new block, assuming that the new
block is linked on the public chain, then the two honest mining
pools obtain the revenues of a block. Conversely, if the new
block link is on the private chain, then the attacker and the
honest mining pool that discovered the new block each obtain
a block of revenue. Items 2, 3, 4, and 5 of the first formula
Rhonesttemp1 reflect these situations.

When the public and private chains are not forked and a
new block is discovered by an honest mining pool, the honest
mining pool obtains the revenues of a new block. The last item
in the first formula Rhonesttemp1 corresponds to this situation.



Rhonesttemp1 = 2p(0,0)′β1(1− γ1) + p(0,0)′β2(1− γ2)
+p(0,0)′′β1(1− γ1) + p(0,0)′′β1γ1 + p(0,0)′β1γ1 + p(0,0)β1

Rhonesttemp2 = p(0,0)β2 + p(0,0)′β2γ2 + p(0,0)′β2(1− γ2)
+p(0,0)′′β1(1− γ1) + p(0,0)′′β2γ2 + 2p(0,0)′′β2(1− γ2)

Rattacktemp = 2p(2,2)(β1 + β2) + p(i>2,i>2)(β1 + β2)
+2p(0,0)′′α+ 2p(0, 0)′α+ p(0,0)′′β2γ2 + p(0,0)′′β1γ1
+p(0,0)′β1γ1 + p(0,0)′β2γ2

Rattacker

= Rattacktemp +Rhonesttemp1
τ1

β1 + τ1
+Rhonesttemp2

τ2

β2 + τ2

Rhonest1 = Rhonesttemp1
β1

β1 + τ1
Rhonest2 = Rhonesttemp2

β2

β2 + τ2
(17)

Here we dismiss the revenue result illustration of the at-
tacker in this scenario, and readers can refer to Ref. [23] for
a detailed revenue result illustration of the attacker. We also
present some revenue results under this scenario comparing to
the GenSelfHolding model with three honest pools in the next
subsection.

E. Comparing with Classic Selfish Mining Model and Block
Withholding Model

We try to determine the factors that influence the revenue
of attackers under the GenSelfHolding attack model with two
honest mining pools, the block withholding attack and the
classic selfish mining. The default parameters are as follows:
the splitting coefficients of honest miners are all set to 0.5, the
total computing power of attackers is 0.2 and the computing
power of selfish mining attacking is same to that of block
withholding attacking, which means the computing power ratio
between selfish mining and block withholding attacking is also
0.5.

Below, we compare the impact of the three models on the
attacker’s earnings on different aspects. In Figure 5 and the
other evaluation figures, “sim” means the simulation results
of revenue, and others represent the theoretical revenues. It is

easy to find that the simulation revenues are nearly equal to
the theoretical revenues, which verifies the correctness of the
model analysis and revenue calculation.

• Attacker’s total power: Firstly, we compare the revenues
of attackers under three models on the attacker’s total
power.

Fig. 5: The changes in the attacker’s power under the
GenSelfHolding attack model with two honest pools

In Figure 5, the GenSelfHolding model with two honest
pools has higher revenues than the classic selfish mining
model with small calculation power because at this time,
the attacker’s calculation power is too small to effectively
perform selfish mining attacks. However, when the power
of the attacker reaches a certain scale, the selfish mining
attack will obtain higher revenues.

Fig. 6: The changes in attacker’s power distribution under
the GenSelfHolding attack model with two honest pools

• Attacker’s power distribution: As depicted by Figure
6, when we fix the total power of the attacker and
change the power ratio of the attacker’s selfish mining
and block withholding attacks, the attacker’s revenue will
also change significantly. In Figure 6, we fix the total
power of the attacker to 0.1, and the GenSelfHolding
attacker’s revenue decreases as the attacker’s power ratio
increases. The classic selfish mining strategy does not
include other attack strategies, so the attacker’s revenues
remain unchanged.

• Splitting coefficient of honest mining pools: As shown
in Figure 7, when we fix other parameters and separately
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change the splitting coefficient of the honest mining pools
[39], the change in the attacker’s revenue is also very
different under the classic selfish mining model and the
GenSelfHolding model with two honest mining pools.
When the splitting coefficient of the honest mining pool
becomes larger, the attacker’s revenue will rise in either
case, but when there are multiple honest mining pools,
the attacker will have a greater probability of obtaining
at least one block, leading to an increase in the revenue
of the attacker.

