
Multi-thread Weak Deterministic Method Based on
Cache Optimization

Kaiyu Wang
Harbin institute technology

Computer science and technology department
Harbin China

Wang_kaiyu2103@126.com

Zhenzhou Ji
Harbin institute technology

Computer science and technology department
Harbin China

jizhenzhou@hit.edu.cn

Abstract—Aiming at the problem of multi-thread
uncertainty and the large system overhead of the existing
deterministic implementation, this paper proposed to enter
from the cache level. Research on weak deterministic methods
for row optimization. First, for the problem that the LRU
replacement algorithm does not work as well for
multithreading as LIRS. The replacement strategy is optimized,
followed by the weak deterministic method of ignoring data
competition, and the deterministic order is obtained for the
thread synchronization point. The competition that occurs with
the card's synchronous operation is improved using a
deterministic approach. We use of isolated thread memory in
data competition, to change the thread into a lightweight
process, and use experiments to prove the feasibility of the
method.

Keywords-component, Cache replacement, Multithreading,
LIRS, Weak Determinism

I. INTRODUCTION
With the rapid development of microelectronics

technology, multi-core processors have become the
mainstream computing platform and research hotspot.
Compared with previous single-core processors, multi-core
processors have exploded in hardware performance, but
traditional serial programs have cannot play its performance,
parallel programming is the key to fully exploit its multi-core
performance. It is enable to mainstream applications from
multi-core CPU. The only way to program the benefits of
performance. In order to achieve the goal of software
parallelism, it is necessary to provide a hardware platform
for parallel programs. The core architecture can be divided
into shared memory and distributed memory based, Pthread
for shared memory and The MPI of distributed memory is
the two most common standards1]. In general, the current
parallel deterministic technology is still not mature enough,
there are still many problems, the certainty of pure software
implementation Parallel systems are generally inefficient and
can achieve 2 to 10 times performance overhead[12]. This
makes the technology difficult to be used in practical
applications accept. Therefore, Olszewski and other scholars
from another perspective, assuming that there is no data
competition in the program, by sacrificing one Partial
determinism in exchange for performance improvement
which the concept of weak determinism is proposed. That is
the system only guarantees the execution of program
synchronization statements make the order is deterministic.

II. MULTI-THREAD WEAK DETERMINISTIC METHOD

A. Deterministic Technology
Deterministic parallel technology has always been a key

issue in the research of universities and research institutions.
The current deterministic programs and achievements are
mainly reflected in the following aspects:

1) Design Method

Joseph D, Brandon L, Luis C, Mark O et al. proposed the
DMP system[2]. The RCDC system[3] proposed by Devietti
and Joseph of the University of Washington et al is
implemented in parallel at the thread level by both hardware
and software. The DMP system converts the system from
parallel to serial execution in the event of a memory conflict,
guaranteed by sacrificing parallelism. The RCDC system
was further modified on the basis of DMP, which weakened
the memory consistency and used DRF (Data Race Free)
relaxes the consistency model by tracking the happens-before
relationship due to thread synchronization. Locking
operations that do not have a happens-before relationship can
be performed in parallel while satisfying certainty. Calvin
system It can only be implemented by hardware, which can
ensure the certainty of the whole system, but it is difficult to
guarantee a single program because it is realized from the
hardware point of view. The certainty of the program is
therefore not widely used [4].

2) Design Level

dOS and Determinitor and DDOS[5,6,11] both
implement parallel determinism issues as an operating
system, embedded in Small-scale real-time operating system
on the platform, due to fewer applications, the system kernel
is simple and easy to write and schedule in the system. The
other ways to achieve certainty, while most other systems are
implemented as a runtime system, such as CoreDet, Tern
And DTHREAD etc[7,8,9].

3) Paralle Level

The system that implements deterministic parallelism is
divided into a multi-threaded implementation of shared
memory and a multi-process implementation without shared
memory. The DMPREAD and Kendo [10] mentioned above,
and the hardware-implemented DMP are thread-level
deterministic systems. DDOS and dOS achieve determinism
at the process level.

2019 Scientific Conference on Network, Power Systems and Computing (NPSC 2019)

-63-978-1-950467-24-2/2019 ©2019 IEC and Authors

B. Multi-threaded Weak Determinism
Multi-threaded weak determinism is a method of

guaranteeing certainty based on weak deterministic thinking
at the multi-thread level. The multi-thread standard POSIX
threads set the running standard for multi-threaded programs,
but the standard does not meet the deterministic requirements.
Weak determinism begins with the perspective of
synchronous competition, the threads are isolated from each
other. The threads are run in units of transactions, and the
internals are divided into two phases: parallel and serial.
Data competition that may be deterministic may be resolved
by means of thread memory isolation. Because thread
memory is isolated, memory as the last-level shared resource
of the thread loses its original role, which is also to achieve
the deterministic cost, so this article replaces LRU from the
cache level by using the LIRS replacement algorithm that
has better performance in multi-threading algorithm.

