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Abstract—Spiking Neural Nnetworks (SNNs), the third 
generation Artificial Neural Networks (ANNs), are attractive 
because of their event-driven and sparsely spiking. An efficient 
train method is converting pre-trained ANNs to SNNs. There 
have been some approaches to decrease accuracy losses from 
ANNs to SNNs. However, their theoretical analyses are not 
enough and their effects still have room for improvement. In 
this paper, we analyze reasons of accuracy losses from ANNs to 
SNNs systematically. Then we propose an optimization method 
that can convert ANNs to SNNs with almost no accuracy loss, 
which is called finite-input-time (FIT). The MNIST database is 
employed to verify our analyses and optimization method. 
Simulation results are consistent with our analyses and show 
that our optimization method can convert ANNs to SNNs 
without accuracy loss.   

Keywords- spiking neural networks (SNNs); artificial neural 
networks (ANNs); conversion; finite-input-time (FIT); accuracy 
loss 

I. INTRODUCTION  
Artificial Neural networks (ANNs) have shown their 

great advantages in pattern recognition, image processing, 
and so on, and they almost have the start-of-the-art 
performance [1-5]. However, neural networks needs 
numerous computation efforts to successfully train them [6]. 
Efforts have been made to speed up execution or decrease 
costs of execution. In particular, Spiking Neural Networks 
(SNNs), the third generation ANNs, are considered as a 
promising choices to achieve such goals [7-9]. Neurons in 
SNNs spike sparsely and result in less computation. 
Moreover, the main operation in SNNs is addition, which 
means SNNs need less cost than ANNs when they have the 
same number of operations [6]. 

There have been some neuromorphic platforms for 
implementation of SNNs, which are fast and efficient, such 
as Minitaur, TrueNorth and SpiNNaker [10-12]. Therefore, 
developing methods to train SNNs with high accuracy is 
necessary. For SNNs with different coding methods (rate-
coding or temporal-coding), there are several approaches to 
train them [18-22]. A supervised learning algorithm called 
SpikeProp that can train temporal-coding SNNs is presented 
by Bohteet al. and some improved methods are proposed 
later [19]. Some supervised learning algorithms that can train 
rate-coding SNNs are also proposed [20]. What’s more, 
some unsupervised learning methods based on spiking-time-

dependent-plasticity (STDP) are presented, which are more 
brain-like [21,22]. There is also a method that converts pre-
trained ANNs to SNNs, which is more straightforward [6, 
23,24].  However, there is still no systematic analysis to 
answer why these optimization methods can work better and 
why there are still some accuracy losses from ANNs to 
SNNs. Effects of these methods still have room for 
improvement. 

 In this paper, we analyze systematically to explain 
reasons of accuracy losses and mechanisms of different 
optimization methods. Then we propose an optimization 
method called finite-input-time (FIT), which can convert 
ANNs to SNNs without accuracy loss. We employ the 
MNIST database, the fully connected neural networks and 
the convolutional neural networks that are used in [24] to 
demonstrate our analyses and optimization method.  

II. CONVERSION OF ANNS TO SNNS 
The basis that ANNs can be directly converted to SNNs 

is that the spiking rates of IF neurons in SNNs should be 
proportional to activations of neurons in ANNs. [23] gives 
an approach that pre-trained ANNs with ReLUs can be 
converted to SNNs, which is our basis  and will be described 
as follows. 

Assume there are an ANN and a corresponding SNN. 
The neurons in the ANN and the SNN are ReLUs and IF 
neurons respectively. And the kinds of information 
transmitted in the ANN and the SNN are continuous values 
and spikes respectively. Assume these two neural networks 
have L layers, the number of neurons in each layer 
is Νl(l∈1,2,· · ·, Λ), W l(l∈1,2,· · ·, L—1) is the weight 
matrix between layer l and layer l+1, and bl(l∈ 2, 3, · · · , L) 
is the bias matrix. Note that the bias matrix can be set to 0 if 
neural networks have no bias. Then the activation of neuron i 
in layer l in the ANN can be expressed as: 

( )—1 —1 1ll l l l
i jij i

N
j=1a = max 0, a +bω∑ —   (1) 

Assume the membrane potential of the corresponding neuron 
in the SNN is Vi

l(t), which has a change ΔVi
l(t) at every time 

step. ΔVi
l(t) can be computed as: 

( ) ( )—1 —1
,

—1
1

l l
t j

Nl l l
j=i ij iV t bω ε∆ = +∑   (2) 

