
A Novel Path Planning Algorithm Based on Q-
learning and Adaptive Exploration Strategy

Ting Li, Ying Li
College of Computer Science and Technology, Jilin University, Changchun, 130012, China

E-mail: lt18458398129@163.com

Abstract—In an unknown environment, how to plan a path
is a fundamental problem for agents. In this paper, we propose
an improved reinforcement learning algorithm, called adaptive
exploration Q-learning algorithm (AEQ), to solve path
planning problem. Firstly, to ensure an agent learns
autonomously in the process of trial and error when the agent
knows nothing about the environment, AEQ chooses Q-
learning algorithms to improve. Secondly, AEQ utilizes an
adaptive exploration strategy that aims at speeding up the
algorithm’s convergence. The adaptive exploration strategy
dynamically adjusts the exploration factor according to various
situations so that the agent explores the environment
sufficiently and makes full use of the environment information.
The experimental results show that the agent successfully
reaches the goal without collision by AEQ. Besides, compared
with the classical Q-learning algorithm and SARSA algorithm,
AEQ improves the convergence speed and reduces the
convergence time.

Keywords—Reinforcement learning, Path planning, Obstacle
avoidance, Q-learning

I. INTRODUCTION
Path planning is fundamental and significant which is

widely used in navigation and express industry. Given an
initial position and a target position, path planning seeks out
a path that avoids obstacles and reaches destination.

To solve path planning problems, many classical
methods are put forward to, such as A* algorithm [1],
Probabilistic Roadmap Method [2] and cell decomposition
method [3]. Moreover, with the development of artificial
intelligence, a lot of intelligent bionic algorithms are applied
to path planning problems. For example, genetic algorithm [4]
and gray wolf optimization algorithm [3].

Reinforcement learning is one of the artificial intelligence
algorithms [5]. And Q-learning algorithm is a reinforcement
learning algorithm which enables an agent to learn like
human beings. In unknown environment, an agent gradually
acquires environmental knowledge by constantly interacting
with the environment. In this process, we reward an agent if
the agent does what we expect and punish the agent if the
agent does what we don’t allow. After trial and error, the
agent gets enough knowledge of the mapping relationship
from states to actions. Then the agent searches for the
optimal path by means of maximizing the long-term
cumulative reward. But Q-learning algorithm has a limitation,
that is, the convergence speed is slow. To speed up the
convergence speed, Xingyu Zhao et al combined
asynchronous method and Q-learning algorithm so as to
efficiently solve path planning problem in discrete space [6].
Ee Soong Low et al used the flower pollination algorithm to

improve Q-learning algorithm’s computational effectiveness
[7].

There is a basic problem called exploration and
exploitation dilemma in reinforcement learning problem [8].
Exploration means collecting environment information and
exploitation means making the best decision based on the
information collected. However, more exploration leads that
an agent might concentrate on exploring the new
environment and forget to look for the shorter path. More
exploitation causes that an agent might find sub-optimal
route. Usually, we use epsilon-greedy algorithm to solve this
dilemma [9].

In order to solve above problems, we propose a new
algorithm called AEQ. AEQ is based on Q-learning
algorithm and improves an adaptive exploration strategy.
The adaptive exploration strategy divides the whole
exploration process into three stages. In the first stage, to
familiarize the agent with the environment as soon as
possible, the probability of exploration is far greater than the
probability of exploitation. In the second stage, the agent
knows part of the environment information, so it is in the
state of exploring while exploiting. In the third stage, the
probability of exploration reduces drastically so as to
converge the algorithm quickly. As a result, AEQ seeks out a
collision-free path quickly and accelerates convergence
velocity.

The rest of the paper is organized as follows. In Section
II, the basic Q-learning algorithm is introduced. Section III
describes the details of AEQ. Section IV gives the
experimental results. Finally, Section V summarizes the
paper and discusses future research directions.

II. Q-LEARNING ALGORITHM

Figure 1. Reinforcement learning framework

Reinforcement learning is an algorithm that teaches an
agent how to accomplish a task step by step [10]. As shown
in Fig. 1, it describes the reinforcement learning framework.
At iteration t ,

ts is current state of an agent and ta is
action which the agent chooses and executes among all
executable actions. After interacting with the environment,

2019 Scientific Conference on Network, Power Systems and Computing (NPSC 2019)

-105-978-1-950467-24-2/2019 ©2019 IEC and Authors

the agent obtains the next state
1ts +

 and the reward tr . Then
the agent selects the next action until it achieves the
destination.