Fig. 7: The change in the Honest mining pool splitting
coefficient under the GenSelfHolding model with two honest

pools

V. GENSELFHOLDING ATTACK MODEL WITH
THREE HONEST POOLS

In this section, we describe a specific GenSelfHolding attack
scenario when a malicious mining pool attacks three honest
mining pools.

A. Attack Model

Fig. 8: Architecture of the GenSelfHolding attack model
with three honest pools

Figure 8 shows the GenSelfHolding attack model with three
honest mining pools. In this model, there exists a selfish
mining pool denoted by D, and three honest mining pools
marked A, B and C. There also are three block withholding
attackers denoted E, F and G, which respectively conduct a
block withholding attack on A, B and C, and return the shared
revenues to D. Meanwhile, D carries out selfish mining attacks
on A, B and C, which reduce the revenues of A, B and C,
respectively.

B. State Space

Similar to the scenario in last section, the GenSelfHolding
attack model with three honest pools can be expressed as
a Markov chain model. We simply expand our state space
because we have only one more honest mining pool compared
to the GenSelfHolding model with two honest mining pools.
In this situation, we use triples to represent the state. An
additional fork state (0, 0, 0)′′′ indicates the state of the third
honest pool’s public chain when it forks with the attacker’s
private chain.

C. State Transition Diagram

As shown in Figure 9, compared to the GenSelfHolding
attack model in the last section, the GenSelfHolding model
with three honest pools has only one more state (0, 0, 0)′′′ to
indicate that the public chain of the third honest mining pool
has forked the attacker’s private chain. There are two states
(0, 0, 0) in the state transition diagram, which makes our state
transition diagram simpler. In fact, these two states are actually
the same, when computing the probability of each state and
deducing the attacker’s revenue.

D. Revenue

In the GenSelfHolding model with three honest pools, the
attacker’s revenue expression is more complicated than that of
the GenSelfHolding model with two honest pools. However,
compared to the GenSelfHolding model with two honest pools,
there is nearly no difference in how to calculate the attacker’s
revenue. From an intuitive point of view, because of more
competition among honest mining pools, the profit of the
attacker in this model is greater than in the GenSelfHolding
model with two honest pools because when the public chain
and the private chain are forked, the probability that the
attacker can obtain at least one block becomes larger.

E. Model Analysis

For the GenSelfHolding model with three honest pools, the
analysis is also carried out from two aspects: probability cal-
culation and attacker revenue calculation. Before our analysis,
we need to prove the stable distribution of the Markov chain
of the GenSelfHolding model with three honest mining pools.

With a proof similar to Theorem 1, we have the following
theorem:

Theorem 2. The Markov chain of the GenSelfHolding model
with three honest mining pools has a stable distribution.
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Fig. 9: State transition diagram under the GenSelfHolding attack model with three honest pools

F. Probability Calculation

Under the GenSelfHolding model with three honest pools,
the method of calculating each state in the state transition
diagram is similar to that of the GenSelfHolding model
with two honest pools. When we set some variables in the
expression to 0, the calculation expression of each state will
be the same as that of the GenSelfHolding model with two
honest pools. For the sake of brevity, we use p1, p2 and p3
to indicate the corresponding state transition probabilities in
Figure 9. We then have



(α+ β1 + β2 + β3)p(0,0,0)′ = β1p(1,1,1)

(α+ β1 + β2 + β3)p(0,0,0)′′ = β2p(1,1,1)

(α+ β1 + β2 + β3)p(0,0,0)′′′ = β3p(1,1,1)

(β1 + β2 + β3)p(1,1,1) + αp(1,1,1) = αp(0,0,0)

αp(1,1,1) = (β1 + β2 + β3)p(2,2,2)

(α+ β1 + β2 + β3)(p(0,0,0)′ + p(0,0,0)′′ + p(0,0,0)′′′ )+

(β1 + β2 + β3)p(2,2,2) = αp(0,0,0)

∀k ≥ 2 : αp(k,k,k) = (β1 + β2 + β3)p(k+1,k+1,k+1).
(18)

In Equation (18), the first, second, and third formulas are
derived from the state flow balance of state (0, 0, 0)

′
, state

(0, 0, 0)
′′

and state (0, 0, 0)
′′′

, respectively. The fourth and fifth
formulas imply the state flow balance of state (1, 1, 1) and state
(2, 2, 2), respectively. The sixth represents the flow balance of
state (0, 0, 0). The seven formulas are derived from the state
flow balance of state k(k ≥ 2). We can deduce the distribution
probability p(1,1,1), which is the probability of state (1, 1, 1)

in Figure 9.
1

p(1,1,1)
=

β1 + β2 + β3

α+ β1 + β2 + β3
+

α+ β1 + β2 + β3

α

+
β1 + β2 + β3

β1 + β2 + β3 − α
.

