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Instruction sender authentication of UAV (Unmanned Aerial Vehicle) control is critical for the secure operation of UAV systems.
By exploring user touch action characteristics of the user interaction with the UAV control mobile terminal, this paper proposes
a novel instruction sender continuous authentication framework for UAV control systems. In particular, we first obtain the touch
screen data in real time from the interaction with the mobile device screen of a user when he controls the UAV. Then we create a
polynomial to fit the touch trajectory on the screen of the user, and use the least square method to obtain the optimal estimate of
the polynomial coefficients. Finally, we mark the grid area covered by the polynomial to extract the user’s touch screen operation
action fingerprint(OAF), and employ the fuzzy extractor method to realize the identity authentication of the sender with certain
error tolerance. Extensive experiments are conducted to illustrate the authentication performance of the proposed authentication
framework in terms of false acceptance rate, false rejection rate and equal-error rate.

Index Terms—Continuous authentication, UAV, fuzzy extractor, behavioral biometric, operation action fingerprint.

I. INTRODUCTION

UAV (Unmanned Aerial Vehicle) system is a significant
network architecture that encapsulates flight control, UAV
monitoring and UAV network to enable the precise, efficient
and real-time control to be conducted in UAV systems. With
the rapid development of 5G network and cloud computing
technologies, the UAV system becomes highly promising to
boost the long-distance unmanned operation, high-precision
real-time monitoring and drone-assisted decision-making in
the global related fields. Notice that the UAV systems generally
target at some critical fields, like the military, smart manufac-
turing, agricultural production and smart grid, so the security
guarantee is of great importance for the secure control of UAV
systems. However, the current UAV systems are facing various
security challenges, both from the network and UAV control
layer that the UAV relies on for normal operation. Among
these challenges, instruction sender authentication serves as a
critical one since such systems usually involve a lot of users
with highly diverse authority rights.

Instruction sender authentication in a UAV system is used
to verify the identities of a sender (user) who is attempting
to send control instruction to the UAV, and thus to prevent
unauthorized users from gain control of the UAV system.
Depending on whether the authentication process is continuous
or not, the instruction sender authentication in UAV systems
can be roughly classified as one time sender authentication and
continuous sender authentication. One time sender authenti-
cation usually requires instruction sender to be authenticated
to provide credentials that can prove legitimacy of identity
at the entrance to the access UAV control system, and it is
generally used for the one time authentication system where
the continuous monitoring of user identity legitimacy is not
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necessary once the user is successfully authenticated as a
legitimate one [1], [2], [3], [4]. In contrast, the continuous
sender authentication mainly explores the intrinsic properties
related to the sender inherent activities and behaviors to
carry out user authentication, so it does not need additional
actions from a user for authentication purpose and can monitor
construction sender identity continuously.

Continuous sender authentication is particularly attractive
for the efficient and secure control of UAV systems. First,
continuous sender authentication conducts sender identity ver-
ification in a non-intrusive manner, then instruction senders
do not need additional frequent actions for identity authen-
tication. Second, UAV systems are easy to be interfered,
intercepted and illegally accessed by malicious attackers in
practical applications, continuously verifying the identity of
the instruction sender of UAV commands is essential. Thus, we
are motivated to design a flexible and cost-effective continuous
instruction sender authentication approach for continuous and
non-intrusive user authentication in UAV systems.

By now, some research efforts have been devoted to the
study of continuous sender authentication in UAV related
fields. In [5], the authors demonstrate that users’ interaction
actions with the UAV control terminals can be defined as a
sequence of flight commands using a standard radio control
transmitter, and the operation action features are extracted to
determine user identities using machine learning methods. The
authors in [6] proposes a lightweight mutual authentication
protocol to secure communications between UAVs and sta-
tions. Using the challenge-response pairs of PUF (physical
unclonable function), the protocol randomly shuffle a message
which piggybacks a seed for generating a secret session key.

