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Abstract—The coupling Power Communication Network 
(PCN) has been proven as an effective supplement to modern 
power grid for carrying various auxiliary services. 
Conventional fault processing methods for PCN implement 
short term recovery of services from interruption caused by 
external risks. However, such methods normally optimize 
topological structure of routing according to direct 
communication states. In this paper, we propose a machine 
learning based method to predict the reliability of nodes as well 
as links on PCN and dynamically program routing strategy 
alongside with the variation of external environment. The 
method comprehensively takes various factors into account as 
input to a Recurrent Neural Network to predict the reliability 
of hardware in incoming days. Based on the predicted 
reliability, a Particle Swarm Optimization method is exploited 
to optimize the routing to prompt the robustness of services by 
avoiding path with potential risk. Our experimental analysis on 
both simulation cases as well as realistic records demonstrates 
that the proposed dynamic routing programming method can 
be applied as a medium and long term supplement to existing 
fault processing methods. 

Keywords—Recurrent Neural Network, Particle Swarm 
Optimization, Smart Grid, Routing Programming 

I. INTRODUCTION 
Smart grid and integrated Power Communication 

Networks (PCN) carries both power infrastructure as well as 
corresponding communication functions such as information 
transmission, status surveillance and management. Services 
on PCN play a key role on ensure the quality of power 
system and reliability of related equipments. Furthermore, by 
communication between nodes, it implements diagnosis and 
recovery mechanism of congestion and interruption of links 
to ensure robustness of PCN itself [1]. 

Current PCN in China normally shares topological 
structures with corresponding power system. As typical 
backbone communication networks, nodes connected by 
optical fibers to implement fundamental functions such as 
routing and Quality of Service (QoS). Devices constructing 
PCN are inevitably affected by various factors which can 
finally lead to information delay and congestion. Such 

influence could be urgent because of external emergency 
conditions, e.g., disastrous weather such as storms lead to 
wide range communication interruption. Power grid over 
provinces are severely affected into isolated parts [2]. 
Conversely, the effect could be chronic, such as aging of 
devices results into instability of specific links as well as 
services on the paths [3]. 

Existing works achieved some results in fault tolerance 
and recovery of PCN from emergency interruption [4]. For 
instance, a decentralized method is proposed in [5] to detect 
and recover the link fault. A failure recovery method based 
on genetic cluster algorithm is also proposed in [6] to detect 
fault in cluster members and heads. In our previous works, 
we proposed to automatically perceive the congestion status 
of the node as well as links between neighboring nodes, and 
realize fault recovery by reinforcement learning methods [7]. 
Such works mainly detect the abnormal queueing delay on 
nodes as the essential feature of networks interruption, which 
means algorithms can only function after emergency occurs. 
Thus the whole system still faces the risk of service broke off 
directly. 

On the other hand, from the perspective of service 
routing optimization, [8] proposed a Dijkstra algorithms 
based method to prompt the reliability of networks when 
system undergoes the risk of topological attack. Although the 
method is effective to prevent services from being 
interrupted, it still relies on the accurate prediction of 
incoming risk over PCN and adjust routing according to pre-
calculated weights. For practical power system and coupling 
PCN scenarios, potential interruption is normally 
unpredictable. It is costly to intervene the whole entirety of 
system at each time emergency occurs. Moreover, the 
reliabilities of links and nodes on PCN are time varying 
parameters, which makes it inappropriate to decide routing 
strategies according to constant configuration. To address 
this problem, in this paper we propose a dynamic routing 
optimization method, which can autonomously learn typical 
characteristics and resulting effects from historical records, 
and exploit the knowledge to optimize service routing over 
PCN, finally prompt the reliability of service and load 
balance under various risk factors as outside constraints. 
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Our proposed approach exploits Recurrent Neural 
Networks (RNNs) [9] to predict key parameters in routing 
optimization by learning historical data including congestion 
states of nodes and links, weather forecast data and device 
states. The routing programming of services is based on 
Particle Swarm Optimization (PSO) method. The proposed 
method mainly focuses on medium and long term routing 
programming based on knowledge learned from historical 
records. Complemented by short term fault processing 
method, it can provide more effective management to 
possible risks on PCN. Meanwhile, we found PSO method 
shows higher efficiency for such dynamic routing problems 
with variant weights, especially for networks with larger 
scale. It can converge to an acceptable solution with higher 
speed, and resulting in explicit reduction of service risks. 

II. RELIABILITY PREDICTION WITH RNNS 
The structure of power grid as well as coupling PCN is 

illustrated in Fig. 1. Different services can share nodes and 
links on PCN. Thus, to optimize the services routing requires 
to comprehensively take into account the reliability of 
devices on the path as well as importance of services. Since 
importance of services can be considered as fixed known 
factors in the model, we propose to predict the reliability of 
nodes and links, achieving dynamic routing programming 
both fixed and variant parameters. 

 
Fig. 1. Power grid shares the same topology with coupling PCN. Services 
carried on PCN are denoted by different colors. 

Conventional service risk analysis methods mainly 
consider various types of factors as generative models with 
prior assumptions. Specific risks include nature factors such 
as earthquakes and storms, equipment factors such as aging 
and quality defects, human factors such as mis-operation 
during maintenance. Generative models accounting for these 
risks normally contain manually fixed hyperparameters 
without any adjustment alongside with time. It makes PCN 
tends to pay extra cost to reduce operation risks specifically 
for those long term unpredictable factors such as human 
factors. Routing of services could be degraded unnecessarily. 
Hence, we propose to directly predict the interruption risk of 
current nodes and links discriminatively by combining 
various factors from running records. 

