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Abstract—the inherent factors, uncertainty and variability, 
are always existed in intermittent power resources such as 
wind and solar. Because of blind construction and lack of 
planning, the number of renewable generation plants are 
increasing dramatically, the transmission system could not 
afford such large capacity over such long distance. This paper 
proposes a novel spinning reserve decision-making model for 
power system with solar power integration. A new PV power 
generation forecasting model is established. The training target 
of neural network contains both accuracy section and 
maximum deviation section. In addition, Improved-Levenberg-
Marquardt (ILM) algorithm is achieved for neural network 
training. A numerical study with practical data is presented 
and the result shows that new PV power generation forecasting 
model can reduce cost of construction of standby power plant 
with acceptable accuracy level. The proposed approach for 
spinning reserve decision-making with solar power integration 
power system is tested in a modified IEEE 9-bus 3-machine 
Benchmark Network. 

Keywords—solar power integration; neural network; 
spinning reserve; Improved-Levenberg-Marquardt (ILM) 
algorithm 

I. INTRODUCTION  
Solar energy is an important part of renewable energy, 

active development of solar power to improve the energy 
structure, promote energy conservation and emission 
reduction, improve the ecological environment is of great 
significance. However, due to the influence of natural factors, 
solar power has strong intermittency and random fluctuation, 
and the current prediction accuracy of solar power is not high. 
Large-scale solar power integration will have a great impact 

on the safe operation and economic dispatch of the power 
grid. 

It is an important way to absorb large-scale solar power 
and reduce the risk of power grid operation to maintain 
sufficient rotating reserve of the system. Particularly, power 
regulation and reserve provided by conventional generations 
such as thermal and hydro are called in the minute to hour 
timeframes to complement the differences [1]. At the same 
time, the economy of power system dispatching must be 
considered, and the rotating reserve must be arranged 
reasonably. Many scholars have done a lot of research on the 
setting of rotating reserve and economic dispatching of 
power system with solar or wind power. A fast generation 
adjustment algorithm based on the base point and 
participation factors method is proposed in [2] to handle the 
fast fluctuations of loads and RESs. In [3], a reliability 
benefits quantification methodology from improved solar 
power forecasts was proposed, based on state-of-the-art solar 
power forecasts and a multi-timescale scheduling model. 
Instead of deterministic commands sent to wind farms, [4] 
proposed a robust wind power dispatch framework with 
minimum wind power curtailment and interval wind power 
schedule for wind farms with a set-point value-based 
schedule for the thermal units. A two-stage adaptive robust 
optimization model for the multi-period ED was proposed in 
[5], designed for a rolling-horizon operational framework to 
model the real time ED process. A hybrid computational 
framework based on quantum-inspired particle swarm 
optimization (QPSO) is proposed in [6] to achieve faster and 
better optimization performance for solving ED problems 
with considering carbon tax. A stochastic two-stage day-
ahead unit commitment model and a rolling look-ahead 
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economic dispatch model with the integration of 
concentrated solar power and wind resources was developed 
in [7] to assess the role of thermal energy storage and electric 
heater in the improvement of the system’s operational 
flexibility. A Day-head solar Power Plant Forecasting 
Accuracy improvement on the hourly basis are proposed in 
[8]. The optimal mathematical formulation of regression 
model was provided. In addition, the paper gives the idea of 
empirical clasterization approach, providing significant 
improvement of prediction accuracy. Unlike conventional 
generation resources such as fossil fuels, large-scale 
integration of RES appears characteristics of intermittency 
and variability, imposing major challenges for power system 
operation. One is that the solar radiation is associated with 
solar panel output power, which is difficult to be accurately 
forecasted [9]. On the other hand, the output power generated 
by RES such as wind and solar possesses difficulties in 
precise controlling. To address the problem of predicting 
model accuracy and income inconsistency, [10] proposes a 
useful regularization method for neural network prediction. 

The optimal reserve of the system is determined 
automatically through the interaction between the reserve 
cost and the risk cost, but the influence of the climbing 
constraint and the network constraint on the reserve is not 
considered. In addition, the above literature only considers 
the total amount of spare to meet the system requirements, 
but the accuracy and maximum deviation value, instead of a 
pure accuracy-based models should be considered as well. In 
this paper, both the accuracy and the maximum deviation 
value between the predicted value and the actual value are 
considered. 