(19)
Concerning the probability distribution of other states, we

use the state p(1,1,1) to calculate. Thereafter, we can compute
the probability expressions of p1, p2 and p3.



p1 = p(0,0,0)′α+ p(0,0,0)′β1γ1 + p(0,0,0)′β1(1− γ1)
+p(0,0,0)′β2γ2 + p(0,0,0)′β2(1− β2) + p(0,0,0)′β3γ3
+p(0,0,0)′β3(1− γ3)
p2 = p(0,0,0)′α+ p(0,0,0)′′β1γ1 + p(0,0,0)′′β1(1− γ1)
+p(0,0,0)′′β2γ2 + p(0,0,0)′′β2(1− β2) + p(0,0,0)′′β3γ3
+p(0,0,0)′′β3(1− γ3)
p3 = p(0,0,0)′′′α+ p(0,0,0)′′′β1γ1 + p(0,0,0)′′′β1(1− γ1)
+p(0,0,0)′′′β2γ2 + p(0,0,0)′′′β2(1− β2) + p(0,0,0)′′′β3γ3
+p(0,0,0)′′′β3(1− γ3).

(20)
In Equation (20), the first formula is to compute the tran-

sition probability of state (0, 0, 0)
′

to state (0, 0, 0). The next
two formulas are the transition probabilities of state (0, 0, 0)

′

to state (0, 0, 0) and of state (0, 0, 0)
′′′

to state (0, 0, 0).

G. Attacker’s Revenue Calculation

Under this model, the attacker’s revenue calculation is more
complicated than that of the GenSelfHolding model with
two honest pools. With the addition of an honest mining
pool, when the blockchain is forked, the attacker’s revenue
calculation needs to be careful to distinguish between different
situations. The attacker’s specific revenue can be deduced as
Equation 21.
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Rhonesttemp1 = p(0,0,0)β1 + 2p(0,0,0)′β1(1− γ1)
+p(0,0,0)′β1γ1 + p(0,0,0)′β2(1− γ2) + p(0,0,0)′(1− γ3)
+p(0,0,0)′′β1γ1 + p(0,0,0)′′β1(1− γ1) + p(0,0,0)′′′β1γ1
+p(0,0,0)′′′β1(1− γ1)

Rhonesttemp2 = p(0,0,0)β2 + 2p(0,0,0)′′β2(1− γ2)
+p(0,0,0)′′β2γ2 + p(0,0,0)′′β1(1− γ1) + p(0,0,0)′′β3(1− γ3)
+p(0,0,0)′β2γ2 + p(0,0,0)′β2(1− γ2) + p(0,0,0)′′′β2γ2
+p(0,0,0)′′β2(1− γ2)

Rhonesttemp3 = p(0,0,0)β3 + 2p(0,0,0)′′′β3(1− γ3)
+p(0,0,0)′′′β3γ3 + p(0,0,0)′′′β1(1− γ1)
+p(0,0,0)′′′β2(1− γ2) + p(0,0,0)′β3(1− γ3)
+p(0,0,0)′β3γ3 + p(0,0,0)′′β3(1− γ3) + p(0,0,0)′′β3γ3

Rtmpa = 2p(2,2,2)(β1 + β2 + β3) + p(k,k,k)(β1 + β2 + β3)
+2αp(0,0,0)′ + p(0,0,0)′β1γ1 + p(0,0,0)′β2γ2
+p(0,0,0)′β3γ3 + 2αp(0,0,0)′′ + p(0,0,0)′′β2γ2
+p(0,0,0)′′β3γ3 + p(0,0,0)′′β1γ1 + 2αp(0,0,0)′′′
+p(0,0,0)′′′β3γ3 + p(0,0,0)′′′β1γ1 + p(0,0,0)′′′β2γ2

Rhonest1 = Rhonesttemp1(
β1

τ1 + β1
)

Rhonest2 = Rhonesttemp2(
β2

τ2 + β2
)

Rhonest3 = Rhonesttemp3(
β3

τ3 + β3
)

Rattacker = Rtmpa +Rhonesttemp1(
β1

β1 + τ1
)

+Rhonesttemp2(
β2

β2 + τ2
) +Rhonesttemp3(

β3

β3 + τ3
).

