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Abstract—In an unknown environment, how to plan a path 
is a fundamental problem for agents. In this paper, we propose 
an improved reinforcement learning algorithm, called adaptive 
exploration Q-learning algorithm (AEQ), to solve path 
planning problem. Firstly, to ensure an agent learns 
autonomously in the process of trial and error when the agent 
knows nothing about the environment, AEQ chooses Q-
learning algorithms to improve. Secondly, AEQ utilizes an 
adaptive exploration strategy that aims at speeding up the 
algorithm’s convergence. The adaptive exploration strategy 
dynamically adjusts the exploration factor according to various 
situations so that the agent explores the environment 
sufficiently and makes full use of the environment information. 
The experimental results show that the agent successfully 
reaches the goal without collision by AEQ. Besides, compared 
with the classical Q-learning algorithm and SARSA algorithm, 
AEQ improves the convergence speed and reduces the 
convergence time. 

Keywords—Reinforcement learning, Path planning, Obstacle 
avoidance, Q-learning 

I. INTRODUCTION  
Path planning is fundamental and significant which is 

widely used in navigation and express industry. Given an 
initial position and a target position, path planning seeks out 
a path that avoids obstacles and reaches destination. 

To solve path planning problems, many classical 
methods are put forward to, such as A* algorithm [1], 
Probabilistic Roadmap Method [2] and cell decomposition 
method [3]. Moreover, with the development of artificial 
intelligence, a lot of intelligent bionic algorithms are applied 
to path planning problems. For example, genetic algorithm [4] 
and gray wolf optimization algorithm [3]. 

Reinforcement learning is one of the artificial intelligence 
algorithms [5]. And Q-learning algorithm is a reinforcement 
learning algorithm which enables an agent to learn like 
human beings. In unknown environment, an agent gradually 
acquires environmental knowledge by constantly interacting 
with the environment. In this process, we reward an agent if 
the agent does what we expect and punish the agent if the 
agent does what we don’t allow. After trial and error, the 
agent gets enough knowledge of the mapping relationship 
from states to actions. Then the agent searches for the 
optimal path by means of maximizing the long-term 
cumulative reward. But Q-learning algorithm has a limitation, 
that is, the convergence speed is slow. To speed up the 
convergence speed, Xingyu Zhao et al combined 
asynchronous method and Q-learning algorithm so as to 
efficiently solve path planning problem in discrete space [6]. 
Ee Soong Low et al used the flower pollination algorithm to 

improve Q-learning algorithm’s computational effectiveness 
[7]. 

There is a basic problem called exploration and 
exploitation dilemma in reinforcement learning problem [8]. 
Exploration means collecting environment information and 
exploitation means making the best decision based on the 
information collected. However, more exploration leads that 
an agent might concentrate on exploring the new 
environment and forget to look for the shorter path. More 
exploitation causes that an agent might find sub-optimal 
route. Usually, we use epsilon-greedy algorithm to solve this 
dilemma [9]. 

In order to solve above problems, we propose a new 
algorithm called AEQ. AEQ is based on Q-learning 
algorithm and improves an adaptive exploration strategy. 
The adaptive exploration strategy divides the whole 
exploration process into three stages. In the first stage, to 
familiarize the agent with the environment as soon as 
possible, the probability of exploration is far greater than the 
probability of exploitation. In the second stage, the agent 
knows part of the environment information, so it is in the 
state of exploring while exploiting. In the third stage, the 
probability of exploration reduces drastically so as to 
converge the algorithm quickly. As a result, AEQ seeks out a 
collision-free path quickly and accelerates convergence 
velocity. 

The rest of the paper is organized as follows. In Section 
II, the basic Q-learning algorithm is introduced. Section III 
describes the details of AEQ. Section IV gives the 
experimental results. Finally, Section V summarizes the 
paper and discusses future research directions. 

II. Q-LEARNING ALGORITHM 

 
Figure 1.  Reinforcement learning framework 

Reinforcement learning is an algorithm that teaches an 
agent how to accomplish a task step by step [10]. As shown 
in Fig. 1, it describes the reinforcement learning framework. 
At iteration t , 

ts  is current state of an agent and ta  is 
action which the agent chooses and executes among all 
executable actions. After interacting with the environment, 
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the agent obtains the next state 
1ts +

 and the reward tr . Then 
the agent selects the next action until it achieves the 
destination. 

Q-learning algorithm is a classical reinforcement learning 
algorithm. It makes use of a Markov decision process (MDP) 
to describe path planning problem [11]. MDP is a five tuple 
( )γ,R,P,A,S , where S  and A  are a finite set of states and 
actions, P  is a state transition probability function from 
current state and action to next state, R  is a reward function 
and [ ]10,∈γ  is a discount factor.  