Notice that in UAV control process, the touch screen actions
from different users (e.g., slid down, slid up and slid left)
exhibit unique behavioral biometric characteristics due to the
difference of individual operation behavior habits, and the
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touch screen characteristics [7], [8] can be represented as touch
screen operation action fingerprint to identity users. To the best
of our knowledge, there is no existing approach for continuous
sender authentication based on touch screen operation action
fingerprint. Therefore, in this paper we attempt to extract
user OAF to design a continuous user authentication approach
for UAV scenarios. The main contributions of this paper are
summarized as follows:

o By sampling user touch screen operation action tra-
jectories from the UAV control process of a user and
adopting Least squares polynomial fitting to model these
trajectories, we develop a new grid-based method to
characterize the user OAF to verify user identities.

o Based on the extracted OAF, we proposed a fuzzy
extractor-based approach to realize UAV instruction
sender authentication continuously with certain error tol-
erance during UAV control processes.

The remainder of this paper is organized as follows. Section

I introduces the UAV system and threat model. Section
IIT presents the proposed instruction sender authentication
approach. The experiment results and analysis are provided
in Section IV. Finally, Section V concludes this paper.

II. UAV SYSTEM AND THREAT MODEL
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Fig. 1. Attack model for UAV control scenarios

Consider a UAV system consisting of a UAV and a legit-
imate user Alice who sends instruction to control the UAV
using a mobile control terminal, and a potential attacker Eve,
as shown in Fig. 1. In the UAV system, Alice holding/taking
mobile control terminal always interact with UAV system
by performing some common operation actions (e.g., slide
up, slide down and slide left) on the terminal during the
instruction sending processes. The potential attacker Eve has
physical access to Alice’s control terminal of the UAV, and is
already in possession of passcodes (e.g., PIN or fingerprints)
to unlock the control terminal. Thus Eve can impersonate
as Alice to launch a spoof attack by implementing series of
control operation actions on the mobile control terminal or
illegal access to the UAV network to send control instructions
to the UAV, and hope to gain control of the UAV.

As a result, an illegal instruction sender Eve can send con-
trol instructions to the UAV through alice’s terminal control,
and control of the UAV may be obtained by Eve. Hence,

the goal of our work is to design a continuous instruction
sender authentication approach for the UAV system, which dis-
criminates sender identities continuously and non-intrusively
through the tiny difference of sender’s touch screen on mobile
control terminals.

III. PROPOSED INSTRUCTION SENDER AUTHENTICATION
APPROACH

In this section, we develop a flexible and cost-effective
continuous sender authentication approach to determine user
(sender) identities for the UAV system, which exploits the
behavioral biometric characteristics from their routine UAV
control processes.

As illustrated in Fig. 2, the proposed authentication ap-
proach consists of three processes: 1) OAF extraction based
on user touch screen operation actions; 2) The fuzzy extractor
scheme based on OAF; 3) Instruction sender authentication.
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Fig. 2. The processes of the proposed instruction sernder authentication
approach for UAV control scenarios.

A. OAF extraction based on user touch screen operation
actions

1) Touch screen trajectory in UAV control process

A user holding a UAV control terminal always performs
some common operation actions (e.g., slide up, slide down,
and slide left) on the mobile device touch screen during
the operation of the control UAV. The touch screen of the
mobile device is typically equipped with various sensors
and provide API for users to obtain the touch screen data
in real time. Common operation actions a user performs
generally consist of slide up for UAV rising (SUR), slide up
for UAV forward (SUF), slide down for UAV down (SDD),
slide down for UAV backward (SDB), slide left for UAV left
flight (SLL), slide left for rotating counterclockwise (SLC),
slide right for UAV right flight (SRR) and slide right for
rotating clockwise (SRC), as shown in Fig. 3. We use O =
SUR, SUF, SDD, SDB, SLL, SLC, SRR, SRC to denote the set
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Fig. 3. Touch screen operation action during the operation of the control
UAV

of operation actions from the user. An arbitrary operation
action O, € O (k=1,2,--- , N, N is the number of elements
in O) can be regarded as a stroke, which is a sequence of
touch data denoted by S (on the touch screen of the mobile
device) that begins with the user’s finger touching the screen
and finishes with the user’s finger leaving the screen. Sy, is the
trajectory of the user sliding across the screen with his finger,
which is represented as Sy = ((z1,v¥1)," - , (s, yr)), Where
(zr,y,) is the x-axis and y-axis of the screen coordinates of
the mobile device respectively, r € Ny and Ny is the sum
number of points that the trajectory Sy contains.

