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The paper considers the consistence condition of Maximum Likelihood (ML) estimation for multiple transmitter locations in a
wireless network with cooperative receiver nodes. It is found that the location set of receiver nodes should not locate (or asymptotically
in some sense) merely in an algebraic curve of order 2M−1 if there are totally M transmitters. A sufficient condition for consistence
of the ML estimation for M transmitters is that the limit set of locations contains a subset, comprised of (2M2−M+2) points, which
is non-C-2M -co-curved, a notion given by Definition IV-B. This condition can be compared to the persistent excitation condition
used to guarantee the convergence of least squares algorithm. Numerical experiments are designed to demonstrate the theoretical
discoveries in both positive and negative aspects.

Index Terms—Multiple transmitter locations, maximum likelihood estimation, consistence condition.

I. INTRODUCTION

THE locations of transmitters in a wireless network are
precious information that can be used to determine the

spatial and temporal resources of a sensing node [1]. This has
been identified as one of the ultimate tasks in various emerg-
ing wireless networking scenarios such as Cognitive Radios
(CR). A CR system is designed to operate concurrently with
the primary radio system by sharing some unused spectrum
resources, referred to as spectral holes, while minimizing the
interference with the operation of the primary radio system.
Note that a spectral hole includes three aspects: frequency,
space, and time [2]. Thus, a key step to implement a CR
network is to estimate the locations of transmitters in a
region of interest. For instance, a scenario is shown in [2]
that accurate information of locations of transmitters would
help to avoid disruption among the transmission between two
cognitive nodes.

Localization of a single transmitter based on received signal
strength observations has been extensively studied [1], [3], [4],
[5], [6], [7]. A more challenging issue for the localization
of multiple transmitters is considered in [2], [8], [9]. For
example, authors in [8] addressed the issue of detection and
localization of multiple intruders present simultaneously and
proposed group-based algorithm, which works by extracting
observations across sensors for certain small sets of trans-
mitters. Authors in [9] proposed a measurement clustering
method to estimate the locations of multiple radio transmitters
based only on the received signal strength and proposed a
performance analysis approach based on a hypothesis test-
ing framework. Besides the methods based on clustering or
grouping, the estimation based on Maximum Likelihood idea
is another natural choice [7], and thus both of the problems
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can be formulated into an optimization process. Though some
practical numerical algorithms have been reported to solve
the optimization issues, it appears that the relevant theoretical
performance analysis of the ML estimation is rarely studied.
We consider this issue for a single transmitter in [7], and
find that the receiver (or observation) locations should be rich
enough to guarantee the consistence of ML estimation.

The main purpose of this paper is to discover the consistence
condition for ML estimation of multiple transmitters. The
novelty of our work can be found in how we formulate the
model as follows. Consider a wireless network consisting of
M primary nodes, or transmitters, as well as a set of receiver
nodes that are listening to the signal launched by the primary
nodes. Assume that the primary nodes transmit at a constant
power level during the observation period, and the receiver
nodes, with their locations known in prior, can exchange their
respective received power information with each other [6],
[10]. The problem is to estimate the locations of the primary
nodes based on a lognormal shadowing model [11], [6].

Denote the unknown two dimensional locations of M trans-
mitters as θ = [θ1, . . . , θM ]T ∈ R2M , where θi = (ai, bi) is
the location of the i-th transmitter. Assume that M is known
as the exact number of transmitters, and that all transmitters
have the same power as sp without loss of generality. The
received power at the j-th receiver from the i-th transmitter is
given by a lognormal shadowing model ([6], [11]) as

sij = sp − 10ϵ log10 dij + wij , (1)

where dij =
√
(xj − ai)2 + (yj − bj)2, ϵ is known to rep-

resent the path loss exponent, and iid noise wij ∼ N(0, σ2).
Thus, the actually observed power at the j-th receiver is given
by

sj =

M∑
i=1

sij . (2)
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The problem is to estimate location vector θ based on the
available data set {sj , xj , yj , j = 1, 2, . . . , n}. In view of the
fact that the observation data may be collected from a finite
set of monitor locations, it is reasonable to assume that the
monitor location (xi, yi) is a deterministic value. The main
subsequent target is to discover the condition of guaranteeing
the consistence of Maximum Likelihood estimation for θ. It
will be discovered that the receiver location set {(xi, yi)}
should not be located in a single (2M − 1)-order algebraic
curve, i.e., it should be rich enough in some sense (see
Theorem IV-B for detail).