Q-learning algorithm is a classical reinforcement learning
algorithm. It makes use of a Markov decision process (MDP)
to describe path planning problem [11]. MDP is a five tuple
()γ,R,P,A,S , where S and A are a finite set of states and
actions, P is a state transition probability function from
current state and action to next state, R is a reward function
and []10,∈γ is a discount factor.

After modeling, an agent begins to explore the
environment. At each step, the agent selects an action from
the set A through policy AS →=π . The policy π is a map
from states to actions. Mostly, Q-learning algorithm selects
the epsilon-greedy algorithm to determine what the next
action is. The specific method of the epsilon-greedy
algorithm is to select randomly an action or choose the best
action. Afterwards another state and a new reward appear.

During the motion process, the agent learns experience
constantly [12]. The learning way is expressed as follows:

 () () () ()




 −⋅++← +
+

ttt
a

ttttt a,sQA,sQmaxra,sQa,sQ
t

1
1

γa (1)

In (1), ()tt a,sQ evaluates the value of the state-action pair
and it is also a foundation to make the best choice in all
actions. tr is a reward calculated by the reward function R .

[]10,∈α is the learning rate. If α is equal to 1, it means that
the impact of future motions is not taken into account. If α
is equal to 0, it means that the current Q-value lacks
reference and the update of the Q-value basically depends on
the present reward and the selection of the subsequent state-
action pairs. The discount factor γ measures the importance
of the next Q-value towards the current Q-value. If γ is
close to 1, the total reward consists of the present reward and
the next maximum Q-value. If γ is close to 0, the total
reward only includes the present reward.

After the agent learns enough experience, it exploits them.
When the agent is in the exploitation stage, the next action is
decided using the following formula:

 () ()
1

*
1max ,

t
t t ta

a s Q s A
+

+= (2)

In the process of iteration, Q-value converges
continuously. As a result, a qualified optimal path is
generated.

III. ADAPTIVE EXPLORATION Q-LEARNING ALGORITHM
With regard to the Q-learning algorithm, its disadvantage

is slow convergence of Q-table. Furthermore, the
convergence of the algorithm depends on the changing
process of the exploration factor. For the sake of improving
this restriction, we put forward AEQ algorithm which applies
adaptive exploration strategy to dynamically update the
exploration factor.

A. Adaptive Exploration Strategy
In reinforcement learning problems, a strategy that

determines what an agent does next is basic and important.
Among strategies, epsilon-greedy algorithm is widely used to
solve this problem. The basic idea of epsilon-greedy
algorithm is that the probability of selecting an action by
maximizing Q-value is ε and the probability of selecting an
action randomly is ε-1 . ε is the exploration factor. When
ε is close to 0, it means an agent explores the environment.
And when ε is close to 1, it means an agent exploits the
environment knowledge. Moreover, ε varies linearly from 0
to 1. Thus we propose an adaptive exploration strategy in
order to change ε dynamically according to the actual
situation.

We divide the process which an agent explores and
exploits the environment into three stages.

In phase one, there is an agent knows nothing about the
surroundings. Therefore, this stage is a exploration stage and
the agent explores the environment as much as possible. For
this purpose, ε changes more slowly than the epsilon-greedy
algorithm. The calculation formula is written as follows:

 ()211 T/i*step=e (3)

where ()5.00,step1∈ is the step size of the first stage, i is
the current iteration number, and 1T is the maximum
number of iterations in this stage.

In phase two, the agent explores the environment while it
exploits the environment. We define a parameter sRate to
indicate the probability that the agent arriving at the
destination every ten iterations. If sRate is lower than the
expectation rate , ε alters slower than the phase one. If
sRate is higher than rate , the change of ε accelerates. In
addition, rate is close to 1 which implies when the agent
gets enough solutions of path planning problem, it can go to
the exploitation stage. And rate is close to 0 which implies
even if the agent obtains a few solutions, it can quickly move
to the exploitation stage. ε is updated as:









>+

−
+

=




























ratesRate*
T

Tisin*stepstep

sRate*
T

Tisin*stepstep

 if
22

1−21

otherwise *
22

121

p

p
e (4)

where ()102 ,step ∈ is the step size of the second stage,
2T is the maximum number of iterations in this stage and

[]10,rate ∈ is given by testing.