II. PV POWER GENERATION FORECASTING 

A. Proposed Neural Network Based Forecasting Model 
In traditional PV power generation forecasting models, 

accuracy is the only pursued target in PV power generation 
forecasting models. In general, a better accuracy will lead to 
better decision making. Actually, when the actual PV power 
generation is less than the predicted PV power generation, 
the standby power plant will be dispatched to generate 
electricity (such as coal-fired power plants) to compensate 
for the deviation power. Therefore, the maximum deviation 
between the predicted value and the actual value will affect 
construction scale and cost of the standby power plant. Thus, 
pure accuracy model may not bring optimal construction cost 
of standby power plant. In this case, a new PV power 
generation forecasting model is required to take into account 
both accuracy and maximum deviation value, instead of a 
pure accuracy models. In this paper, both the accuracy and 
the maximum deviation value between the predicted value 
and the actual value are considered. Equation (1) is the 
objective function for model training. 

min : ( )obj Err Max errm= + ⋅                        (1) 

Where Err is a term to reflect the differences between 
the predicted value of PV power generation and the actual 
value of PV power generation. “ ( )Max err ”is the maximum 
deviation between the predicted value of PV power 
generation and the actual value of PV power generation. 
“ µ ” is the maximum deviation coefficient, which 

represents the weight of maximum deviation. 

When the actual PV power generation is less than the 
predicted PV power generation, the standby power plant 
will be dispatched to generate electricity (such as coal-fired 
power plants) to compensate for the deviation power. The 
construction scale of the standby power plant depends on 
“ ( )Max err ”. The larger the maximum deviation is, the 
greater the construction cost of standby power plant is, 
which is not conducive to economic benefits. 

If the term “Err” is removed, the accuracy of the 
forecasting model cannot be guaranteed. When the accuracy 
is too low, the integration of PV power generation into the 
main grid will pose a huge risk. For this reason, “Err”, 
“ ( )Max err ” and “ µ ”are combined into the objective 
function to djust training relationship between accuracy and 
maximum deviation. 

With strict accuracy requirement, decision make may 
decrease the “ µ ” so that a more accurate solution can be 
obtained. Oppositely, decision maker may increase the “ µ ” 
to obtain less construction cost of standby power plant. 
Different decision maker will have different error 
acceptance and have different minimum accuracy 
requirements. 

• Objective Function Transformation 

In this paper, back-propagation training is selected as the 
training process of neural network. In back-propagation 
model, the objective function is shown in (2) below. 

2

( )
min :      ( ) ( )

obj Err Max err
mean Acc Max Acc

Acc Y T

m= + ⋅
 = +
 = −

                (2) 

In Equation (2), Y is a P×N matrix representing the 
output of neural network, which is the predicted value of PV 
power generation. T is a P×N matrix representing the 
training target, which is the actual value of PV power 
generation.  

“ 2( )mean Acc ” is the mathematical expression of “Err”, 
which represents accuracy of the forecasting model. It is the 
average deviation square of the predicted value and the 
actual value. “ ( )Max err ”is the mathematical expression of 
“ ( )Max errµ ⋅ ”, which represents the maximum deviation 
between the predicted value of PV power generation and the 
actual value of PV power generation. It should be noted that 
“ ( )Max err ”is not considered in traditional feed-forward 
neural network. 

• Converting Non-derivable Functions into Derivable 
Functions 

Back-propagation is a derivation based optimization 
method. But “ ( )Max err ” is not derivable, therefore a 
substitute function in (3) can be used instead of “ ( )Max err ”. 

( ) ( ) ln( ( ))AccMax Acc Acc sum ee≈ ⋅                      (3)  
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“ ( )Accε ” is a step function, which ensures that 
“ ( )Accε ” is one when predicted value is larger than the 
actual value. Otherwise, “ ( )Accε ” is zero. But step function 
is not derivable, therefore a substitute function in (4) can be 
used instead of “ ( )Accε ”. 

(tanh( ) 1)( ) , 0
2

tanh( )
Acc Acc

Acc Acc

AccAcc

e eAcc
e e

ae a

−

−

⋅ + ≈ >


− =
 +

               (4) 

The substitute function is similar to the activation 
function for neurons in feed-forward neural network. Fig.1 
shows the function output with α =0.3、 0.9、 1.5 and 
positive infinity. It can be seen that the larger α  value is, 
the closer “ ( )Accε ”  is to the step function, which can 
ensure that the construction cost of the standby power plant 
will not be affected when predicted value of PV power 
generation is less than actual value of PV power generation. 