Generally, the trajectory of a user may contain hundreds
or more points consist of (x,,y,) corresponding x-axis and
y-axis. In principle, we should use all touch points generated
during a user’s control processes in the extraction of OAF to
obtain better results on the authentication performance. How-
ever, when the number of points grows, multiple points very
close to each other may repeatedly mark the area covered by
the user’s touch trajectory. For example, a trajectory contains
points (238.25,812.75), (238.50,812.75) and (238.50,812.25),
and these points represent almost the same area on the
touchscreen of mobile terminals. As a consequence, it might
not be a good choice to extract OAF utilizing all the touch
screen data during UAV control process. This is because
including these duplicate data in the construction of user OAF
yields high computational and storage complexity without
much real benefit in terms of accurate fingerprint construction
and authentication performance. Thus, we proposed touch
screen trajectory extraction (TTE) algorithm based on grid and
polynomial fitting for OAF construction.

2) TTE algorithm

In this section, we describe the OAF that we extract from the
operation action record of users’ interacting with the mobile
device and demonstrate its uniqueness. We develop a flexible
and cost-effective TTE algorithm to obtain user touch screen
trajectory for the authentication system in UAV scenario,
which exploits touch screen data during the UAV control
process of a user. The proposed algorithm consists of three
processes: 1) Grid creation and coordinate axis conversion;
2) User touch trajectory fitting; 3) User touch trajectory
extraction.

3) Grid creation and coordinate axis conversion

To accurately and systematically describe the area covered
by the trajectory from a user, we create a grid with m rows
and n columns, which is denoted by R. Taking the upper right
corner of grid N as the origin, we then establish the coordinate
system of the grid. Thus, we can see that the maximum values
of abscissa and ordinate of the coordinate system N are Nabs
and Nord, respectively.

In the mobile device touch screen coordinate system, taking
the upper right corner of the touch screen as the origin, we
define the maximum coordinate values that the touch screen
can represent in the horizontal and vertical directions as Hyax
and Vjax, respectively. An arbitrary point on the touch screen
(zr,yr)) can be converted into the grid coordinate system,
namely («,,3,) and (., B,), and they can be calculated by

oy = (Nabs — 0) * (2, — 0)/(Vinax — 0),
Br = (Nord — 0) * (y, — 0)/(Hmax — 0).

According to (1), a touch trajectory Sk =
((x1,9y1),- -, (zr,yr)) is mapped to the grid coordinate
system and is rewritten as Ty = ((a1,51), -, (@, Br))-

4) User touch trajectory fitting

To accurately and efficiently describe user touch trajectory
in coordinate system X, we first sample the Y according to
the time 7} when the touch trajectory occurs. To ensure that
the sampling points can cover the entire touch trajectory as
completely as possible, we then divide T}, into d parts evenly,
that is, the sampling interval is %, so that the sum number
of sampling points is { = % + 1. Finally, for a given touch
trajectory Y, the corresponding sampling result denoted by vy,
is written as vy = ((a1,61), -, (g, 8q)), ¢ =1,2,--- ,C.

5) User touch trajectory extraction

To obtain user touch trajectory based on the points in vy,
we leverage k-order polynomial f(«) to fit the user’s touch
trajectory, and f(x) is given by

(1a)
(1b)

f(@) = ap + ara, +aza®+, -+, +apa®, 2

where ag,a1,--- ,a; are the coefficients of the polynomial
f(a). Because the ¢ points are on the curve represented by
the polynomial f(«), we can get ¢ equations, i.e.,

ap + arai, +asai+, -, +agal = B, (3a)
ap + aras, +(1204§+, s ,—HlkO/gC = B, (3b)

: (3¢)
ag +a1a<,+a2ag+,~~ ,+ako/g = fe. (3d)

These equations are not necessarily solvable, that is, the
curve of the k-order polynomial may not fit every point of
vi. Hence, we use Least Square Method to obtain the optimal
parameters of the polynomial f(«). Let L(f(«),) be the
sum of squares of errors between the fitted data f(«) and the
actual data 3, and L(f(«a), ) is given by

L(f(a),B) = Z(f(a) - B)% @)
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Then we can obtain Optimal estimation of parameters for the
polynomial f(«) under Min(L(f(c), 5)).