In phase three, the agent mainly exploits the environment
information. More importantly, the agent obtains an optimal
solution based on the information it explores. The updating
equation of ε is described as:

 ()()2
2 3* 2 / 3step step i T Te = + − (5)

where ()15.03 ,step ∈ is the step size of the third stage,
1321 =++ stepstepstep and 3T is the maximum number of

iterations in this stage.

2019 Scientific Conference on Network, Power Systems and Computing (NPSC 2019)

-106-

In this stage, the agent is updated like phase one. Because
the agent doesn’t know the size of the environment map. If
the map is large and the distance between the start point and
the end point is very close, the agent is unnecessary to
known the whole map. However, we don’t want that the
agent misses the optimal path. As a result, the agent tries its
best to explore the environment in the phase three.

B. The reward function
The reward function quantifies the decision-making

process, that is, it estimates the reward after carrying out an
action at a given state. The set of states and actions is
separated into five situations. And the reward function is
expressed as:














≠>
≠<

=
=

−
−

−
=

−

−

otherwise
0
0

0

10
20

20
1

1

1

1

obstt

obstt

obs

endt

t

d,dd
d,dd

d
ss

.

.
.r (6)

where t is current iteration step, tr is the reward value,
ts is current state and ends is the target position.

Additionally, obsd is the distance between the agent and the
nearest obstacles and td is the distance between the agent and
the target position.

C. Adaptive exploration Q-learning algorithm
AEQ algorithm’s pseudo code is shown in Algorithm 1.

And AEQ algorithm works in accordance with the flow chart
presented in Fig. 2.

First, Q-value is initialized. The start point and the end
point are also specified.

Second, during every iteration, an agent starts from the
start point and moves towards the end point. In each step of
the iteration, the agent selects an action by using the epsilon-
greedy algorithm. After performing the action, the
environment feeds back a reward on the basis of (6).

Third, Q-value is updated according to (1) and ε is
changed according to adaptive exploration strategy.

Finally, if the agent collides or arrives at the end point, a
new iteration starts until the number of iteration is the
maximum.
Algorithm 1 Adaptive exploration Q-learning algorithm
Initialize ()A,SQ , starts and ends

Initialize iteration counter 0=T and step counter 0=t
Repeat

Initialize startt ss =
Repeat

Select an action ta randomly with probability ε

Otherwise, ()A,sQmaxa tat t
←

Execute ta

Obtain the reward and the next state 1+ts
Update Q-value according to (1)

1+← tt ss , 1+← tt

Until endt ss =
Update ε according to adaptive exploration strategy

1+← TT

Until maxTT >

Figure 2. Flow chart of AEQ

IV. EXPERIMENTS
The performance of the algorithm is closely related to the

experimental environment. In this case, a series of tests were
run on Windows 7 system with Python 3.6.0 installed. The
CPU is Intel i5-4200U with 4 cores and the RAM is 4GB.

In the experiments, we used the following constants:
9.0=γ , 300=maxT , 100321 === TTT , 4.01 =step ,

2.02 =step , 4.03 =step , 40.rate = , the action space
[]down,up,right,leftA = and the learning rate α was

decreased linearly with time.

Figure 3. The optimal path obtained by (a)Q-learning, (b)SARSA and
(c)AEQ in experimental Scene 1

The map of scene 1 shown in Fig. 3 is used to compare
the performance of Q-learning, SARSA and the proposed

2019 Scientific Conference on Network, Power Systems and Computing (NPSC 2019)

-107-

AEQ in path planning problem. In this scene, the green
square in the upper left corner is the start point and the right-
most yellow square is the end point. There are 15 gray square
obstacles. From the figure, it’s obviously that AEQ and Q-
learning plan the shortest route. The total number of steps is
22 units. SARSA spends 24 units to reach the target position.
All three algorithms successfully complete the goal.

Figure 4. The optimal path obtained by (a)Q-learning, (b)SARSA and
(c)AEQ in experimental Scene 2

The map shown in Fig. 4 is scene 2. In this scene, the
green square in the upper left corner is the start point and
Yellow Square in the lower right corner is the end point.
There are 8 big gray obstacles made up of small squares. The
steps for AEQ, Q-learning and SARSA to find the goal is 23.
But AEQ has fewer inflection points than Q-learning and
SARSA. It shows that the optimal route of AEQ is better
than Q-learning and SARSA.