 
Figure.1   Function output with different α  

“ ln( ( ))Accsum e ” is a derivable function which 
approximates the maximum value of Acc. Function ()sum  
receives a P×N exponent matrix with base e. The index is 
Acc which is the deviation between the predicted value and 
the actual value, calculates the logarithm of the sum of all the 
matrix elements. Illumination data of 10,20,30,40,50 and 60 
days were randomly selected and the maximum value within 
the sample days was calculated by using this approximation 
function. Table Ⅰ shows maximum value obtained by the 
approximate function method, actual maximum value and 
deviation between them. 

TABLE Ⅰ   RELEVANT DATA OF SAMPLE DAYS 

Days Approximate Method 
Maximum (LUX) 

Actual Maximum 
(LUX) 

Deviation 
(LUX) 

10 613.0556 613 0.556 
20 636.6992 636 0.6992 
30 690.0009 690 0.0009 
40 690.0009 690 0.0009 
50 690.0009 690 0.0009 
60 690.0009 690 0.0009 

As can be seen from the table, the maximum relative 
deviation between the maximum value obtained by the 
approximate function method and the actual maximum value 

is 0.11%, and this small deviation does not affect the training 
performance. Therefore, it is feasible to use derivable 
approximate function to get the maximum value. 

• Variable Constrains of Objective Function 

In combination with (2), (3) and (4), feed-forward neural 
network structure is adopted in training. For practical 
requirements, neural network output should be non-negative 
as PV power generation is always non-negative. At the same 
time, in order to ensure the minimum accuracy of the 
prediction model, it is necessary to add precision constraints. 
Thus, solution selection range should satisfy requirements in 
(5). 

0
| |( )

Y
Accmean K
T

>



≤

                                 (5) 

Where K is the coefficient to limit prediction error set by 
neural network user. Function ()mean  receives a P×N 
matrix of the percentage deviation of predicted value from 
actual value, and calculates the average of all the matrix 
elements. 

B. Improved-Levenberg-Marquardt Algorithm 
Levenberg-Marquardt algorithm is used to solve non-

linear squares problems. But objective function in (1) is not 
pure least square problem because of the maximum 
deviation part. Thus, this paper introduced an Improved-
Levenberg-Marquardt (ILM) algorithm for neural network 
training. Fig.2 is ILM flow chart for feed-forward neural 
network. 

Initialize
Weights and Bias

R=0

R=R+1

Accuracy Maximum 
deviation

stop

reduction

AA MDA

rearrange

+

+

Back-
propagation

Yes

No
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calculation

Traditional procedure 
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Iteration
Stop?

 
Figure.2   ILM flow chart for feed-forward neural network 
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As can be seen from Fig.2, this structure is quite 
different from traditional feed-forward neural network. 
There are two components in the process of back 
propagation. The first component is the accuracy adjustment 
(AA) of weight and bias. The second component is the 
maximum deviation adjustment (MDA) of weight and bias, 
which is different from traditional feed-forward neural 
network. Using the same forward calculation with 
traditional Levenberg-Marquardt algorithm represents that 
network operation after training ignores the maximum 
deviation between the predicted value and the actual value. 

There are 4 steps to complete the arguments variation in 
back-propagation in ILM. 

Step 1. Objective function transformation 

The accuracy and maximum deviation of the objective 
function (1) are decomposed into (6). 

2

1

1

min : ( )

( )
( ) ln( ( ))q

Q

q Q
eq

q
q

obj Err Max err

e
e e

Q

m

e=

=

= + ⋅



= + ×


∑
∑

           (6) 

Where qe  is the thq  element in vector Acc. Equation (6) 
shows that objective function of ILM is not least square 
problem, which is different from traditional Levenberg-
Marquardt algorithm. 

Step 2. Gradient computation 

According to (6), the gradient of objective function and 
relative parameters are shown in (7). 

1

'
1

1

2

( ) ln( ) ( )

( )

q

q

T T

e

q q q
q

Q
e

q
q

obj J E J
Q

ee E e
E

E e

µ

e e

=


∇ = ⋅ × + ⋅ ×Ψ

Ψ = × + ×


 =


∑

          (7) 

A new term constructed with 1Ψ  is introduced for 
maximum deviation representation. 