III. MULTI-THREAD WEAK DETERMINISTIC METHOD DESIGN

A. Structure of Thread Weak Deterministic
In the system control module, the thread initialization and

completion state settings are first completed. The thread
initialization needs to set the thread state information,
including the initialization state, the protection state, the
number of child threads, the number of locks held, and
whether the token is obtained. The protection state defines a
bool variable that can determine whether the current thread is
protected by memory. When there is only one thread in the
system, the system will turn off the memory protection to
avoid protection overload. After the state is initialized, the
thread number of the current thread can be obtained, and the
thread is added to the token queue, waiting to acquire the
token. The thread running mode is shown in Figure 1.

According to Pthreads, in a multithreaded program, a
thread can create a thread. After a new child thread is created,
it needs to be registered. The relationship with the parent
thread has been established to facilitate sharing information
between threads. When the child thread registers, it needs to
obtain the global index of the thread and associate it with the
parent thread. Newly registered child threads cannot lock and
get tokens to avoid deadlocks. For the newly registered child
thread fence is always valid, after waiting for the
synchronization point, you need to wait for the token to get
through the fence to enter the next round of events.

Thread 1

Thread 2

Thread 3

Parallel stage Serial stage

Transactions
execute synchropoint submite Token pass

process
Fig.1 Deterministic thread running mode

B. Memory Configuration Based On Weak Determinism
Compared with strong determinism, weak determinism

has the characteristics of small system overhead, good
deterministic effect and high efficiency. However, the

concept based on weak determinism makes this method
ignore data competition and only handle thread synchronous
competition, and weak deterministic processing. Data
competition is associated with memory access. In the parallel
phase of thread execution, each thread can only access the
last round of saved backups. In the serial phase, the
respective backups are written in the order of acquiring
tokens. Into the memory, after the serial phase is over, each
thread will back up the current memory. Therefore, the
thread needs to know at any time whether the state of the
memory is accessible. After the start of a new round of
thread execution, the memory information acquired by the
thread is also initialized to match the order of the tokens
obtained in the current serial phase. In order to back up the
memory information, each thread is assigned its own stack.
At the beginning of each new round of transactions, you
need to call begin() to complete the initialization, and
determine whether the content submitted by the previous
round of the transaction still remains on the stack. If not, the
stack is cleaned up, and the current round of transactions is
serialized. Phase commits are ready to set protection for
global pages and stacks. When a new thread is created, the
child thread needs to complete registration to establish a
relationship with the parent thread. At the same time, by
calling the setThreadIndex() function, it establishes its index
in the global page and stack response position, and completes
the relationship with the memory. After the new thread
allocates memory, it needs to find the real thread number tid
through the global index of the thread to calculate the usage
of the sub-heap. When the sub-heap is occupied, the system
needs to apply for more memory. See Figure 2 for
deterministic memory usage.

Thread 1

1 2 3

Thread 2

1 2 3

Thread 3

1 2 3

Parallel stage

Thread 1

1 2 3

Thread 2

1 5 3

Thread 3

1 2 4

Share memory

Thread 1

1 5 4

Deterministic serial
stage

Thread 2

1 5 4

Thread 3

1 5 4

Fig.2 Deterministic Memory Usage

IV. ATOMIC TRANSACTION SYNCHRONIZATION CONTROL
Synchronization control mainly includes synchronization

point waiting, fence placement and clearing, and mutex lock
acquisition. In this topic, in order to control thread execution,
the concept of transaction is added. The thread runs in
transaction units, and the transaction is divided into parallel
phase and serial phase. In the parallel phase, each thread

2019 Scientific Conference on Network, Power Systems and Computing (NPSC 2019)

-64-

does not interfere with the parallel execution, and saves the
respective running results to the sub-heap of the initialization
function allocation when the thread is created. The contents
of these sub-heaps all come from the copy of the shared
memory after the last round of the transaction (Share
memory), the purpose of setting the synchronization point
has the following two points:

1) After the parallel phase, let the thread wait for the
token to be submitted and commit to the shared memory

2) After the serial phase, copy the contents of the shared
memory to each thread and start the next round of transaction
execution.