The rest of this paper is organized as follows. The ML
estimation is formulated for multiple transmitter locations in
Section II. In Section III, two numerical experiments are de-
signed to detect the performance of the ML estimate algorithm
as the data volume tends to infinity, by the aid of a practical
Matlab code /fminsearch/ in a recursive form with respect
to data volume n. A sufficient condition to guarantee the
consistence of ML estimation for the M transmitter locations
is proposed in Section IV by the aid of theoretical preliminary
in Appendix. Then, the technical mechanisms beneath the
numerical experiments are demonstrated and justified therein.
Some concluding remarks of the paper are given in Section
V.

II. MAXIMUM LIKELIHOOD ESTIMATION FOR MULTIPLE
LOCATIONS

In this section, we formulate the ML estimation for multiple
locations. The estimation issue turns out to be a nonlinear
optimization problem.

As aforementioned, because the locations (xi, yi) are taken
as deterministic quantities, the random variable sij has a
Gaussian distribution N (sp − 10ϵ log10 dij , σ

2). By noticing
the independence of {wij}, the density of sj is given by

f(sj ;xj , yj , P ) =
1√

2πMσ

exp

{
−
(sj −Msp + 10ϵ

∑M
i=1 log10 dij)

2

2Mσ2

}
(3)

where P = {Pi(ai, bi), i = 1, 2, . . . ,M} denotes the
location set of transmitters, or primary nodes. It is worth
pointing out that though sj is a sequence of independent
random variables, each sj has different distribution since
(xj , yj) is different for different j.

The ML method is a wise choice to estimate the param-
eters θ in equation (2) based on available observation data
O(n){sj , xj , yj , j = 1, 2, . . . , n}.

The corresponding ML function is

L(θ) =
n∏

j=1

1√
2πMσ

exp

{
−
(sj −Msp + 10ϵ

∑M
i=1 log10 dij)

2

2Mσ2

}
(4)

so, the log ML function follows as

logL(θ) = −n

2
log(2πM)− n log σ − 1

2Mσ2

n∑
j=1

(
sj −Msp + 10ϵ

M∑
i=1

log10 dij

)2

(5)

which is equivalent to minimize

Mn(θ)

n∑
j=1

(
sj −Msp + 10ϵ

M∑
i=1

log10 dij

)2

(6)

This turns to be a nonlinear optimization problem regard-
ing θ = [a1, b1, a2, b2, . . . , aM , bM ]T , which can be solved
by many mathematical software, e.g., Matlab’s optimization
toolbox, or by designing special program to solve it. By
noticing that the function Mn(θ) is not necessarily convex,
a straightforward search for the minimum may tend to some
local minimum rather than global minimum.

III. NUMERICAL EXPERIMENTS

We develop a recursive numerical algorithm to minimize
Mn(θ) in Mn by using Matlab code fminsearch. When the
nth ML estimate for θ is numerically founded to be θn, then
the next minima θn+1 for Mn+1(θ) is numerically searched
based on θn as:

θn+1 = fminsearch(@Mn+1, θn) (7)

This means the starting point of the search is θn, rather than
any other value by random guess. So, the information obtained
by the former step has been used for the next search, which
may increase the effectiveness.

Below we design two numerical experiments to demonstrate
the asymptotical performance of ML estimation for θ in model
2 as the number of observation locations tends to infinity.
The first one is an example of failure in the localization
(referred to as the failed example), and then the successful
example follows. The essential reason for failure is that the
likelihood function 4, or the equivalent function Mn(θ) in
Mn, has multiple roots when some conditions are absent. The
technical reason will be explained in subsection IV-C after
general analysis of the consistence condition. Note that even
in the failed examples, the ML estimation may still work since
the true value is also a root of the likelihood function. It
depends on the numerical algorithm to find the roots of the
likelihood function.