After modeling, an agent begins to explore the 
environment. At each step, the agent selects an action from 
the set A  through policy AS →=π . The policy π  is a map 
from states to actions. Mostly, Q-learning algorithm selects 
the epsilon-greedy algorithm to determine what the next 
action is. The specific method of the epsilon-greedy 
algorithm is to select randomly an action or choose the best 
action. Afterwards another state and a new reward appear. 

During the motion process, the agent learns experience 
constantly [12]. The learning way is expressed as follows: 

 ( ) ( ) ( ) ( )




 −⋅++← +
+

ttt
a

ttttt a,sQA,sQmaxra,sQa,sQ
t

1
1

γa (1) 

In (1), ( )tt a,sQ  evaluates the value of the state-action pair 
and it is also a foundation to make the best choice in all 
actions. tr  is a reward calculated by the reward function R . 

[ ]10,∈α  is the learning rate. If α  is equal to 1, it means that 
the impact of future motions is not taken into account. If α  
is equal to 0, it means that the current Q-value lacks 
reference and the update of the Q-value basically depends on 
the present reward and the selection of the subsequent state-
action pairs. The discount factor γ  measures the importance 
of the next Q-value towards the current Q-value. If γ  is 
close to 1, the total reward consists of the present reward and 
the next maximum Q-value. If γ  is close to 0, the total 
reward only includes the present reward. 

After the agent learns enough experience, it exploits them. 
When the agent is in the exploitation stage, the next action is 
decided using the following formula: 

 ( ) ( )
1

*
1max ,

t
t t ta

a s Q s A
+

+= (2) 

In the process of iteration, Q-value converges 
continuously. As a result, a qualified optimal path is 
generated.  

III. ADAPTIVE EXPLORATION Q-LEARNING ALGORITHM 
With regard to the Q-learning algorithm, its disadvantage 

is slow convergence of Q-table. Furthermore, the 
convergence of the algorithm depends on the changing 
process of the exploration factor. For the sake of improving 
this restriction, we put forward AEQ algorithm which applies 
adaptive exploration strategy to dynamically update the 
exploration factor. 

A. Adaptive Exploration Strategy 
In reinforcement learning problems, a strategy that 

determines what an agent does next is basic and important. 
Among strategies, epsilon-greedy algorithm is widely used to 
solve this problem. The basic idea  of epsilon-greedy 
algorithm is that the probability of selecting an action by 
maximizing Q-value is ε  and the probability of selecting an 
action randomly is ε-1 . ε  is the exploration factor. When 
ε  is close to 0, it means an agent explores the environment. 
And when ε  is close to 1, it means an agent exploits the 
environment knowledge. Moreover,  ε varies linearly from 0 
to 1. Thus we propose an adaptive exploration strategy in 
order to change ε  dynamically according to the actual 
situation. 

We divide the process which an agent explores and 
exploits the environment into three stages. 

In phase one, there is an agent knows nothing about the 
surroundings. Therefore, this stage is a exploration stage and 
the agent explores the environment as much as possible. For 
this purpose,  ε changes more slowly than the epsilon-greedy 
algorithm. The calculation formula is written as follows: 

 ( )211 T/i*step=e (3) 

where ( )5.00,step1∈  is the step size of the first stage, i  is 
the current iteration number, and 1T  is the maximum 
number of iterations in this stage. 

In phase two, the agent explores the environment while it 
exploits the environment. We define a parameter sRate  to 
indicate the probability that the agent arriving at the 
destination every ten iterations. If sRate  is lower than the 
expectation rate , ε  alters slower than the phase one. If 
sRate  is higher than rate , the change of ε  accelerates. In 
addition, rate  is close to 1 which implies when the agent 
gets enough solutions of path planning problem, it can go to 
the exploitation stage. And rate  is close to 0 which implies 
even if the agent obtains a few solutions, it can quickly move 
to the exploitation stage. ε  is updated as: 
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where ( )102 ,step ∈  is the step size of the second stage, 
2T  is the maximum number of iterations in this stage and 

[ ]10,rate ∈  is given by testing. 

In phase three, the agent mainly exploits the environment 
information. More importantly, the agent obtains an optimal 
solution based on the information it explores. The updating 
equation of ε  is described as: 

 ( )( )2
2 3* 2 / 3step step i T Te = + − (5) 

where ( )15.03 ,step ∈  is the step size of the third stage, 
1321 =++ stepstepstep and 3T  is the maximum number of 

iterations in this stage. 

2019 Scientific Conference on Network, Power Systems and Computing (NPSC 2019)

-106-



In this stage, the agent is updated like phase one. Because 
the agent doesn’t know the size of the environment map. If 
the map is large and the distance between the start point and 
the end point is very close, the agent is unnecessary to 
known the whole map. However, we don’t want that the 
agent misses the optimal path. As a result, the agent tries its 
best to explore the environment in the phase three. 

