
Building Efficient Event-driven Networks from
Frame-driven Networks with FIT

Yang Zhao, Haibo Wang, Yang Yang*
Computational Aerodynamic Institute China Aerodynamic Research and Development Center (CARDC) Mianyang, China

E-mail:emyong@cardc.cn
*Corresponding author

Abstract—Spiking Neural Nnetworks (SNNs), the third
generation Artificial Neural Networks (ANNs), are attractive
because of their event-driven and sparsely spiking. An efficient
train method is converting pre-trained ANNs to SNNs. There
have been some approaches to decrease accuracy losses from
ANNs to SNNs. However, their theoretical analyses are not
enough and their effects still have room for improvement. In
this paper, we analyze reasons of accuracy losses from ANNs to
SNNs systematically. Then we propose an optimization method
that can convert ANNs to SNNs with almost no accuracy loss,
which is called finite-input-time (FIT). The MNIST database is
employed to verify our analyses and optimization method.
Simulation results are consistent with our analyses and show
that our optimization method can convert ANNs to SNNs
without accuracy loss.

Keywords- spiking neural networks (SNNs); artificial neural
networks (ANNs); conversion; finite-input-time (FIT); accuracy
loss

I. INTRODUCTION
Artificial Neural networks (ANNs) have shown their

great advantages in pattern recognition, image processing,
and so on, and they almost have the start-of-the-art
performance [1-5]. However, neural networks needs
numerous computation efforts to successfully train them [6].
Efforts have been made to speed up execution or decrease
costs of execution. In particular, Spiking Neural Networks
(SNNs), the third generation ANNs, are considered as a
promising choices to achieve such goals [7-9]. Neurons in
SNNs spike sparsely and result in less computation.
Moreover, the main operation in SNNs is addition, which
means SNNs need less cost than ANNs when they have the
same number of operations [6].

There have been some neuromorphic platforms for
implementation of SNNs, which are fast and efficient, such
as Minitaur, TrueNorth and SpiNNaker [10-12]. Therefore,
developing methods to train SNNs with high accuracy is
necessary. For SNNs with different coding methods (rate-
coding or temporal-coding), there are several approaches to
train them [18-22]. A supervised learning algorithm called
SpikeProp that can train temporal-coding SNNs is presented
by Bohteet al. and some improved methods are proposed
later [19]. Some supervised learning algorithms that can train
rate-coding SNNs are also proposed [20]. What’s more,
some unsupervised learning methods based on spiking-time-

dependent-plasticity (STDP) are presented, which are more
brain-like [21,22]. There is also a method that converts pre-
trained ANNs to SNNs, which is more straightforward [6,
23,24]. However, there is still no systematic analysis to
answer why these optimization methods can work better and
why there are still some accuracy losses from ANNs to
SNNs. Effects of these methods still have room for
improvement.

 In this paper, we analyze systematically to explain
reasons of accuracy losses and mechanisms of different
optimization methods. Then we propose an optimization
method called finite-input-time (FIT), which can convert
ANNs to SNNs without accuracy loss. We employ the
MNIST database, the fully connected neural networks and
the convolutional neural networks that are used in [24] to
demonstrate our analyses and optimization method.

II. CONVERSION OF ANNS TO SNNS
The basis that ANNs can be directly converted to SNNs

is that the spiking rates of IF neurons in SNNs should be
proportional to activations of neurons in ANNs. [23] gives
an approach that pre-trained ANNs with ReLUs can be
converted to SNNs, which is our basis and will be described
as follows.