Let ϵ = 1, sp = 80, M = 2, P1(−20, 0), P2(20, 0) in 12,
wi ∼ N (0, 0.52), and all locations (xi, yi) are distributed in
the following way: generate xi uniformly distributed in the
interval [−20, 20], and then yi is calculated from the implicit
function 40y3i + 400y2i + 40x2

i yi − 1200x2
i + 160000 = 0,

whose graph is shown in Fig. 3. The whole data to be used
is N = 100. The performance of the ML estimates has been
shown in Fig. 1, where θn with n = 20, 40, 60, 80, 100 is
plotted by ”plus” and ”cross” signs for the estimates of P1 and
P2, respectively. Clearly the estimates for P1 tend to (0, 20),
while the estimates for P2 tend to (0, 0) in the Fig. 1. The
consistence of ML estimators fails in Fig. 1.



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 1, ISSUE 2, NOVEMBER 2021 62

With the same setting of Example III, it is expected that all
locations (xi, yi) are in the set {(11,0), (-12,0), (0,9),(0,-8),
(10,11),(10,-10), (-10,10), (-10,-10)} successively. The whole
data to be used is N = 100. The performance of the ML
estimates has been shown in Fig. 2, where θn with n =
20, 40, 60, 80, 100 is plotted by ”plus” and ”cross” signs for
the estimates of P1 and P2, respectively. The ML estimators
converge to all true values as shown in Fig. 2.
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IV. CONSISTENCE CONDITION

In this section, we will describe the condition of guarantee-
ing the ML estimate θnθ as n∞, which in turn explains the
success and failure of the numerical experiments in the former
section. To make the condition easy to be understood, a special
case to justify unique solution of a system algebraic equations
regarding model 2 without noise is studied in subsection IV-A.
The consistence condition is strictly defined and a criterion is
given and proved in subsection IV-B. Finally, subsection IV-C
serves as a explanation for numerical experiments.

A. Unique Solution Condition for A System of Equations

Let us consider a simple yet important issue regarding to
the uniqueness of the solution as a starting point for the ML
estimation performance. The uniqueness of the solutions relies
on whether the available data set {(xi, yi)}m1 serves as a
unique solution of a system of equations as:

sj = Msp − 10ϵ

M∑
i=1

log10

√
(xj − ai)2 + (yj − bi)2,

j = 1, 2, . . . ,m. (8)

Exactly, when it is solvable, one may want to ensure that the
solution is unique from the above m equations. This means

that there is no other solution θ′ = [a′1, b
′
1, . . . , a

′
M , b′M ]T ̸= θ

(i.e., the two sets of points are different, where {(ai, bi), i =
1, . . . ,M} ̸= {(a′i, b′i), i = 1, . . . ,M}) to make the data set
{(ai, bi)}m1 satisfy the following m equations:

sj = Msp − 10ϵ

M∑
i=1

log10

√
(xj − a′i)

2 + (yj − b′i)
2,

j = 1, 2, . . . ,m. (9)

Combining 8 and 9, we get:

M∏
i=1

√
(xj − ai)2 + (yj − bi)2 =

M∏
i=1

√
(xj − a′i)

2 + (yj − b′i)
2,

j = 1, 2, . . . ,m. (10)

Thus, the solution of 8 is not unique if the data set {(xi, yi)}m1
satisfies 10 with a certain θ′. Conversely, if the solution is
unique, the data set should never satisfy 10 with any given θ′.

Replacing xj , yj as x, y in 10, let us define a curve by
equation of x, y as:

M∏
i=1

√
(x− ai)2 + (y − bi)2 =

M∏
i=1

√
(x− a′i)

2 + (y − b′i)
2

(11)
with parameters θ and θ′. By denoting Pi as the point
(ai, bi) in the plane, and P ′

i as (a′i, b
′
i), i = 1, 2, . . . ,M ,

the point P (x, y) in the above curve satisfies
∏M

i=1 |PPi| =∏M
i=1 |PP ′

i |.
Here the curve defined by 11 is denoted by

C(P1, . . . , PM ;P ′
1, . . . , P

′
M ), or C-2M curve for brief.

