
Secure Software Updates for Intelligent Connected
Vehicles

Yunshui Zhou, Xinkai Wu, Pengcheng Wang*
School of Transportation Science and Engineering, Beihang University, Beijing, China,100191

Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing, 100191
pcwang@buaa.edu.cn
*Corresponding author

Abstract—With the emergence and application of intelligent
and connected technologies, the Intelligent Connected vehicle
(ICV) becomes the most promising manner to improve
transportation. Meanwhile, the demand to update the software
is also increasing to repair the bug in the software or introduce
new functions for the automobile. This paper develops a new
distributed remote software update system for automobiles
which includes the OEM (Original Equipment Manufacturer),
supplier and supervisory authority. In this system architecture,
the OEM is able to delegate supplier to update software, so the
OEM and supplier can coordinate with each other to perform
the security software update. In this process, the government
as a regulator needs to supervise the software update
information. In the end, a prototype system is developed to
verify the feasibility of our update system.

Keywords—connected vehicle; remote software updates;
security; distributed

I. INTRODUCTION
The number of electronic control units (ECUs) on each

vehicle has reached hundreds, and the number of software
codes exceeds 100 million lines, which has dramatically
increased the complexity of the software system of the entire
vehicle. After the car leaves the factory, you need to upgrade
the original software and firmware for introducing new
features, fixing software bugs or security vulnerabilities. The
traditional way of updating software requires recalling the
car to the 4S store and updating the software via a wired
interface such as OBD or USB. This method cannot timely
update software for large-scale vehicles, and the cost is very
high.

The Over-the-Air (OTA) update [4] has become a trend
in automotive software updates. The OTA upgrade also
means exposing the car's internal software to the public
network, thereby increasing the attack surface of the car, and
the attacker can launch the attack remotely to the car [7]. The
existing secure OTA system for automobile leverage
cryptographic methods [1] [2][3] and blockchain-based
methods [8] [9] to ensure the integrity, authenticity and
confidentiality of software update package. But these
systems, which do not consider the supply chain model of the
automotive industry or involve the supplier of vehicle
components. In addition, the regulator of the automotive
industry cannot participate in the procedure of software
update. Regulators need to consider the software security and
compliance of automotive software updates for safety
reasons. For example, they want to scan the software to
detect if there are backdoors or known vulnerabilities.

In this study, we proposed a novel automotive security
software update system, i.e., distributed automotive software
update, which requires the OEM (Original Equipment
Manufacturer), the software provider, and the regulator to
cooperate with each other. This system can increase the
security of software updates for the automobile. A proof-of-
concept system is implemented to evaluate the applicability
of the proposed software update architecture.

II. BACKGROUND

A. Secure Automotive Software Updates
With the increase of the intelligent level of vehicle parts,

more and more software and hardware are embedded inside
the vehicle. There is no doubt that the increase of vehicle
complexity will bring difficulties in maintenance.
Additionally, the need for software and firmware upgrades is
growing. To this end, the OTA update, a simple and
convenient method is encouraged and investigated by many
scholars and engineers.

Although the OTA update makes the upgrade of software
more convenient, it also introduces some extra attack
surfaces [6]. The attacker may even install malicious
software on vehicles by exploiting the OTA process. The
most important security requirements of software updates are
authenticity and integrity [10]. The authenticity means that
all the software/firmware to be updated are released by the
trusted organization but not the malicious organization. The
integrity requires the update packages have not been
tampered in the transmission process. Hash algorithm and
digital signature are the common methods [3] to ensure
authenticity and integrity. In the following text, we will
introduce these two methods.

B. Hash Algorithm
Because of its strong anti-collision property, the hash

function[11] has become the most widely used technology in
verifying data integrity. The working principle of the hash
function is to accept variable-length messages, output fixed-
length hash values, and it is irreversible. The common hash
algorithms are Message Digest algorithm and Secure Hash
Algorithm, we use the SHA256 because of the collision-
resistant characteristic.

C. Cryptographic Digital Signature
Digital signature [5] plays an important role in the

realization of identity authentication, data integrity, non-
repudiation, and other functions. We use the digital signature
to protect the authenticity of the software update package.