Step 3. Hessian computation 

Hessian matrix is derived from (7) as shown in (8). 

'
2

'
2 1 3

'' '

3 2

2 ( )

( )

( ) ln( ) 2 ( ) ( ) ( )

q

q

q

T T

eT T

e
q q q q q

e
q q

Hess J E J J
Q

J J J e

e E e e e e
E Ee

µ

e e e e


= × + × + ⋅Ψ


Ψ = ×Ψ + × × ×Ψ


× + ×Ψ = + +


  (8) 

Compared with the traditional Levenberg-Marquardt 
algorithm, Hessian matrix in ILM is transformed into (8). In 
Equation (8), two new term 2Ψ  and 3Ψ  are introduced, 

which are related to the maximum deviation. 

Step 4. Argument updated 

According to (7) and (8), the parameter ( 1)rX +  can be 
updates in (9). 

( 1) ( ) ( ) 1 ( )[ ]r r r rX X Hess I objλ+ −= − + ×∇         (9) 

The update of weights and bias variation can be obtained 
from the corresponding elements from ( 1)rX + . 

III. CASE STUDY AND DISCUSSION 
The proposed approach in this paper for establishing 

spinning reserve decision-making model is tested in a 
modified IEEE 9-bus 3-machine Benchmark Network, 
shown in Figure 5. A 50MW Photovoltaic generation system 
is connected with Bus 9. The mathematical model for 
simulating the network is established in PowerFactory 
DIgSILENT Version 15.1, and the proposed algorithm is 
implemented with DIgSIELNT Programming Language 
(DPL) in the software package. In order to present realistic 
scenarios, 24 hours 93 days practical data of an individual 
solar farm and load data was applied into the system to 
calculate the required capacity for restraining fluctuation 
brought by intermittent power, such as wind and solar. OPF 
tool box with Interior Point method in DIgSILENT was used 
to simulate the scenarios. Generator fuel cost functions are 
stated in Table II. 

TABLE II   GENERATOR FUEL COST FUNCTIONS 

Generator Fuel Cost Function 
G01 0.11P2+5P+150 
G02 0.085P2+1.2P+600 
G03 0.1225P2+1P+335 

 
Figure.3   Modified IEEE 9-bus 3-machine Benchmark Network 

As can be seen in Fig.4, predicted solar output power 
with the proposed new model are compared with that of old 
model and the real output power. In traditional neural 
network forecasting models, accuracy nearly becomes the 
only pursued target for PV power generation forecasting 
models. However, this may not reduce the scale and cost of 
construction of standby power plant. While in the proposed 

2019 Scientific Conference on Network, Power Systems and Computing (NPSC 2019)

-70-



model, the training target of neural network contains both 
accuracy section and maximum deviation section. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
Figure.4   Predicted solar power output with new and old models and real 
power output 

 
Figure.5   Load pattern of selected days 

By the load pattern shown in Fig,5, the result can be 
obtained by optimal power flow calculation. Three 
evaluation indices are applied to analyze the performance of 
the model. Obviously, old model has large average error 
rather than that of the proposed model. More power and 
extra fuel cost are required to maintain the total power 
system operation. 

TABLE Ⅲ   GENERATOR FUEL COST FUNCTIONS 

  
Ave 

Error 
Extra power 

requirement/hour 
Extra Fuel 
Cost/hour 

Old 
Model 2.067 19.82 22.23 
New 

Model 1.962 16.33 18.5595 

IV. CONCLUSIONS 
Uncertainty and variability are the inherent factors of 

intermittent power re-sources such as wind and solar. In 
traditional neural network forecasting models, accuracy 
nearly becomes the only pursued target for PV power 
generation forecasting models. However, this may not 
reduce the scale and cost of construction of standby power 
plant. To solve the problem, this paper proposes a new PV 
power generation forecasting model. The training target of 
neural network contains both accuracy section and 
maximum deviation section. Also, this paper establishes an 
Improved-Levenberg-Marquardt (ILM) algorithm for neural 
network training. A numerical study with practical data is 
presented and the result shows that new PV power 
generation forecasting model can reduce cost of 
construction of standby power plant with acceptable 
accuracy level. However, this paper only gives the power 
capacity requirement from traditional power plant like coal-
fire plants and hydro power plants. Fluctuation from load 
variation and load forecasting error are not taken into 
account. In the future work, load variation and network 
topology change due to planning will be considered in the 
model to give a better result.  
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