We use Maple code /implicitplot/ to plot some graphs of
the C-2 × 2 curve defined by 11 below with P1(−20, 0),
P2(20, 0), and P ′

1, P
′
2 are given by the options in Fig. 3-12.

From a topological point of view, Figures 3,4,6,9 and 10 have
the same topological structure. It seems that each curve has a
branch tending to infinity, and that each curve separates the
two point sets {P1, P2} and {P ′

1, P
′
2}. These two properties

have been stated under general settings for the C-2M case in
the following propositions.
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Each C(P1, . . . , PM ;P ′
1, . . . , P

′
M ) curve defined by 11 has

at least a branch extending to infinity.
Proof. Define a function of (x, y) ∈ R2 and µ ≥ 0 as

G(x,y,µ)
∏M

i=1 |PPi|2 − µ
∏M

i=1 |PP ′
i |2

=
∏M

i=1[(x−ai)
2+(y−bi)

2]−µ
∏M

i=1[(x−a′i)
2+(y−b′i)

2].
Clearly, the equation G(x, y, 1) = 0 defines the curve given
by 11. Obviously, the curve is different for different µ ≥ 0.

By the geometrical meaning of∏M
i=1 |PPi|∏M
i=1 |PP ′

i |
, (12)

it is clear that the curve G(x, y, µ) = 0 is continuous with
respect to µ.

Now let us come back to the assertion to be proved. It is
sufficient to show that the set defined by equation G(x, y, 1) =
0 is unbounded. To prove the assertion, we argue it in a reverse
way by firstly assuming the point set of G(x, y, 1) = 0 is
bounded, while later the contradiction is shown.

By continuity of the curve to µ, there exist µ−
1 < 1 < µ+

1

such that the union of curves G(x, y, µ) = 0, denoted by S1,
is a bounded set for any µ ∈ [µ−

1 , µ
+
1 ]. Similarly, because

he curve G(x, y, 0) = 0 is the set of points P1, . . . , PM

and G(x, y,∞) = 0 the set of points P ′
1, . . . , P

′
M , there

exist 0 < µ0 < µ−
1 and µ2 > µ+

1 such that the union of
curves G(x, y, µ) = 0, denoted by S2, is a bounded set for
any µ ∈ [0, µ0] ∪ [µ2,∞]. By denoting the union of curves
G(x, y, µ) = 0 for µ ∈ [µ0, µ

−
1 ] ∩ [µ+

1 , µ2] as S3, S3 is a
bounded set by noticing the following fact:

G(x, y, µ) = (1− µ)(x2 + y2)2M +

low order of (x2 + y2)2M . (13)

If µ ̸= 1, then the right hand side in the above formula tends
to ∞ as (x2+y2)∞. Thus, the aforementioned set is bounded.

Now we derive that S1∩S2∩S3 is a bounded set. However,
the union should cover the whole plane which is not a bounded
set. This contradiction deduces the desired assertion.

Each C(P1, . . . , PM ;P ′
1, . . . , P

′
M ) curve defined by 11 sep-

arates the two point sets {P1, . . . , PM} and {P ′
1, . . . , P

′
M}.

Proof. We will prove that the curve given by 11 divides the
two point sets into different connected regions. For this, we
need only point out that any curve segment C-(Pi, P

′
j) con-

necting both Pi and P ′
j does not belong to a single connected

region determined by curve C(P1, . . . , PM ;P ′
1, . . . , P

′
M ) for

any i, j = 1, 2, . . . ,M .
Consider function

G1(x, y) =

∏M
i=1 |PPi|∏M
i=1 |PP ′

i |
(14)

along the curve segment C-(Pi, P
′
j) connecting Pi and P ′

j .
Obviously, G1(x, y)0 if (x, y)Pi, and G1(x, y)∞ if (x, y)P ′

j .
Thus, by the continuity of function G1(x, y) over C-(Pi, P

′
j),

there exists a point P in curve segment C-(Pi, P
′
j) separating

the two points Pi and P ′
j . This completes the proof.