Whereεl—1   t,jis a step function which indicates whether the 
neuron j in layer l—1generates a spike at time t. The step 
function can be expressed as: 
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where Vth is the threshold. When the membrane potential of 
an IF neuron exceeds the threshold, the IF neuron generates a 
spike and resets its membrane potential. There are two kinds 
of reset methods [6][24]: reset-to-zero and reset-by-
subtraction, which are expressed as: 
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,
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    (5) 

Assume the SNN is executed with a time step Δt, which 
means the highest spiking rate of all neurons is rmax = 1/Δt . 
When the neuron i has generated gi

l(t) spikes at time t, the 
spiking rate can be computed as ri

l(t) = gi
l(t)/t and its ideal 

spiking rate is ai
lrmax. Then the resulting spiking rates for IF 

neurons based on reset-to-zero and reset-by-subtraction in 
the input layer are computed as: 
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For neurons based on reset-to-zero, assume the input 
neuron i needs mi

1time steps to integrate its input currents to 
exceed the threshold, which means mi

1ai
1 ≥ Vth and 

(mi
1−1)·ai

1<Vth. Therefore, the membrane potential will 
always exceed the threshold a constant, which is noted as 
δi

1= mi
1 ai

1− Vth. As described in [6], the neuron loses its 
potential byδi

1for every mi
1time steps, and there is a loss of 

the membrane potential at the last time step. For neurons 
based on reset-by-subtraction, the input neuron i only loses 
the membrane potential at the last time step. Therefore, 
spiking rates of neurons based on reset-by-subtraction are 
more approximate to ai

1rmax. 
For neurons in other layers, the resulting spiking rates are: 
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hich means that neurons in higher layers receive spikes with 
slightly lower rates due to membrane potential losses layer 
by layer. Analyses for neurons in higher layers are similar to 
the input layer. Hence, neurons based on reset-by-subtraction 
can express ideal spiking rates with less loss than neurons 
based on reset-to-zero. In other words, SNNs based on reset-
by-subtraction will lose less accuracy. 

III. ANALYSES  
One deficiency in [6] is that it does not take the range of 

activations into account, which can affect accuracy losses 
significantly. When we use the MNIST database and the 

784-1200-1200-10 fully connected neural network employed 
in [24], the distribution of activations of the second layer is 
shown in Fig.1. We can see that several thousand activations 
are greater than 1 though most activations are less than 1. In 
[6], more activations are greater than 1. Usually, activations 
that are greater than 1 are significant for feature classification. 
Therefore, it is necessary to analyze more systematically. 

 
Figure 1.  Distribution of activations of the second layer. Only activations 

greater than zero are counted. 

For a ReLU in layer l, its activation is al i. The spiking 
rates of the IF neuron based on reset-to-zero and reset-by-
subtraction are noted as zrl i(t) and srl i(t) respectively. 
When al i≤ 1, we can consider zrl i(t) as the product of srl 
i(t) and a factor th

l
th i

V
V δ+
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. Note that here we think zri
l(t) and 

sri
l(t) have the same Δl

i(t). Therefore, sri
l(t) is more 

approximate to ai
l rmax than zri

l(t) and the SNN based on 
reset-by-subtraction loses less accuracy. 

When ai
l> 1, sri

l(t) will achieve rmax at ai
l =αs and keep 

constant even though ai
l is greater than αs . Here, αs is 

slightly greater than 1 and related with Δi
l(t). The reason for 

this phenomenon is that the SNN cannot express spiking 
rates that are greater than rmax. This will result in a bad 
conclusion that spiking rates of IF neurons are not 
proportional to activations and cannot reflect any difference 
of different activations, which may cause accuracy losses. 
Similarly, zri

l(t) will achieve rmax at ai
l= αz and keep constant 

even though ai 
lis greater than αz. However, αz is greater than 

αs because of the factor. Therefore, zri
l(t) can still reflect 

differences of different activations between αs and αz, which 
may cause less accuracy losses.  

Then we analyze further to explain why the optimization 
methods in [24] can work better. Here we only consider the 
data normalization method due to its better performance. The 
data normalization optimization method finds the maximum 
activation of each layer, and then rescales all weights by the 
maximum activation of each layer to make sure there is no 
activation that exceeds 1. We rename the optimization 
method to max-normalization. The max-normalization can 
be expressed as 

max_ l l lW W f= ⋅   (8) 
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where fl = 1/ fl −1al
maxand fl = 1. After rescaling, spiking rates 

of IF neurons are proportional to corresponding activations 
and SNNs based on reset-by-subtraction result in less 
accuracy losses than SNNs based on reset-to-zero according 
to analyses above. 