Employing the intersection of polynomial f(«) and lines
around the grid, we can accurately describe the user’s touch
screen operation fingerprint. Specifically, For each time the
user touches the screen, we first obtain a square area denoted
by § = a € [Min(a,), Maz(a,)], 8 € [Min(8,), Maz(8,),
where » = 1,2,--- (. Let the intersection of the curve f(a)
and the vertical line of the grid be ® = f(a),a =4, 7 € § and
1 € N, and the intersection of the curve and the horizontal line
of the gridbe ¥ = f(3),8 =j,j € §and j € N, respectively.
According to grid mark rules defined in (5), we mark the grids
involved in these intersections and accumulate the number of
times each grid is marked to obtain user OAF in a touch screen
action.

if fla)>g—1and f(a) <g:
Mark ceil {grid(i, g), grid(i + 1, 9)},
if PloySolve(j) > h — 1 and
PloySolve(j) < h :

Mark ceil {grid(h, j), grid(h + 1, j)},
if(a) == j :

Mark ceil {grid(z, j), grid(i + 1, j),
grid(i +1,7),grid(i + 1,5+ 1)},

Grid mark rules €

®)
where (i, f(«)) € ® and (PloySolve(j), j) € V.

6) The construction of OAF based on user touch screen
operation actions

We can see that a trajectory of user touch screen action
is represented as a polynomial, and the mark rules in (5) are
used to mark the precise path covered by a user’s touch action.
Hence, we use x to denote the user’s one touch, and x is
written as x = (7, ) where grid(i,j) is marked.

To capture the user’s touch motion characteristics accurately
and stably, we employ a user’s s touch screen actions to
construct the user’s OAF, and we have OAF = [x1, -+ , Xx]-
We provide in Fig. 4 the differences of operation action
sequences’ time-varying properties between User 1 and User
2.

B. The fuzzy extractor scheme based on OAF

Traditional cryptography requires precisely reproducible
random strings for secrets. However, the secret strings are
generally uniformly distributed and are difficult to create,
store, and reliably retrieve. Moreover, the interaction between
UAV sender and receiver is very frequent, and the production,
management and update of passwords for securing the in-
structions during the UAV control processes need to consume
more UAV storage and network resources. It may bring a
large burden of storage and transmission to the UAV system,
and even lead to problems such as decreased UAV control
efficiency and excessive command delay. Notice that strings
generated from human biometric features generally are neither
uniformly random nor reliably reproducible [9], making it
suitable for securing the UAV system. For example, a random
person’s fingerprint or iris scan is clearly not a uniform random
string, nor does it get reproduced precisely each time it is

measured. Similar to some human biometric features, such as
iris, face and fingerprint, the OAF is clearly not a uniform
random string, nor does it get reproduced precisely each time
it is measured.

We use extractor theory proposed in [10] to realize the
secure transmission and reproduction of UAV instructions.
The fuzzy extractor in this paper includes two processes:
(1) The UAV instruction is encoded as a public key v, and
v = Encoder(d, 1), where p is the instruction that will be
sent to a specific UAV and 6 is the behavioral biometric from
the user (UAV instruction sender). (2) The UAV instruction
p, is restored from the public key ) by using user behavioral
biometric feature ', and 11" = Decode(v,0"). In UAV control
processes, only the public key v is stored and transmitted in
internal cloud platform and external network space, and user
behavioral biometric (6 and Gl) and the UAV instruction (x and
u,) are only generated locally and stored briefly. As shown
in Fig. 2, the UAV instructions are bound to the behavioral
biometrics of the instruction sender, and we can see that
the UAV instruction transmission and reproduction process
is much more complicated and security than the traditional
instruction sending and transmission mechanism.