Another proof based on function IV-A seems more clear:

G(x, y, 1)|Pi
< 0, G(x, y, 1)|P ′

j
> 0, (15)

which means points Pi and P ′
j is separated by the curve

G(x, y, 1) = 0.
When calculating the curve equation 11 for M = 2, we get

a30x
3 + a21x

2y + a12xy
2 + a03y

3 + a20x
2 +

a11xy + a02y
2 + a10x+ a01y + a00 = 0, (16)

where a30 = a12 = 2(a′1 + a′2 − a1 − a2),
a03 = a21 = 2(b′1 + b′2 − b1 − b2),
a20 = r21 + r22 + 4a1a2 − r′21 − r′22 − 4a′1a

′
2,

a02 = r21 + r22 + 4b1b2 − r′21 − r′22 − 4b′1b
′
2,

a11 = 4(a1b2 + a2b1 − a′1b
′
2 − a′2b

′
1),

a10 = 2(a′2r
′2
1 + a′1r

′2
2 − a2r

2
1 − a1r

2
2),
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a01 = 2(b′2r
′2
1 + b′1r

′2
2 − b2r

2
1 − b1r

2
2),

a00 = r21r
2
2 − r′21 r

′2
2 with r21 = a21 + b21, r22 = a22 + b22, and r′1

and r′2 similarly.
If a30 = a03 = 0, the curve 16 turns to be a hyperbola or a

combination of two straight lines, as shown in Fig. 6 and 9.
For a given C(P1, P2, P

′
1, P

′
2) curve defined by 11 with

P1(a1, b1), P2(a2, b2), P ′
1(a

′
1, b

′
1), P ′

2(a
′
2, b

′
2), if a1 + a2 =

a′1 + a′2, b1 + b2 = b′1 + b′2, then the curve is a hyperbola or
a combination of two straight lines.

Proof. By IV-A, we have

r21 + r22 − r′21 − r′22 = 2(a′1a
′
2 + b′1b

′
2 − a1a2 − b1b2). (17)

By further help of 16, we derive

a20 = 2(−a′1a
′
2 + b′1b

′
2 + a1a2 − b1b2) = −a02. (18)

Hence, by the standard discriminant

∆a211 − 4a20a02 = a211 + 4a220 ≥ 0, (19)

we known that the curve a20x2+a11xy+a02y
2+a10x+a01y+

a00 = 0 is a hyperbola or a combination of two straight lines,
depending on ∆ > 0 or ∆ = 0 respectively.

An interesting problem is how to determine whether a set
of planar points does not belong to any curve described by
equation 16. Note that the equation 16 has 10 coefficients (the
freedom degree is actually 7 in view of the fact that a30 = a12
and a21 = a03), the number of planar points should at least
be greater than 7 to avoid locating in a curve defined by 16.

Define a vector function of P (x, y) ∈ R2R8:
V(P)=V(x,y)[x3+xy2, x2y+y3, x2, xy, y2, x, y, 1]T ,and a 8×8
matrix comprised by 8 planar points set Q = {Qi, i =
1, 2, . . . , 8} as: D(Q)[V(Q1), V (Q2), V (Q3), · · · , V (Q8)].

For a set of 8 points: Q = {Qi, i = 1, 2, . . . , 8}, if the
determinant |D(Q)| ≠ 0, where D(Q) is given by IV-A, then
the 8 points do not locate in any curve defined by equation
16.

Proof. Assume that the 8 points locate in a curve defined by
equation 16. Thus the 8 corresponding equations with respect
to coefficients are as following:

D(Q)[a30, a30, a20, a11, a02, a10, a01, a00]
T = 0. (20)

By the fact |D(Q)| ≠ 0, we have

[a30, a30, a20, a11, a02, a10, a01, a00]
T = 0, (21)

which proves the assertion.
A general problem is how to determine whether a set of

planar points does not belong to any curve described by
equation 11. When simplifying the equation 11, we know
that the algebraic expression has M(2M + 1) = 2M2 + M
coefficients (the freedom degree is actually 2M2+M −1) by
the fact that the orders are from 2M − 1 to 0. By noticing
that the coefficients of x2M−1, x2M−3y2, . . . , xy2M−2 are all
2(a′1 + · · · + a′M − a1 − · · · − aM ), and the coefficients
of x2M−2y, x2M−4y3, . . . , y2M−1 are all 2(b′1 + · · · + b′M −
b1 − · · · − bM ) in the expression of 11. Hence, the number
of planar points belonging to the set should at least be
2M2 +M − 2(M − 1) = 2M2 −M + 2 to avoid locating in
a curve defined by 11.