Assume there are an ANN and a corresponding SNN.
The neurons in the ANN and the SNN are ReLUs and IF
neurons respectively. And the kinds of information
transmitted in the ANN and the SNN are continuous values
and spikes respectively. Assume these two neural networks
have L layers, the number of neurons in each layer
is Νl(l∈1,2,· · ·, Λ), W l(l∈1,2,· · ·, L—1) is the weight
matrix between layer l and layer l+1, and bl(l∈ 2, 3, · · · , L)
is the bias matrix. Note that the bias matrix can be set to 0 if
neural networks have no bias. Then the activation of neuron i
in layer l in the ANN can be expressed as:

()—1 —1 1ll l l l
i jij i

N
j=1a = max 0, a +bω∑ — (1)

Assume the membrane potential of the corresponding neuron
in the SNN is Vi

l(t), which has a change ΔVi
l(t) at every time

step. ΔVi
l(t) can be computed as:

() ()—1 —1
,

—1
1

l l
t j

Nl l l
j=i ij iV t bω ε∆ = +∑ (2)

Whereεl—1 t,jis a step function which indicates whether the
neuron j in layer l—1generates a spike at time t. The step
function can be expressed as:

978-1-950467-24-2/2019 ©2019 IEC and Authors

2019 Scientific Conference on Network, Power Systems and Computing (NPSC 2019)

-175-

() ()(), 1l l l
t i i i thV t V t Vε ε= − + ∆ − (4)

where Vth is the threshold. When the membrane potential of
an IF neuron exceeds the threshold, the IF neuron generates a
spike and resets its membrane potential. There are two kinds
of reset methods [6][24]: reset-to-zero and reset-by-
subtraction, which are expressed as:

()
() ()()()
() ()

,

,

1 1 - -
- -1

l l l
i i t il

i l l l
i i th t i

V t V t reset to zero
V t

reset by subtractionV t V t V

e

e

 - + ∆ -= 
- + ∆ -

 (5)

Assume the SNN is executed with a time step Δt, which
means the highest spiking rate of all neurons is rmax = 1/Δt .
When the neuron i has generated gi

l(t) spikes at time t, the
spiking rate can be computed as ri

l(t) = gi
l(t)/t and its ideal

spiking rate is ai
lrmax. Then the resulting spiking rates for IF

neurons based on reset-to-zero and reset-by-subtraction in
the input layer are computed as:

()

()
()

()

1
1

max 1 1
1

1
1

max

- -
- -

ith
i

th i th i
i

t
i

th

V tV
a r

V t V reset to zero
r t

reset by subtractionV t
a r

t V

δ δ


⋅ - + ⋅ += 
 - ⋅

(6)

For neurons based on reset-to-zero, assume the input
neuron i needs mi

1time steps to integrate its input currents to
exceed the threshold, which means mi

1ai
1 ≥ Vth and

(mi
1−1)·ai

1<Vth. Therefore, the membrane potential will
always exceed the threshold a constant, which is noted as
δi

1= mi
1 ai

1− Vth. As described in [6], the neuron loses its
potential byδi

1for every mi
1time steps, and there is a loss of

the membrane potential at the last time step. For neurons
based on reset-by-subtraction, the input neuron i only loses
the membrane potential at the last time step. Therefore,
spiking rates of neurons based on reset-by-subtraction are
more approximate to ai

1rmax.
For neurons in other layers, the resulting spiking rates are:

()

()
()

()

max

max

- -
- -

l
ithl

i l l
th i th il

i l
tl

i
th

tV
a r

V t V reset to zero
r t

reset by subtractiont
a r

t V

δ δ
 ∆

⋅ - + ⋅ += 
∆ - ⋅

(7)

1 1

1 2 1 11 11

—1 1 1
1 1() (() () ()) / ()l

l l ll l

N Nl l l l
t i i i i i i i thi it V t V t V t t Vω ω

= =
∆ = + + + ⋅∑ ∑

—

—— —

—1

,
w

hich means that neurons in higher layers receive spikes with
slightly lower rates due to membrane potential losses layer
by layer. Analyses for neurons in higher layers are similar to
the input layer. Hence, neurons based on reset-by-subtraction
can express ideal spiking rates with less loss than neurons
based on reset-to-zero. In other words, SNNs based on reset-
by-subtraction will lose less accuracy.

III. ANALYSES
One deficiency in [6] is that it does not take the range of

activations into account, which can affect accuracy losses
significantly. When we use the MNIST database and the

784-1200-1200-10 fully connected neural network employed
in [24], the distribution of activations of the second layer is
shown in Fig.1. We can see that several thousand activations
are greater than 1 though most activations are less than 1. In
[6], more activations are greater than 1. Usually, activations
that are greater than 1 are significant for feature classification.
Therefore, it is necessary to analyze more systematically.