In particular, let 6 and 0" be the template OAF stored in
the UAF firmware and the real-time OAF extracted from user
touch screen operation actions [9], [10]. For a UAV control in-
struction denoted by p (here, i can be the plaintext of the UAV
control instructions, or the encrypted ciphertext of the UAV
control instructions) with a length of £ bits, the fuzzy extractor
scheme first creates a Galois field [10] array from data u, 6
and 0 denoted by Omessage = G(1,2™), ©p = G(u, m) and
Omessage = G(Ql, m), and we can see the length of 6 is 2™ — 1
[11], [12]. Then, we use Reed-Solomon codes to obtain the
corresponding code RSmessage Of Omessage> and a public key
is generated from the exact key RSpessage and real time OAF
0" extracted from user operation action during UAV control
processes, i.e., 1 = C(HI,RSmessage), where C(-) is XOR
operator. Finally, we obtain the UAV operation instructions of
the sender by Reed-Solomon decoding denoted by ul utilizing
user real time OAF, and we have i° = RS-Decoding(C(1, §))
[13].

C. Instruction sender authentication

The processes of instruction sender authentication include
two phases: (1) User OAF enrollment. Initially, we enroll OAF
of all legitimate users into the UAV local storage. For a specific
UAV flight business, we require each user to operate the UAV
within the line-of-sight range to complete this specific UAV
flight business, and extract the user’s OAF according to the
proposed method in section III-A. We can see that the enrolled
OAF is represented as 6 in Fig. 2. (2) Instruction sender
authentication. For a user who perform operation action on the
UAV control terminal, we extract his/her real-time OAF 0 to
generate public key . Using 1’ = RS-Decoding(C(1, ), we
can obtain the UAV instruction ,u/. It can be seen that the task
of constructing a fuzzy extractor is much more complicated
than the traditional authentication problem since it requires
the construction of a non-binary function p € 0,1, and the
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Fig. 4. The difference of OAF from two users under the same control business (i.e., the two user complete the same task using a UAV system).

decoding process ;i = RS-Decoding(C(1, #)). Hence, we can
verify user identity employing above fuzzy extractor process,
and we have

00— p= ,u/, a legitimate sender
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an attacker.
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IV. AUTHENTICATION PERFORMANCE ANALYSIS
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Fig. 5. Hamming distance statistical analysis

A. The robustness of OAF

We select OAF from the same user’s touch screen actions to
compute the Hamming distances from the same user and chose

OAF from different OAF to compute the Hamming distances.
We perform 2900 comparisons between different OAF from
the same user and 450 comparisons for the OAF from different
users. The results are shown in Fig. 5. We can see that most
of the Hamming distance of OAF from the same user is less
than 0.56. However, the Hamming distance between different
users is usually greater than 0.45. This indicates that by setting
different thresholds of Hamming distance, we can obtain better
user authentication results using fuzzy extractor scheme in
practical instruction sender authentication of UAV system.

B. Performance metric

To evaluate the performance of the proposed UAV sender
authentication approach, we apply three typical metrics,
namely the false acceptance rate (FAR), false rejection rate
(FRR) and equal-error rate (EER) [14]. We recruit 10 vol-
unteers (users) to complete a specific UAV control tasks for
extracting their OAF. The 10 users under the same UAV
control task are evenly divided into two groups A and B to
construct 2 sub-datasets denoted by g7 and @s. In @1, we
require users in group A and group B perform their UAV
control operation action without impersonating each other and
collect their operation actions on UAV control terminals 10
times (the user completes the same UAV control task each
time) for each user. In o, we first conduct the one-to-one
randomly pairing between users in group A and group B. We
then require users in group A to impersonate the operation
actions of his corresponding pair in the group B, and collect
the operation actions 5 times for each user in group A. Finally,
we collect the UAV control operation actions from users in
group B 5 times for each user. We can see that the dataset
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is generated by user normal operations on the UAV control
terminal and the dataset o contains impersonation attack
during the UAV control processes.