Define a vector function of P (x, y) ∈ R2R2M2−M+2:

VM (P ) = VM (x, y)[α(x, y), β(x, y), x2M−2,

· · · , y2M−2, · · · , x, y, 1]T , (22)

where α(x, y) = x2M−1 + x2M−3y2 + . . .+ xy2M−2,
β(x, y) = x2M−2y+x2M−4y3+ . . .+ y2M−1, and a (2M2−
M +2)× (2M2−M +2) matrix comprised by 2M2−M +2
planar points set Q = {Qi, i = 1, 2, . . . , 2M2 −M + 2} as:
DM (Q)[VM (Q1), VM (Q2), VM (Q3), · · · , VM (Q2M2−M+2)].

A similar criterion compared to Proposition IV-A is as
following. The proof is omitted since it is nearly the same
of the M = 2 case (Proposition IV-A).

For a set of 2M2 − M + 2 points: Q = {Qi, i =
1, 2, . . . , 2M2 − M + 2}, if the determinant |DM (Q)| ≠ 0,
where DM (Q) is given by IV-A, then the 2M2−M+2 points
do not locate in any curve defined by equation 11.

It is an important issue to find 2M2 −M +2 planar points
satisfying the restriction |DM (Q)| ≠ 0. By observing a class
of linearly independent polynomial functions, the restriction
|DM (Q)| ̸= 0 holds for almost all the 2M2 −M + 2 points.
In other words, the set of points satisfying |DM (Q)| = 0 in
R2M2−M+2 is a 0 Lebesgue measure set. Therefore, to check
the restriction, we can randomly select (2M2−M +2) points
in the plane R2, and then check the corresponding |DM (Q)|
equaling 0 or not. If not, we can slightly change some of them,
and the set of points probably shows up.

B. Consistence Condition

The consistence condition is defined as the requirement for
richness of the locations {(xi, yi)}, and a generation of the
notion introduced in the former subsection. These notions are
somewhat similar to ‘persistence of excitation condition’ in
Least Squares algorithm to guarantee the convergence.

A set of position coordinates {(xi, yi), i = 1, . . . , t} is
called C-2M -co-curved with respect to {Pi(ai, bi), i =
1, 2, . . . ,M}, if there exist another M positions
{P ′

i (a
′
i, b

′
i), i = 1, 2, . . . ,M} such that (xi, yi) satisfies

the equation:

M∏
i=1

√
(x− ai)2 + (y − bi)2 =

M∏
i=1

√
(x− a′i)

2 + (y − b′i)
2

(23)
for any i = 1, . . . , t. Otherwise, {(xi, yi), i = 1, . . . , t} is
called non-C-2M -co-curved.

Now we are in the position of obtaining a consistence result
in an ML estimation for multiple transmitter locations.

Assume that the location set {(xi, yi)}∞1 is in a bounded
region, and its limit set in the plane is denoted as Λ. If Λ
contains a subset Λ0 consisting of (2M2 − M + 2) points,
the points are non-C-2M -co-curved, and a series of noninter-
secting and successive index sets exist for the whole natural
numbers as {Aj , j = 1, 2, . . .} with |Aj | less than a constant
positive integer such that {(xi, yi) : i ∈ Aj} ∩ B(P, γj) ̸= ∅
for any ball B(P, γj) centered at P with radius γj [j∞]0,
∀P ∈ Λ0. Then, the ML estimation for model 2 with the
likelihood function given by 4 is in strong consistency, i.e.,
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the estimate converges to the true value with probability 1 as
the data number tends to infinity.

Proof. Theorem V is taken in the proof. Since the model
is assumed to be located in a local region, we need only to
check the two conditions therein. By the fact that the likelihood
function given by 4 and density for sj given by 3 are all
differentiable and continuous, the condition (ii) of Theorem V
is obviously satisfied.