B. The reward function 
The reward function quantifies the decision-making 

process, that is, it estimates the reward after carrying out an 
action at a given state. The set of states and actions is 
separated into five situations. And the reward function is 
expressed as: 
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where t  is current iteration step, tr  is the reward value, 
ts  is current state and ends  is the target position. 

Additionally, obsd  is the distance between the agent and the 
nearest obstacles and td  is the distance between the agent and 
the target position. 

C. Adaptive exploration Q-learning algorithm 
AEQ algorithm’s pseudo code is shown in Algorithm 1. 

And AEQ algorithm works in accordance with the flow chart 
presented in Fig. 2.  

First, Q-value is initialized. The start point and the end 
point are also specified.  

Second, during every iteration, an agent starts from the 
start point and moves towards the end point. In each step of 
the iteration, the agent selects an action by using the epsilon-
greedy algorithm. After performing the action, the 
environment feeds back a reward on the basis of (6).  

Third, Q-value is updated according to (1) and ε  is 
changed according to adaptive exploration strategy.  

Finally, if the agent collides or arrives at the end point, a 
new iteration starts until the number of iteration is the 
maximum. 
Algorithm 1 Adaptive exploration Q-learning algorithm 
Initialize ( )A,SQ , starts  and ends  

Initialize iteration counter 0=T  and step counter 0=t  
Repeat 

Initialize startt ss =  
Repeat 

Select an action ta  randomly with probability ε  

Otherwise, ( )A,sQmaxa tat t
←  

Execute ta  

Obtain the reward and the next state 1+ts  
Update Q-value according to (1)  

1+← tt ss , 1+← tt  

Until endt ss =  
Update ε  according to adaptive exploration strategy 

1+← TT  

Until maxTT >  

 
Figure 2.  Flow chart of AEQ 

IV. EXPERIMENTS 
The performance of the algorithm is closely related to the 

experimental environment. In this case, a series of tests were 
run on Windows 7 system with Python 3.6.0 installed. The 
CPU is Intel i5-4200U with 4 cores and the RAM is 4GB.  

In the experiments, we used the following constants: 
9.0=γ , 300=maxT , 100321 === TTT , 4.01 =step , 

2.02 =step , 4.03 =step , 40.rate = , the action space 
[ ]down,up,right,leftA =  and the learning rate α  was 

decreased linearly with time. 

 
Figure 3.  The optimal path obtained by (a)Q-learning, (b)SARSA and 
(c)AEQ in experimental Scene 1 

The map of scene 1 shown in Fig. 3 is used to compare 
the performance of Q-learning, SARSA and the proposed 
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AEQ in path planning problem. In this scene, the green 
square in the upper left corner is the start point and the right-
most yellow square is the end point. There are 15 gray square 
obstacles. From the figure, it’s obviously that AEQ and Q-
learning plan the shortest route. The total number of steps is 
22 units. SARSA spends 24 units to reach the target position. 
All three algorithms successfully complete the goal. 

 
Figure 4.  The optimal path obtained by (a)Q-learning, (b)SARSA and 
(c)AEQ in experimental Scene 2 

The map shown in Fig. 4 is scene 2. In this scene, the 
green square in the upper left corner is the start point and 
Yellow Square in the lower right corner is the end point. 
There are 8 big gray obstacles made up of small squares. The 
steps for AEQ, Q-learning and SARSA to find the goal is 23. 
But AEQ has fewer inflection points than Q-learning and 
SARSA. It shows that the optimal route of AEQ is better 
than Q-learning and SARSA. 

TABLE 1 THE COMPARISON OF THREE ALGORITHMS 

Experimental 
Scene 

Average Computing Time (s) 
Q-learning SARSA AEQ 

Scene 1 13.98 13.86 13.08 
Scene 2 14.20 13.72 12.53 

Table 1 contrasts the average computing time between Q-
learning, SARSA and AEQ. In scene 1, AEQ costs 13.08s to 
reach the goal on average. And the average time AEQ takes 
to arrive at the target is 12.53s in scene 2. In terms of average 
computing time, AEQ takes less time than Q-learning and 
SARSA. Especially in Scene 2, AEQ reduces 11.76% and 
8.67% than Q-learning and SARSA. It proves that the 
proposed algorithm AEQ accelerates the convergence speed 
and shortens the convergence time compared with Q-
learning and SARSA. 

V. CONCLUSION 
In this study, AEQ algorithm has been proposed for path 

planning problem in unknown environment. We used the 
adaptive exploration strategy to adjust timely the exploration 
factor in the face of different situations. The experimental 
results prove that AEQ algorithm speeds up the convergence 
and improves the convergence efficiency. However, we only 
consider static obstacles and don’t take into account dynamic 
obstacles that exist in the real environment. In the future, we 
will study how to use reinforcement learning to complete the 
path planning in a dynamic environment. 
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