At the synchronization point, each thread submits to the
shared page in the order of acquiring the token, and
correspondingly writes less, increments the version number
of the page, and when all submissions are completed, the
shared page is released. The setting of the synchronization
point interrupts the execution of the thread, providing an
opportunity for the thread to compare and submit the mirror
page, allowing each thread to submit in the order of
acquiring the token, ensuring certainty.

The purpose of setting the synchronization point is to let
the thread know when to execute in the parallel phase and
when it needs to stop and commit. When the thread runs to
the synchronization point, the system sets the fence to block
all threads that reach the synchronization point, performs
synchronization operations, and when all threads complete
the commit, clears the fence release, and the system needs to
notify the system to re-declare the index when the fence is
closed. When there is only one active thread in the system,
the thread's runnability and commit are not blocked by the
fence. The system uses a single global token to ensure the
sequence certainty and atomicity of the serial phase. When
the thread acquires the token, it needs to apply for the lock
on the submitted page when it submits like shared memory.
First, the system should check whether the current thread has
obtained any locks. When the thread wants to acquire the
lock, it must wait for the token to be passed to itself. If the
lock has been acquired by other threads, the thread must pass
the order.

Until the next serial phase condition allows the lock to
apply to prevent the occurrence of deadlock, as shown in
Figure 3.

T1 trys to occupy the R1 and T2 trys to occupy R2 in the
same time. Both threads are waiting the other one to release
the resource and hole the current resource with occupy state,
so here is a dead lock situation

T1 T2

R1 R2

occupation occupation

T1 request R2
T2 request R1

Fig.3 dead lock illustration

V. DETERMINISTIC EXECUTION SCHEDULING
When the thread finishes executing in the parallel phase,

the arrival syncpoint is blocked by the fence and joins itself
to the active list, which means that the thread is ready to wait
for the token to start the serial phase. The token is delivered
in a first-come-first-served algorithm, which is passed in
order of the threads in the active list. The delivery of the
token is an important measure for the system to ensure that
the execution is deterministic. In the above, the design thread
acquires the lock, and the commit modification needs to be
performed under the premise of acquiring the token. The
active list of threads is designed as a circular linked list.
Every time you operate on a linked list, you must first
determine whether the linked list is empty. The system
determines whether the head pointer of the circular linked list
points to null (NULL). When inserting an entry into a linked
list, if the linked list is empty, both the head and tail pointers
point to the current entry. If the linked list is empty when the
withdrawal operation is performed on the linked list, the
token is passed, the fence is released, and the next round of
transactions is started.

VI. LIRS CACHE POLICY
Multi-threaded systems must be paid for system

resources or time in order to obtain certainty. Therefore, the
actual use of many deterministic systems is not ideal. The
strong determinism of software implementation is too
restrictive for threads and memory. Nearly 10 times the
overhead, which makes the application of this technology
very limited. Therefore, optimizing system performance
from thread resource scheduling and improving system
performance have become a better choice for improving
deterministic systems.

LIRS is a replacement by dynamically using the distance
between the same page twice (this distance refers to how
many non-repeating blocks are accessed in the middle) as a
measure to dynamically sort the access pages. The work of
all page replacement algorithms relies on the existing
locality principle. The main difference between the various
replacement algorithms is how to quantify the locality [13].
LIRS uses the distance that the same page is accessed twice,
that is, between consecutive two visits to the page, how
many non-repeating pages are accessed to quantify locality.
If a page is first accessed, its reuse distance is infinity, and
at the same time, the LIRS algorithm uses a page's recent
access time to quantify this locality. In order to take into
account the latest access history information, the
implementation of the LIRS algorithm uses the larger value
of the revisit interval and the recent access time of the page
to measure this locality, using RD-R representation (Reuse
Distance-Recency) to revisit the interval and the newest The
concept of access time is shown in Figure 4 below

The LIRS algorithm classifies cache blocks according to
IRR values, and is divided into two types, LIR and HIR, to
set a stack S and a queue Q respectively. All LIR blocks and
newly replaced non-resident memory blocks are placed in
stack S. The newly replaced cache block is placed on the top
of the stack. The queue Q is used to place all the resident
HIR blocks. The distance from the block in the stack S to
the bottom of the stack represents the IRR value of the
cache block. Replace all blocks that reside in the cache.