To show V in Theorem V for density 3, by the
fact that the function log is invertible and continuous, it
is sufficient to show that maxj∈Ai | log f(sj ;xj , yj , P

′) −
log f(sj ;xj , yj , P )| ≥ δ0 > 0 ∀i,hold for P ′ ̸= P with all
sj belong to a fixed compact set. By noticing all parameters
are bounded, it is sufficient to require that

max
j∈Ai

| log f(s0;xj , yj , P
′)− log f(s0;xj , yj , P )| ≠ 0 (24)

hold for certain fixed s0. By further the fact described by IV-B,
it is sufficient to show that

max
(x,y)∈Λ0

| log f(s0;x, y, P ′)− log f(s0;x, y, P )| ≠ 0, (25)

which is equivalent to require that

max
(x,y)∈Λ0

∣∣∣∣(s0 −Msp + 10ϵ

M∑
i=1

log10 dij)
2

−(s0 −Msp + 10ϵ

M∑
i=1

log10 d
′
ij)

2

∣∣∣∣ ̸= 0 (26)

by substituting 3 into IV-B. For 26, it is sufficient to require
that

max
(x,y)∈Λ0

∣∣∣∣∣
M∑
i=1

log10 dij −
M∑
i=1

log10 d
′
ij

∣∣∣∣∣ ̸= 0, (27)

which is further sufficient to require that

max
(x,y)∈Λ0

∣∣∣∣ M∏
i=1

√
(x− ai)2 + (y − bi)2 −

M∏
i=1

√
(x− a′i)

2 + (y − b′i)
2

∣∣∣∣ ̸= 0. (28)

This is the so-called non-C-2M -co-curved for Λ0, and thus
the proof of the corresponding condition (i) of Theorem V is
finished. Hence, the assertion of the theorem follows.

Based on Theorem IV-B, the ML estimation for M transmit-
ter locations in 2 may fail even if the number of observation
tends to infinity in the event that the so-called non-C-2M -
co-curved condition fails. For example, the whole location set
{xi, yi}∞1 belongs to a single C-2M -curve. As a matter of
fact, even in the failure case, it is still possible to see that the
ML estimators converge to the true value, since the true value
is also the solution of the asymptotic likelihood function.

C. Explanations for Numerical Experiments

Now, by the help of Theorem IV-B, it is easy to explain
directly the numerical experiments in the former section.

1) The location set {(xi, yi), i = 1, 2, . . .} in Example III is
C-2M -co-curved, since they are all located in a cubic curve
described by following equation:

40y3 + 400y2 + 40x2y − 1200x2 + 160000 = 0, (29)

which is equivalent to√
(x+ 20)2 + y2 ·

√
(x− 20)2 + y2 =√

x2 + y2 ·
√
x2 + (y − 20)2. (30)

This means the corresponding P ′
1(0, 0), P

′
2(0, 20) in 11 with

P1(−20, 0), P ′
2(20, 0). In this case, the estimates for the

two locations P1, P2 may tend to P ′
1, P

′
2, which has been

discovered by the experiment.
2) Example III is a positive one. The corresponding location

set Λ0 in Theorem IV-B is the following 8 points set:

Λ0 = {(11, 0), (−12, 0), (0, 9), (0,−8), (10, 11),

(10,−10), (−10, 10), (−10,−10)}.

By calculating D2(Λ0) in Proposition IV-A, We find that

D2(Λ0) = 7148845009152000 ̸= 0. (31)

So, the so-called non-C-2M -co-curved condition hold for
Λ0. Hence, consistence holds, i.e., the ML estimates for
θ = [a1, b1, a2, b2]

T tend to true values as data volume tends
to infinity, which coincides with the numerical experiments.

V. CONCLUSION

We have analyzed the consistence condition of Maximum
Likelihood (ML) estimation for multiple transmitter locations
in a wireless network with cooperative receiver nodes. It is
found that the location set of receiver nodes should not locate
(or asymptotically in some sense) merely in an algebraic curve
of order 2M − 1, given by equation 11, if there are totally
M transmitters. The consistence of the ML estimation for M
transmitters holds when the limit set of locations contains a
subset, comprised of (2M2−M+2) points in a non-C-2M -co-
curved manner, which is a notion given by Definition IV-B.
We refer to Theorem IV-B for an exact description for the
condition. This condition can be compared to the persistent
excitation condition used to guarantee the convergence of least
squares algorithm [13].