We then perform instruction sender authentication utilizing
the proposed UAV sender authentication approach based on
datasets o1 and po. We calculate three typical metrics to
obtain FAR=0.041, FRR=0.035 and EER =0.038 for dataset
91, and FAR=0.047, FRR=0.05 and EER =0.049 for dataset
p2. The experiment results show that the proposed approach
can achieve better authentication performance and has a certain
ability to resist impersonation attacks. Hence, the proposed
instruction sender authentication approach is promising to
adapt various complicated UAV application environments for
securing the UAV system.

V. CONCLUSION

By exploiting OAF caused by user’s touch screen operation
actions during UAV control processes, this paper proposed
a novel instruction sender authentication approach for UAV
systems. We demonstrated that the new approach enables a
flexible and efficient authentication performance for satisfying
different authentication performance requirements across var-
ious UAV control scenarios. Moreover, it is expected that the
new authentication approach can serve as a good enhancement
and complementary to the traditional authentication solutions
for UAV systems.

REFERENCES

[11 A. Roy, N. Memon, and A. Ross, “Masterprint: Exploring the vul-
nerability of partial fingerprint-based authentication systems,” [EEE
Transactions on Information Forensics and Security, vol. 12, no. 9, pp.
2013-2025, Sep. 2017.

[2] S. Li and A. C. Kot, “Fingerprint combination for privacy protection,”
IEEE Transactions on Information Forensics and Security, vol. 8, no. 2,
pp. 350-360, Feb. 2013.

[3] D. F. Smith, A. Wiliem, and B. C. Lovell, “Face recognition on
consumer devices: Reflections on replay attacks,” IEEE Transactions on
Information Forensics and Security, vol. 10, no. 4, pp. 736745, Apr.
2015.

[4] S. Thavalengal, I. Andorko, A. Drimbarean, P. Bigioi, and P. Corcoran,
“Proof-of-concept and evaluation of a dual function visible/nir camera
for iris authentication in smartphones,” IEEE Transactions on Consumer
Electronics, vol. 61, no. 2, pp. 137-143, May. 2015.

[5] A. Shoufan, “Continuous authentication of uav flight command data
using behaviometrics,” in 2017 IFIP/IEEE International Conference on
Very Large Scale Integration (VLSI-SoC), 2017, pp. 1-6.

[6] C. Pu and Y. Li, “Lightweight authentication protocol for unmanned
aerial vehicles using physical unclonable function and chaotic system,”
in 2020 IEEE International Symposium on Local and Metropolitan Area
Networks (LANMAN, 2020, pp. 1-6.

[71 H. Liu, Y. Wang, J. Liu, J. Yang, Y. Chen, and H. V. Poor, “Authenticat-
ing users through fine-grained channel information,” IEEE Transactions
on Mobile Computing, vol. 17, no. 2, pp. 251-264, Feb. 2018.

[8] R. Alazrai, A. Awad, B. Alsaify, M. Hababeh, and M. 1. Daoud, “A
dataset for Wi-Fi-based human-to-human interaction recognition,” Data
in Brief, vol. 31, p. 105668, Aug. 2020.

[9] E. Zainulina and I. Matveev, “Methods of using fuzzy extractors on the
iris data *)” in Situation, Language, Speech, 2019At: Rome, Italy, 2019,
pp. 1-15.

[10] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data,”
SIAM Journal on Computing, vol. 38, no. 1, pp. 97-139, 2008.

[11] N. Li, F. Guo, Y. Mu, W. Susilo, and S. Nepal, “Fuzzy extractors for
biometric identification,” in 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), 2017, pp. 667-677.

[12] F. Hao, R. Anderson, and J. Daugman, “Combining crypto with biomet-
rics effectively,” IEEE Transactions on Computers, vol. 55, no. 9, pp.
1081-1088, 2006.

[13] B. Fuller, L. Reyzin, and A. Smith, “When are fuzzy extractors pos-
sible?” IEEE Transactions on Information Theory, vol. 66, no. 8, pp.
5282-5298, 2020.

[14] C. Shen, Y. Li, Y. Chen, X. Guan, and R. A. Maxion, “Performance
analysis of multi-motion sensor behavior for active smartphone authen-
tication,” IEEE Transactions on Information Forensics and Security,
vol. 13, no. 1, pp. 48-62, Jan. 2018.