978-1-950467-24-2/2019 ©2019 IEC and Authors

2019 Scientific Conference on Network, Power Systems and Computing (NPSC 2019)

-109-

Digital signature provides an authentication method,
which makes use of data encryption technology and data
transformation technology to enable the receiver to identify
the identity claimed by the sender. The sender can not deny
the fact that the data has been sent in the future. Digital
signature is based on public key cryptography. In public key
cryptosystem, the signer has his own private key and the
corresponding public key is public. Then the signer encrypts
the data with his own private key. Others can use the public
key of the signer to decrypt the data. Firstly, the sender
transforms the information mathematically, and the
information obtained corresponds uniquely to the original
information. Then the sender inversely transforms the
original information to get the original information. As long
as the mathematical transformation method is designed
reasonably, the transformed information has strong security
in transmission, and it is difficult to be decoded and
tampered.

We use RSA-based signature scheme in the software
system. RSA public key cryptosystem was proposed in 1978
by Rivest, Shamir and Adelman, three young scientists of
MIT, and named after three inventors. It is the first mature
and theoretically most successful asymmetric key
cryptosystem. The security of RSA is based on the difficulty
of factorization of large integers. The problem of large
integer factorization is a well-known problem in mathematics.
So far, there is no effective way to solve it, so the security of
RSA algorithm can be ensured.

III. DISTRIBUTED SOFTWARE UPDATE SYSTEM

Fig. 1. The architecture of secure automotive software update

In this section, we propose our secure automotive
software update systems. First, we present the architecture of
our software update system, and illustrate the different roles
in this system and their duty for software. Second, we
explain how software updates are sent to vehicles. Third, we
describe the procedure of downloading and verifying
software updates on a vehicle. Finally, we analyze the
security of this software updates system.

A. Automotive Software Update System Architecture
To make up the shortcomings of traditional automotive

software update system, we proposed the distributed
automotive software update system which involves OEM,
Software Provider, and Regulator. The OEM can customize
the software for different vehicles, but it does not need to
manage and maintain all software packages. The OEM plays

the role of director, it is able to delegate software provider to
supply software products. Also, it can monitor the software
update behavior conducted by the delegated third parts. In
addition, the OEM can also allow the regulator to detect the
software update package, which introduces additional
security needs for software updates. The architecture is
showed in Fig. 1.

Master Repository: The OEM sets up the master
repository, and it offers the metadata of software updates for
different vehicles. The metadata contains the version of the
software, the hash of the software, the URL of the image
repository, and the public key of the image repository which
managed and maintained by the software provider. Besides,
the metadata is signed using the private key by the OEM,
which ensures the authenticity of the metadata. The OEM
can also empower regulator nodes by maintaining the list of
public key binding to authorized regulator nodes. When
vehicles need to update the software, they obtain the
metadata from the master repository, then downloading the
software image from image repository according to the
image repository’s address in the metadata.

Image Repository: The image repository managed by
software provider accommodate the software image and its
metadata, which includes the version, hash of image,
filename, and the public key of the image repository. In
addition, the image repository would sign the metadata using
its private key.

Regulator Node: The regulator node managed by
government supervisory authority is empowered by master
repository. Supervisory authorities can force enterprises to
authorize the establishment of regulator nodes through laws
and regulations. It pulls the metadata and software image
from master repository and image repository, then reviews
the software image to detect if there are backdoor or
vulnerabilities. Only after the software is attested can the
software image be downloaded by vehicles. In the regulator
node, a table is maintained and records the attestation of the
software image. So vehicles will know if the software image
they want to download is allowed to download by regulator.

B. Releasing Software Updates
In this subsection, we present the workflow of releasing

software updates. We will explain the whole corresponding
procedure of releasing a software update to show how our
update system to securely distribute a new software image to
vehicles, and illustrate how the aforementioned three roles
cooperate with each other to ensure the security of software
updates.