2019 Scientific Conference on Network, Power Systems and Computing (NPSC 2019)

-65-

Page A Page A Page A

T1 T2 T3

The second to last visit to the
page and the number of other

non-repeating pages before
the last time the page was

visited

The number of other non-
repeating pages between
the last time the page was
accessed and the current

time

IRR Recency

T1 the penultimate visit time of the
page
T2 the last visit time of the page
T3 the current time

Fig.4 LIRS Cache strategy illustration

VII. TESTING AND VERIFICATION

A. Environment
This experiment uses Phytium FT-1500A/16 domestic

16-core experimental platform, clocked at 1.5GHz, 16G
memory, equipped with Linux version 4.4.13-20161128.
kylin.5. server operating system, using standard test set
PARSEC-3.0

B. Test Results
The figure below shows the function compared by our

system and pthreads, the input file size is simsmall.

0

200

400

600

800

1000

blackscholes canneal dedup ferret streamcluste swaptions

ex
ec

ut
io

n
tim

e

pthreads our system

Fig.5 function compare between our system and pthreads

VIII. CONCLUSION
The weak deterministic implementation ignores data

competition. Compared with other deterministic methods, it
has advantages in system performance overhead. It can be
seen from the performance test chart that when the test set
program parallelism is high, the performance overhead of the
two is very close. However, when the degree of parallelism
of the program is low and the degree of serialization is high,
the system often has several times of overhead in order to
obtain parallelism, which is also a problem to be solved in
future research.

REFERENCES
[1] Xu Zhou, et al. Chinese Journal of Computers, 2015,(5):974-983.
[2] Joseph D, Brandon L, Luis C, Mark O, DMP: Deterministic shared

memory multiprocessing//Proceedings of the 14 th International
Conference on Architectural Support for Programming Languages
and Operating Systems. Washington, USA, 2009:85-96.

[3] Devietti J, Nelson J, Bergan T, et al. RCDC:A relaxed consistency
deterministic computer// Proceedings of the 16 th International
Conference on Architectural Support for Programming Languages
and Operating Systems. Newport Beach, USA, 2001:67-78.

[4] Hower D R, Dudnik P, Hill M D, Wood D A. Calvin: Deterministic
or not? Free will to choose//Proceedings of the 17 th International
Symposium on High Performance Computer Architecture,
Washington ,USA, 2011:333-334.

[5] .Bergan T, Hunt N, Ceze L, Gribble S D. Deterministic process

groups in dOS//Proceedings of the 9 th USENIX Conference on
Operating Systems Design and Implementation. Vancouver, Canada,
2010:1-16.

[6] Amittai a, Shu-Chun W, Sen H, Bryan F. Efficient system enforced
deterministic parallelism// Proceedings of the 9 th USENIX
Conference on Operating Systems Design and Implementation.
Vancouver, Canada, 2010:1-16.

[7] Bergan T, Anderson O, Devietti J, et al. CoreDet: A compiler and
runtime system for deterministic multithreaded
execution//Proceedings of the 15 th ASPLOS on Architectural
Support for Programming Languages and Operating Systems,
Pittsburgh, USA, 2010:53-64.

[8] Cui H, Wu J, Tsai C C, et al. Stable deterministic multithreading
through schedule memoization[C]// Usenix Symposium on Operating
Systems Design and Implementation, OSDI 2010, October 4-6, 2010,
Vancouver, Bc, Canada, Proceedings. DBLP, 2010:207-221.

[9] Liu T, Curtsinger C, Berger E D. Dthreads:efficient deterministic
multithreading[C]// ACM Symposium on Operating Systems
Principles 2011, SOSP 2011, Cascais, Portugal, October. DBLP,
2011:327-336.

[10] Olszewski M, Ansel J, Amarasinghe S. Kendo: efficient deterministic
multithreading in software[C]// International Conference on
Architectural Support for Programming Languages and Operating
Systems. ACM, 2009:97-108.

[11] Aviram A, Weng S C, Hu S, et al. Efficient system-enforced
deterministic parallelism[J]. Communications of the Acm, 2010,
55(5):111-119.

[12] Lu K, Zhou X, Wang X, et al. RaceFree:an efficient multi-threading
model for determinism[J]. Acm Sigplan Notices, 2013, 48(8):297-
298..

2019 Scientific Conference on Network, Power Systems and Computing (NPSC 2019)

-66-

	I. Introduction
	II. Multi-thread Weak Deterministic Method
	A. Deterministic Technology
	B. Multi-threaded Weak Determinism

	III. Multi-thread Weak Deterministic Method Design
	A. Structure of Thread Weak Deterministic
	B. Memory Configuration Based On Weak Determinism

	IV. Atomic Transaction Synchronization Control
	V. Deterministic Execution Scheduling
	VI. LIRS Cache Policy
	VII. Testing and verification
	A. Environment
	B. Test Results

	VIII. Conclusion
	References