IV. FIT 
Though max-normalization can decrease accuracy losses 

by making all activations less than 1, some losses still cannot 
be avoided because spiking rates of IF neurons are not 
approximately equal to ideal rates due to rescaling. We want 
to achieve a goal that no accuracy is lost is required. 

We can know that the main reason that results in 
accuracy losses for reset-by-subtraction is that IF neurons 
cannot spike with rates approximately equal to ideal rates 
when activations are greater than αs, which can be called 
saturation. It seems that the parts of activations greater than 
αs are lost. In fact, they are not lost but stored. When we test 
the 784-1200-1200-10 fully connected neural network and 
the 28 × 28-16c5-2s-16c5-2s-10 convolutional neural 
network in [24], membrane potentials of output neurons are 
shown in Fig.2. Here we just show membrane potentials that 
are greater than zero which are valuable for classification. 
We can find that most membrane potentials are much greater 
than 1 in Fig. 2(a) and Fig. 2(b), which means that many 
spikes that should be fired are not fired. When we consider 
(6) again, we can find that the analytic reason is that Δl

i(t) is 
too large. It is obvious that the spiking rate can be expressed 
correctly when Δl

i(t) is small enough, in other words, spikes 
that are stored are fired. 

In [6, 23, 24], input neurons receive input currents at 
every time step, which means that neurons corresponding to 
activations that are greater than αs have no time to fire spikes 
stored in membrane potentials. Here we present an 
optimization method called finite-input-time (FIT) to solve 
this problem. Our method is to give finite time steps for input 
and give extra time steps to fire stored spikes. Therefore, the 
total execution times of SNNs consist of two parts: one part 
with input currents and the other without input currents. 
Firstly, give input currents to SNNs for T1 time steps to 
make all neurons that are significant for classification are 
activated enough. Then, SNNs are executed with extra T2 
time steps to make all stored spikes are fired and all 
membrane potentials remained are less than the threshold, 
which means Δl

i(t) is small enough to has little influence on 
final rates. Hence, our optimization method can make 
spiking rates of IF neurons approximately equal to 
activations of ReLUs without rescaling and convert ANNs to 
SNNs with almost no accuracy loss. 

 

 
Figure 2.  Distribution of membrane potentials of a) the fully connected 

SNN and b) the convolutional SNN. 

V. RESULTS 
To demonstrate our analyses and optimization method, 

the MNIST database, the fully connected neural networks 
and the convolutional neural networks in [24] are employed. 
The architecture of the fully connected neural network is 
784-1200-1200-10. It is trained to achieve an accuracy of 
98.84% on test set. The architecture of the convolutional 
neural network is 28×28-16c5-2s-16c5-2s-10. It has 16 
convolutional kernels of size 5×5 in the second layer and the 
forth layer. A 2×2 averaging subsampling window follows 
each convolutional layer. It is trained to achieve an accuracy 
of 99.14% on test set.  

Accuracies of SNNs based on reset-to-zero and reset-by-
subtraction are shown in Fig. 3. As is shown, accuracies of 
SNNs based on reset-by-subtraction are both lower than 
SNNs based on reset-to-zero.  

 
Figure 3.  Accuracies of SNNs based on reset-to-zero and reset-by-

subtraction. 
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Accuracies of SNNs optimized by max-normalization 
based on reset-to-zero and reset-by-subtraction are shown in 
Fig. 4. Obviously, accuracies of the fully connected SNN 
and the convolutional SNN based on reset-by-subtraction are 
both higher than SNNs based on reset-to-zero, which means 
reset-by-subtraction with max-normalization results in less 
accuracy losses than reset-to-zero. However, there are still 
some accuracy losses for both the fully connected SNN and 
the convolutional SNN compared to original ANNs.  

    
Figure 4.  Accuracies of SNNs based on reset-to-zero and reset-by-

subtraction with max-normalization. 

Fig. 5 shows accuracies of SNNs based on reset-by-
subtraction with FIT. As expected, there is no accuracy loss 
compared to original ANNs. Results also show that 5 (12) 
time steps are enough for input for the fully connected 
(convolutional) SNN and extra 4 (25) time steps are enough 
to achieve the expected accuracy. 

 

Figure 5.  Accuracies of SNNs with FIT. 

VI. CONCLUSION 
In this paper, we analyze reasons of accuracy losses from 

ANNs to SNNs systematically and explain why previous 
methods can get better results. An optimization method 
called FIT is presented to convert ANNs to SNNs without 
accuracy loss, which limits input time steps and gives extra 
time steps to fire stored spikes. Results based on the MNIST 
database, the fully connected neural network and the 
convolutional neural network are consistent with our 
analyses.  
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