Figure 1. Distribution of activations of the second layer. Only activations

greater than zero are counted.

For a ReLU in layer l, its activation is al i. The spiking
rates of the IF neuron based on reset-to-zero and reset-by-
subtraction are noted as zrl i(t) and srl i(t) respectively.
When al i≤ 1, we can consider zrl i(t) as the product of srl
i(t) and a factor th

l
th i

V
V δ+

(= 1th th
l l l

th i i i

V V
V m aδ

<
+ ⋅

), which is expressed

as ()
max()

l
i thl

i l lth i i

t Va r t V m a
∆− ⋅
⋅ ⋅

. Note that here we think zri
l(t) and

sri
l(t) have the same Δl

i(t). Therefore, sri
l(t) is more

approximate to ai
l rmax than zri

l(t) and the SNN based on
reset-by-subtraction loses less accuracy.

When ai
l> 1, sri

l(t) will achieve rmax at ai
l =αs and keep

constant even though ai
l is greater than αs . Here, αs is

slightly greater than 1 and related with Δi
l(t). The reason for

this phenomenon is that the SNN cannot express spiking
rates that are greater than rmax. This will result in a bad
conclusion that spiking rates of IF neurons are not
proportional to activations and cannot reflect any difference
of different activations, which may cause accuracy losses.
Similarly, zri

l(t) will achieve rmax at ai
l= αz and keep constant

even though ai
lis greater than αz. However, αz is greater than

αs because of the factor. Therefore, zri
l(t) can still reflect

differences of different activations between αs and αz, which
may cause less accuracy losses.

Then we analyze further to explain why the optimization
methods in [24] can work better. Here we only consider the
data normalization method due to its better performance. The
data normalization optimization method finds the maximum
activation of each layer, and then rescales all weights by the
maximum activation of each layer to make sure there is no
activation that exceeds 1. We rename the optimization
method to max-normalization. The max-normalization can
be expressed as

max_ l l lW W f= ⋅ (8)

2019 Scientific Conference on Network, Power Systems and Computing (NPSC 2019)

-176-

where fl = 1/ fl −1al
maxand fl = 1. After rescaling, spiking rates

of IF neurons are proportional to corresponding activations
and SNNs based on reset-by-subtraction result in less
accuracy losses than SNNs based on reset-to-zero according
to analyses above.

IV. FIT
Though max-normalization can decrease accuracy losses

by making all activations less than 1, some losses still cannot
be avoided because spiking rates of IF neurons are not
approximately equal to ideal rates due to rescaling. We want
to achieve a goal that no accuracy is lost is required.

We can know that the main reason that results in
accuracy losses for reset-by-subtraction is that IF neurons
cannot spike with rates approximately equal to ideal rates
when activations are greater than αs, which can be called
saturation. It seems that the parts of activations greater than
αs are lost. In fact, they are not lost but stored. When we test
the 784-1200-1200-10 fully connected neural network and
the 28 × 28-16c5-2s-16c5-2s-10 convolutional neural
network in [24], membrane potentials of output neurons are
shown in Fig.2. Here we just show membrane potentials that
are greater than zero which are valuable for classification.
We can find that most membrane potentials are much greater
than 1 in Fig. 2(a) and Fig. 2(b), which means that many
spikes that should be fired are not fired. When we consider
(6) again, we can find that the analytic reason is that Δl

i(t) is
too large. It is obvious that the spiking rate can be expressed
correctly when Δl

i(t) is small enough, in other words, spikes
that are stored are fired.