TABLE 1 THE COMPARISON OF THREE ALGORITHMS

Experimental
Scene

Average Computing Time (s)
Q-learning SARSA AEQ

Scene 1 13.98 13.86 13.08
Scene 2 14.20 13.72 12.53

Table 1 contrasts the average computing time between Q-
learning, SARSA and AEQ. In scene 1, AEQ costs 13.08s to
reach the goal on average. And the average time AEQ takes
to arrive at the target is 12.53s in scene 2. In terms of average
computing time, AEQ takes less time than Q-learning and
SARSA. Especially in Scene 2, AEQ reduces 11.76% and
8.67% than Q-learning and SARSA. It proves that the
proposed algorithm AEQ accelerates the convergence speed
and shortens the convergence time compared with Q-
learning and SARSA.

V. CONCLUSION
In this study, AEQ algorithm has been proposed for path

planning problem in unknown environment. We used the
adaptive exploration strategy to adjust timely the exploration
factor in the face of different situations. The experimental
results prove that AEQ algorithm speeds up the convergence
and improves the convergence efficiency. However, we only
consider static obstacles and don’t take into account dynamic
obstacles that exist in the real environment. In the future, we
will study how to use reinforcement learning to complete the
path planning in a dynamic environment.

REFERENCES
[1] J.K. Goyal and K.S. Nagla, “A new approach of path planning for

mobile robots,” International Conference on Advances in Computing,
Communications and Informatics (ICACCI), 2014, pp. 863-867.

[2] A. Short, Z.X. Pan, N. Larkin and S.V. Duin, “Recent Progress on
Sampling Based Dynamic Motion Planning Algorithms,” IEEE
International Conference on Advanced Intelligent Mechatronics, 2016,
pp. 1305-1311.

[3] M.N. Zafar and J.C. Mohanta, “Methodology for path planning and
optimization of mobile robots: a review,” Procedia Computer Science,
vol. 133, 2018, pp. 141-152.

[4] M. Elhoseny, A. Tharwat and A.E. Hassanien, “Bezier curve based
path planning in a dynamic field using modified genetic algorithm,”
Journal of Computational Science, vol. 25, 2018, pp. 339-350.

[5] R.S. Sutton and A.G. Barto, “Reinforcement learning: an
introduction,” MIT Press, 1998.

[6] X.Y. Zhao, S.F. Ding, Y.X. An and W.K. Jia, “Asynchronous
reinforcement learning algorithms for solving discretespace path
planning problems,” Applied Intelligence, vol. 48(12), 2018, pp.
4889-4904.

[7] E.S. Low, P. Ong and K.C. Cheah, “Solving the optimal path
planning of a mobile robot using improved Q-learning,” Robotics and
Autonomous Systems, vol. 115, 2019, pp. 143-161.

[8] G. Reddy, A. Celani and M. Vergassola, “Infomax strategies for an
optimal balance between exploration and exploitation,” Journal of
Statistical Physics, vol. 163(6), 2016, pp. 1454-1476.

[9] M. Castronovo, F. Maes and R. Fonteneau, “Learning
exploration/exploitation strategies for single trajectory reinforcement
learning,” European Workshop on Reinforcement Learning, vol. 24,
2012, pp. 1-9.

[10] J. Kober, J.A. Bagnell and J. Peters, “Reinforcement learning in
robotics: a survey,” The International Journal of Robotics Research,
vol. 32(11), 2013, pp. 1238-1274.

[11] Z.C. He and W. Jiang, “An evidential markov decision making
model,” Information Sciences, vol. 467, 2018, pp. 357-372.

[12] M. Duguleana and G. Mogan, “Neural networks based reinforcement
learning for mobile robots obstacle avoidance,” Expert Systems With
Applications, vol. 62, 2016, pp. 104-115.

2019 Scientific Conference on Network, Power Systems and Computing (NPSC 2019)

-108-

	I. Introduction
	II. Q-Learning Algorithm
	III. Adaptive Exploration Q-learning Algorithm
	A. Adaptive Exploration Strategy
	B. The reward function
	C. Adaptive exploration Q-learning algorithm

	IV. Experiments
	V. Conclusion
	References