First, the OEM as the director of this system will
initialize the system. It will store the public key of the
software and the regulator node, which can be implemented
by Public Key Instructure (PKI). Also, it will notify other
roles its public key. Before the vehicle leaving the OEM’s
factory, the OEM will install its software update client in
vehicles, which can visit the master repository and store the
public key of master repository so vehicles are able to gain
the software updates and verify the signature of master
repository. The master repository directs the whole software
update process. It will customize the software for different
vehicles. In the master repository, the OEM will offer the
metadata of software image distributed to according vehicles.
However, the software image and the metadata of the image

2019 Scientific Conference on Network, Power Systems and Computing (NPSC 2019)

-110-

will be issued by the image repository, i.e. software provider.
When the provider needs to push a new software image, it
will generate the metadata of the image. We define the
metadata of an updated image as the tuple Mi = (Uid, Uv,
Uhash, Ppk, Psign) where Uid is the identifier of update software
image, Uv is the version of the image, Uhash is the hash of
image, Ppk is public key of software provider, and Psign is the
signature of all previous fields signed by the software
provider. If the confidentiality of the image is a concern for
protecting intellectual property, the image will be encrypted
before distributed using the method of broadcast encryption.
After the metadata Mi is generated, the Mi will be sent to the
OEM, so the OEM will know a new version of Uid has been
supplied.

When an update notification is sent from image
repository, the OEM will verify the authenticity of the
metadata. If the master repository confirms the authenticity
of this metadata, the master repository will sign this metadata
Mi using its own private key and generate the metadata Mm
= (Mi, Opk, Osign) where Opk is the public key of the OEM
and Osign is the signature of the OEM. Then this metadata
Mm is sent to the regulator node. In addition, the master
repository will generate another metadata Mv pushed to the
target vehicles, Mv = (Mi, Rpk, Opk, Osign) where Rpk is the
public of regulator node, so the target vehicles are able to
verify if the software image is attested by regulator node. For
different target vehicles, the master repository will maintain
a list of the software image, i.e. a list of Mv. The target
vehicle can obtain the newest version metadata from its
corresponding software list.

After the regulator node receives the metadata Mm from
the master repository, it will verify the signature. Then it will
download the software image from the image repository and
its metadata Mi, and verify the integrity and authenticity of
the image. Finally, it will scan and detect the software image.
Only after passing the review, the regulator will generate the
Mr = (Mi, Rpk, Rsign) where the Rsign is the signature of
previous filed. This indicates the software update is attested
by the regulator node. Therefore, vehicles can verify the
metadata Mr to know if the software update is attested by the
regulator node.

C. Downloading and Verifying Software Updates
On a vehicle, the update gateway obtains updates from

repositories and the other nodes obtaining software updates
from the update gateway. The whole update process has two
phases. In the first phase, the gateway period queries the
newest version of the software image from the list of
software image metadata in master repository. If the version
of the existing software is not the newest version, it will
conduct the software update and download the latest
software image and metadata. First, if download the
metadata Mv from the master repository and verify the
authenticity of the metadata by the signature. If the signature
is signed by the OEM, the vehicle will obtain the metadata
Mr from the regulator node. If the corresponding Mr is
signed by the regulator node, the vehicle will verify the
signature which indicates the software image is attested by
regulator node. Then the vehicle will continue to download
the metadata Mi and image from the image repository, then
verify the signature is signed by the Ppk in Mi. Finally, the
vehicle will apply hash algorithm on the image, and verify
whether the output equals the Uhash in Mi. If the verification

fails, it shows the integrity of the image is attacked, the
image will be discarded. Otherwise, the whole verify process
carried out by gateway is successful, the metadata Mi and
image will be stored and then distributed to the
corresponding node in the vehicle.

In the second phase, the updated gateway sends the
software image and metadata to the other node, i.e., ECUs in
the vehicle. Because of the computing resources constrain of
ECU, the ECU only verifies the metadata Mi and the image.
Like the gateway, the ECU will verify the signature of Mi
and computing the hash of the image, then compare with the
Uhash in Mi.

IV. PROTOTYPE IMPLEMENTATION
In this section, we describe the prototype implementation

of the secure software update system proposed in the
previous section. The implemented prototype system consists
of two main building parts. First, the repository node
includes the three roles, i.e., the master repository, the image
repository and the regulator node to offer the software image
and metadata for target vehicles. The second is the local
building block including the updated gateway and ECUs.

Fig. 2. The prototype implementation

The repository is deployed in the same physical machine
but in the different virtual machine. We use the Virtualbox to
host the three repositories, which installs Ubuntu operating
system and developed used Python3 due to its capability of
rapid prototyping development. They use the HTTP protocol
to communicate with each other.