In [6, 23, 24], input neurons receive input currents at
every time step, which means that neurons corresponding to
activations that are greater than αs have no time to fire spikes
stored in membrane potentials. Here we present an
optimization method called finite-input-time (FIT) to solve
this problem. Our method is to give finite time steps for input
and give extra time steps to fire stored spikes. Therefore, the
total execution times of SNNs consist of two parts: one part
with input currents and the other without input currents.
Firstly, give input currents to SNNs for T1 time steps to
make all neurons that are significant for classification are
activated enough. Then, SNNs are executed with extra T2
time steps to make all stored spikes are fired and all
membrane potentials remained are less than the threshold,
which means Δl

i(t) is small enough to has little influence on
final rates. Hence, our optimization method can make
spiking rates of IF neurons approximately equal to
activations of ReLUs without rescaling and convert ANNs to
SNNs with almost no accuracy loss.

Figure 2. Distribution of membrane potentials of a) the fully connected

SNN and b) the convolutional SNN.

V. RESULTS
To demonstrate our analyses and optimization method,

the MNIST database, the fully connected neural networks
and the convolutional neural networks in [24] are employed.
The architecture of the fully connected neural network is
784-1200-1200-10. It is trained to achieve an accuracy of
98.84% on test set. The architecture of the convolutional
neural network is 28×28-16c5-2s-16c5-2s-10. It has 16
convolutional kernels of size 5×5 in the second layer and the
forth layer. A 2×2 averaging subsampling window follows
each convolutional layer. It is trained to achieve an accuracy
of 99.14% on test set.

Accuracies of SNNs based on reset-to-zero and reset-by-
subtraction are shown in Fig. 3. As is shown, accuracies of
SNNs based on reset-by-subtraction are both lower than
SNNs based on reset-to-zero.

Figure 3. Accuracies of SNNs based on reset-to-zero and reset-by-

subtraction.

2019 Scientific Conference on Network, Power Systems and Computing (NPSC 2019)

-177-

Accuracies of SNNs optimized by max-normalization
based on reset-to-zero and reset-by-subtraction are shown in
Fig. 4. Obviously, accuracies of the fully connected SNN
and the convolutional SNN based on reset-by-subtraction are
both higher than SNNs based on reset-to-zero, which means
reset-by-subtraction with max-normalization results in less
accuracy losses than reset-to-zero. However, there are still
some accuracy losses for both the fully connected SNN and
the convolutional SNN compared to original ANNs.

Figure 4. Accuracies of SNNs based on reset-to-zero and reset-by-

subtraction with max-normalization.

Fig. 5 shows accuracies of SNNs based on reset-by-
subtraction with FIT. As expected, there is no accuracy loss
compared to original ANNs. Results also show that 5 (12)
time steps are enough for input for the fully connected
(convolutional) SNN and extra 4 (25) time steps are enough
to achieve the expected accuracy.

Figure 5. Accuracies of SNNs with FIT.

VI. CONCLUSION
In this paper, we analyze reasons of accuracy losses from

ANNs to SNNs systematically and explain why previous
methods can get better results. An optimization method
called FIT is presented to convert ANNs to SNNs without
accuracy loss, which limits input time steps and gives extra
time steps to fire stored spikes. Results based on the MNIST
database, the fully connected neural network and the
convolutional neural network are consistent with our
analyses.

REFERENCES
[1] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. In:

2015 IEEE Conference on Computer Vision and Pattern Recognition ,
Boston, 2015. 1-9.

[2] Simonyan K, and Zisserman A. Very deep convolutional networks for
large-scale image recognition. In: International Conference on
Learning Representations, Banff, 2014. 1-14.

[3] Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual
recognition challenge. Int J Comput Vis, 2015, 115: 211-252.

[4] Wang Y, Xie Z, Xu K, et al. An efficient and effective convolutional
auto-encoder extreme learning machine network for 3d feature
learning. IEEE Trans Circuits Syst II Exp Briefs, 2016, 174: 988-998.

[5] Lan Q, Wang Z, Wen M, et al. High Performance Implementation of
3D Convolutional Neural Networks on a GPU. Comput Intel Neurosc,
2017, 2017: 1-8.

[6] Rueckauer B, Lungu I A, Hu Y, et al. Conversion of Continuous-
Valued Deep Networks to Efficient Event-Driven Networks for Image
Classification. Front Neurosci, 2017, 11: 682.