(21)
Equation (21) is really hard to understand, but the principles

of its calculation are not difficult. We next take Rhonesttemp1

as an example to explain, and other expressions can be
understood in a similar way.

When the attacker’s private chain does not fork with the
honest miner’s public chain, and an honest miner discovers a
new block, then the honest mining pool can obtain a revenue
of the new block. The first item p(0,0,0)β1 of Rhonesttemp1 in
Equation (21) reflects this scenario.

When the private chain of the attacker forks with the public
chain of an honest mining pool, and the honest miner, who
accepts the public chain as a legal blockchain, discovers a
new block, then the honest mining pool obtains the revenue of
the two blocks. On the other hand, if an honest mining pool
accepting the private chain as the legal blockchain discover
new blocks, then both the attacker and the honest mining pool
obtains the revenue of one block. Items 2, 3, 4, and 5 of
Rhonesttemp1 reflect these possibilities.

When the public chain of other honest mining pools and the
private chain of the attacker are forked, other mining pools
may choose to accept the honest mining pool’s public chain
as a legal blockchain. At this time, each of the two honest
mining pools obtains one block. However, if the other honest
mining pools believe that the attacker’s private chain is a legal
blockchain, then both the attacker and other honest mining
pools obtain the revenue of one block. The remaining items

of Rhonesttemp1 reflect these possibilities.
It can be found from the attacker’s revenue expression that

the attacker’s revenue is affected by more factors than that of
the GenSelfHolding model with two honest mining pools.

H. Comparing with the GenSelfHolding model with Two
Honest Mining Pools

From an intuitive point of view, when the number of honest
mining pools increases, the chances of an attacker gaining
at least one block will also increase. However, contrary to
intuition, in many cases, as the number of honest mining pools
increases, the revenue of the attacker will decline. The default
parameter setting is same to that in Section IV-E.
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Fig. 10: The changes in the attacker’s power under the
GenSelfHolding attack model with three honest pools

• Attacker’s total power change: From the given at-
tacker’s revenue expression, we can predict that when
the attacker’s total calculation power changes, whether
it is the GenSelfHolding model with two honest pools
or the GenSelfHolding model with three honest pools,
the attacker’s revenue is the same. We verified this idea
through experiments, and the experimental results are
shown in Figure 10.
In Figure 10, since the revenue of the attacker under the
GenSelfHolding model with two honest pools is exactly
the same as that of the attackers under the GenSelfHold-
ing model with three honest pools, two different types of
lines are used to represent the revenue of the attackers
under the two models.

• Honest mining pool calculation power distribution:
When the calculation power distribution among honest
mining pools changes, the attacker’s revenue will also
fluctuate greatly.
As shown in Figure 11, when the computation power
distribution between honest mining pools changes, the
attacker’s revenue changes under the two models are
similar. However, no matter how similar the changes are,
the attacker’s benefit under the GenSelfHolding model
with two honest pools is greater than that under the
GenSelfHolding model with three honest pools.

• Attacker power distribution ratio change:
Figure 12 shows that when we fix the attacker’s total
power to 0.3 and other parameters are unchanged, the
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Fig. 11: The change in honest mining pool calculation power
distribution under the GenSelfHolding model with three

honest pools
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Fig. 12: The change in attacker power distribution ratio
under the GenSelfHolding model with three honest pools

revenue of the attacker under the GenSelfHolding model
with two honest pools is greater than that under the
GenSelfHolding model with three honest pools.

VI. CONCLUSION

Serious security problems exist in the Bitcoin system; selfish
mining and block withholding attacks are two of the most
classic attack in this field. In this paper, we present a general
model, GenSelfHolding, with a combined attack strategy on
these two attack strategies. We investigate the stable distribu-
tion property, consisting of the irreducibility, aperiodicity and
state separability of state transition probabilities in this general
model. In addition, we verify our model under two specific
scenarios and find that within a certain range of computing
power, the attackers’ revenue show different changes and that
more revenues can be obtained by the attacker under this
GenSelfHolding attack strategy in some cases.
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