Two numerical experiments were designed to demonstrate
the theoretical discoveries in both positive and negative as-
pects. All this experiments have been analyzed and explained
after main theoretical results established.

For future considerations, it is desired to find more efficient
numerical algorithm for the involved optimization issue to
minimize the function Mn(θ) given by 6. Because Mn is
generally not a convex function, there are many local minimum
points among the interested region, which causes some trouble
to find the global minimum. It is also of interest to detect the
consistence condition for more general and complicated case,
e.g., sp or even ϵ in 1 is unknown.
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APPENDIX

Here we copy Theorem 5.2 in [7] as a preliminary for
theoretical analysis. Mainly the same notations are introduced
below as in [12].

Let (X ,U , Pθ,Θ) be a statistical experiment, which means
(X ,U , Pθ) is a probability space for any θ ∈ Θ. Let Pθ be
absolutely continuous with respective to measure µ on U and
thus dPθ

dµ = p(X, θ), i.e., something like density function.
Let X be the observation data generated by certain statistical
experiment, then, the function p(X, θ) is called likelihood
function corresponding to the experiment and observation X .
The statistic θ̂ defined by

θ̂ = arg sup
θ∈Θ

p(X, θ) (32)

is called the maximum likelihood estimator for the parameter
θ based on the observation X . In the case of independent
identically distributed (iid) observations X1, . . . , Xn, where
Xi possesses the density f(x, θ) with respective to mea-
sure µ. The ML estimator θ̂n has a simple form as θ̂n =
arg supθ∈Θ

∏n
i=1 f(Xi, θ).

When observations X1, . . . , Xn are independent yet not
identically distributed, the ML estimator θ̂n is generally as
θ̂n = arg supθ∈Θ

∏n
i=1 f(Xi, θ̄i, θ), where θ̄i is a determin-

istic quantity (or vector). The issue to be faced now is to
estimate parameter θ by available observations and the varying
data {θ̄i}. Naturally, some restrictions upon the extra data set
{θ̄i} are required to guarantee the consistence.

In aforementioned iid case with likelihood function V, under
mild conditions the ML estimator θ̂n is strong consistent
(see Theorem 4.3 in chapter 1 of book [12]), i.e., θ̂nθ with
probability 1 as n∞. Below is a similar result established in
[7] for the case with likelihood function as V.

Let Θ be a bounded closed set in Rk, f(x, θ̄i, θ) be
a continuous function of θ ∈ Θ for almost all x ∈ X ,
i = 1, 2, . . ., {θ̄i} belongs to a compact set, and let the
following conditions be fulfilled:

(i) For any different θ, θ′ ∈ Θ, there exist fixed x0 and ε0 >

0 s.t. infj maxi∈Aj

∣∣∣√f(x0, θ̄i, θ)−
√
f(x0, θ̄i, θ′)

∣∣∣ > ε0 for
a series of nonintersecting and successive index sets for the
whole natural numbers as {Aj , j = 1, 2, . . .} with the volume
of Aj less than or equaling to a constant positive integer.

(ii) For all θ ∈ Θ, the derivative of
√

f(x, θ̄i, θ) satisfies

supi
∫
X supθ∈Θ

∣∣∣∣∂√f(x,θ̄i,θ)

∂θ

∣∣∣∣ dµ < ∞.

Then, for any fixed θ ∈ Θ the ML estimator θ̂n given by V
tends to θ as n∞ with probability 1.

ACKNOWLEDGMENT

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korean Government
(Grant No.: 2020R1I1A3072688).

REFERENCES

[1] O. I. Khalaf and B. M. Sabbar, An overview on wireless sensor networks
and finding optimal location of nodes, Periodicals of Engineering and
Natural Sciences (PEN) vol. 7, no. 3, pp. 1096-1101, 2019.

[2] J. Liang, M. Huan, X. Deng, T. Bao and G. Wang, Optimal transmitter
and receiver placement for localizing 2D interested-region target with
constrained sensor regions. Signal Processing, vol. 183, pp. 108032, 2021.
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