[7] Maass W. Lower bounds for the computational power of networks of
spiking neurons. Neural Comput, 1997, 8: 1-40.

[8] Farabet, C, Paz R, Prez-Carrasco J, et al. Comparison between
frame-constrained fix-pixelvalue and frame-free spiking-dynamic-
pixel convNets for visual processing. Front Neurosci, 2012, 6: 32.

[9] Neil D, Pfeiffer M, and Liu S C. Learning to be efficient: algorithms
for training low-latency, low-compute deep spikingneural networks.
In: Proceedings of the 31st Annual ACM Symposium on Applied
Computing , Pisa, 2016. 293-298.

[10] Neil D, and Liu S C. Minitaur, an event-driven FPGA-based spiking
network accelerator. IEEE Trans Very LargeScale Integr Syst, 2014,
22: 2621-2628.

[11] Merolla P A, Arthur J V, Alvarez-Icaza R, et al. A million spiking-
neuron integrated circuit with a scalable commu-nication network and
interface. Science, 2014, 345: 668-673.

[12] Furber S B, Galluppi F, Temple S, and Plana L A. The
SpiNNakerproject. Proc. IEEE, 2014, 102: 652-665.

[13] Diehl P U, Pedroni B U, Cassidy A, et al. TrueHappiness:
neuromorphic emotion recognition on TrueNorth. In: Proceedings of
the International Joint Conference on Neural Networks, Vancouver,
2016. 4278-4285.

[14] Diehl P U, Zarrella G, Cassidy A, et al. Conversion of artificial
recurrent neural networks to spiking neural networks for low-power
neuromorphic hardware. In: IEEE International Conference on
Rebooting Computing, San Diego, 2016. 1-8.

[15] Merkel C, Hasan R, Soures N, et al. Neuromemristive Systems:
Boosting Efficiency through Brain-Inspired Computing. Computer,
2016, 49: 56-64.

[16] Sheridan P, Ma W, Lu W. Pattern recognition with memristor
networks. In: IEEE International Symposium on Circuits and Systems,
Melbourne VIC, 2014. 1078-1081.

[17] Yao P, Wu H, Gao B, et al. Neuromorphic Hardware System for
Visual Pattern Recognition With Memristor Array and CMOS
Neuron. IEEE Trans Ind Electron, 2015, 62: 2410-2419.

[18] Bohte S M, Poutre J A L, Kok J N. Error-backpropagation in
temporally encoded networks of spiking neurons. Neurocomputing,
2002, 48: 17-37.

[19] Xu Y, Zeng X, Han L, et al. A supervised multi-spike learning
algorithm based on gradient descent for spiking neural networks.
Neural Networks, 2013, 43:99-113.

[20] Ponulak F, Kasinski A. Supervised learning in spiking neural
networks with ReSuMe-Sequence learning, classification, and spike
shifting. Neural Comput, 2010, 22: 467-510.

[21] Diehl P U, Cook M. Unsupervised learning of digit recognition using
spike-timing-dependent plasticity. Front Comput Neurosc, 2015, 9:
99.

2019 Scientific Conference on Network, Power Systems and Computing (NPSC 2019)

-178-

[22] Zeng Y, Zhang T, Xu B. Improving multi-layer spiking neural
networks by incorporating brain-inspired rules. Sci China Inf Sci,
2017, 60: 052201.

[23] Cao Y, Chen Y, and Khosla D. Spiking deep convolutional neural
networks for energy-efficient object recognition. Int J Comput Vis,
2015, 113: 54-66.

[24] Diehl P U, Neil D, Binas J, et al. Fast-classifying, high-accuracy
spiking deep networks through weight and threshold balancing. In:
Proceedings of the International Joint Conference on Neural
Networks, Killarney, 2015. 1-8.

2019 Scientific Conference on Network, Power Systems and Computing (NPSC 2019)

-179-

	I. Introduction
	II. Conversion of ANNs to SNNs
	III. Analyses
	IV. FIT
	V. RESULTS
	VI. Conclusion
	References