As showed in Fig. 2, for simulating the process of
software update on the vehicle, we use RaspberryPi3 and
S32K MCU as the gateway and ECU respectively. Because
of the RaspberryPi3 runs a Linux system and has a similar
computing resource with the gateway in modern vehicles,
and the S32K MCU, developed by NXP, is a common
controller used in automobiles. The RaspberryPi3 can
communicate with repositories by HTTP, and communicate
with ECU by CAN-bus. However, the RaspberryPi3 have no
CAN-bus module, so we use the MCP2515 module which is
an adapter transforming SPI to CAN. As for the software
stack, we utilize the socket can which is provided by Linux.
On the gateway, we develop the update manager using
Python3, which gets the software from repositories and sends
to ECU. On the ECU, we develop the bootloader which can

2019 Scientific Conference on Network, Power Systems and Computing (NPSC 2019)

-111-

get software image from the gateway, verify the image and
install the image.

V. CONCLUSION
In this paper, we present a distributed secure software

update system for automobile able to involve the OEM, the
software provider and regulator of automotive industry. Our
update architecture provides the security and trustworthy
interconnection between all the involved roles while ensuring
the authenticity and integrity of software updates. We also
present a preference implementation to show the feasibility
of this architecture. But we do not evaluate the performance
of our system. We plan to compare our performance with the
traditional automotive update system and improve our
implementation.

ACKNOWLEDGMENT
This work was partially supported by the National Key

Research and Development Program of China
(2016YFB0100902) and the National Science Foundation of
China under Grant (61773040).

REFERENCES
[1] .Hossain, I, Mahmud, S, Analysis of a secure software upload

technique in advanced vehicles using wireless links, Intelligent
Transportation Systems Conference, 1010–1015, 2007.

[2] Idrees, M, Schweppe, H, et al., Secure automotive on-board protocols:
A case of over-the-air firmware updates, Lecture Notes in Computer
Science, 6596 LNCS (2011), 224–238, 2011.

[3] Nilsson, D, Larson, U, Secure firmware updates over the air in
intelligent vehicles, IEEE Conference on Communications, 380–384,
2008.

[4] Steger, M, Karner, M, et al., SecUp: Secure and Efficient Wireless
Soft-ware Updates for Vehicles, IEEE Conference on Digital System
Design (DSD), 628–636, 2016.

[5] Mallissery, S, Pai, M, et al., Improving the PKI to build trust
architecture for VANET by using short-time certificate mngt. and
Merkle Signature Scheme, Asia-Pacific Conference on Computer
Aided System Engineering, 146-151, 2014.

[6] Foster, D, Prudhomme, A, et al., Fast and Vulnerable: A Story of
Telematic Failures, USENIX Workshop on Offensive Technologies,
2015.

[7] Valasek, C, Miller, C, Remote Exploitation of an Unaltered Passenger
Vehicle, White Paper, p. 93, 2015.

[8] Baza, Mohamed, et al. "Blockchain-based Firmware Update Scheme
Tailored for Autonomous Vehicles." arXiv preprint
arXiv:1811.05905 (2018).

[9] Lee, Boohyung, et al. "Firmware verification of embedded devices
based on a blockchain." International Conference on Heterogeneous
Networking for Quality, Reliability, Security and Robustness.
Springer, Cham,2016.

[10] Cappos, Justin, et al. "A look in the mirror: Attacks on package
managers." Proceedings of the 15th ACM conference on Computer
and communications security. ACM, 2008.

[11] Eastlake 3rd, D., and Paul Jones.US secure hash algorithm 1 (SHA1).
No.RFC3174.2001.

2019 Scientific Conference on Network, Power Systems and Computing (NPSC 2019)

-112-

	I. Introduction
	II. Background
	A. Secure Automotive Software Updates
	B. Hash Algorithm
	C. Cryptographic Digital Signature

	III. distributed software update system
	A. Automotive Software Update System Architecture
	B. Releasing Software Updates
	C. Downloading and Verifying Software Updates

	IV. Prototype implementation
	V. conclusion
	Acknowledgment
	References