First, given a PCN model denoted as a graph ( ),G V E , 
where V  and E  are the set of nodes and links respectively, 
the most explicit feature indicating congestion is the degree 
of node cache occupancy. During interval t∆  at time t , we 
define the cache occupancy of node v  as: 

( )
( ) ,v

v

te E veo t
m

N ∆∈∆=
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                         (1) 

where ( )veN t∆  is the number of packages received from 
link e , E E∆ ⊆  is the set consisting of neighboring node to 
v , and vm  is the maximum number of packages that v  can 
process. We also estimate the congestion state of links by 
number of packages at its corresponding two nodes. 

As an optical communication network, the error rate and 
optical power also directly reflect the communication quality 
between nodes on PCN. Besides these direct features, we 
collect other external factors including Severely Errored 
Second (SES), Forward Error Correction (FEC) number, 
Cyclic Redundancy Check (CRC) error, power voltage and 
age of equipment, temperature of environment and local 
weather forecast data, etc. All features are concatenated as 
input vector ( ) Dt ∈o   to RNNs, where D  is the dimension 
of input. Common pre-processing methods such as 
normalization and centralization are deployed on ( )to  to 
deliver standard input to RNN. 

We adopt Long Short Term Memory (LSTM) [9]–[11] 
unit as our implementation of RNN. It consists of four gate 
functions and a memory cell c . Given input vector ( )to  at 
time t , LSTM outputs ( )tz  as resulting inference. 
Simultaneously, information in c is recursively passed to 
next LSTM at time 1t + , hence historical states can be 
retained within RNN continuously. The model is trained to 
predict the reliability of node or link in consequent week 
from aforementioned features. Our supervision information 
of reliability comes from the manual intervention records. 
The reliability ( )r t  is negative correlated to times that the 
link is substituted by and recovered from backup link as 
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where ( )iC t  is the change times occurring to target at the 
i -th day after time t . We use bias weights 

1 2 7, , 0α α α> > … > >  to emphasize the influence of 
observations from more neighboring days since we believe 
these observations are more relevant and urgent. The format 
of ( )r t  is similar to sigmoid function to ensure a probability 
in the case that ( ) [0, )iC t ∈ +∞ . 

III. ROUTING PROGRAMMING BY PARTICLE SWARM 
OPTIMIZATION METHOD 

 Given predicted reliability risk for every node and link, 
we attempt to dynamically optimize service routing with 
PSO method. Note that the importance of different services 
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should also be considered during optimization. We obtain 
these priorities information from QoS directly. The reason 
we choose PSO method to optimize routing strategy is 
because our proposed routing programming serves as a 
supplement for short term routing fault processing method. 
Instead of searching for global optimal routing paths at each 
programming time, an acceptable solution as better 
initialization to fault recovery is sufficient here. 
Conventional routing methods such as Dijkstra algorithm 
focuses on searching a global optimum by calculating 
multiple services risks at all nodes and links. In contrast, 
PSO method tends to converge to an acceptable local 
optimum with much higher efficiency. As a result, the 
routing strategy can vary alongside with external factors with 
very low cost at each time. 

The particle k
ix  in the swarm here corresponds to a 

routing solution and its aggregated reliability calculated from 
all nodes and links. Here i  is the index of the particle at the 
k -th iteration. Without mutual information from other 
particles, particle k

ix  adjusts routing paths at every nodes 
towards the best substitution with highest reliability k

ip . On 
top of that, mutual information k

gp  is delivered in the format 
of current best solution to impact the behavior of k

ix . We list 
the whole routing optimization procedure in Algorithm 1. 

Algorithm 1 Routing optimization based on PSO method. 
Require: Current routing solution x  as well as 
reliability prediction r  at time t . 

Initialize pN  particles 0
1{ } pN

i i=x  by Gaussian 
distribution with x  as expectation and a 
small variance. 
for k iterations do 
1. Calculate the k

gp  from current particles. 

2. Calculate k
ip s for every particle k

ix s. 
3. Update each particle by standard PSO 

method as (3). 
4. Validate and rectify the resulting particle 

1k
i
+x  under the constraints of QoS. 

end for 
return The resulting k

gp at the last iteration. 

 
Fig. 2. The topological diagram of part of a power grid adopted as 
simulation scenario. 

We update the particle at each iteration by following 
standard equation in PSO as: 

1
1

2

* ()*( )
* ()*( ),

k k k k
i i i

k k
g i

c rand i
c rand

+ −= +
+ −

x x p x
p x

                  (3) 

where 1c  and 2c  are combination weights to control the 
direction of update. The whole procedure of optimization is 
restrained by QoS, preventing routing solution from invalid. 
Our experimental results demonstrate that only small number 
of iterations ( 3≤ ) can lead to obvious change to routing as 
well as reduction of system risks. Hence we adopt a fix 
number of iterations as PSO strategy to achieve a slow 
dynamic routing programming alongside with time. 

IV. EXPERIMENTAL RESULTS 

A. Performance Analysis in Simulation Scenarios 
In this section, we analyze the performance of our 

proposed method in a simulation scenario. Here we take a 
simulation scenario as [8] into consideration as Fig. 2. The 
power grid architecture consists of several control stations 
and transformer stations at different levels. In this case, the 
coupling PCN shares the same topology as Fig. 2. The 
importance of every node and link are labelled with number. 
There are ten routes of relay protection services for power 
grid running on this topology. 

Differing from case analysis in [8], where the 
interruption to network is a known external condition, here 
we aim to detect the urgency and predict the risk of 
reliability. We generate the simulation data leaded by 
variation of external factors with the same generative models 
described in [8]. We assume that the reliability of PCN is 
affected by three types of external factors: nature factor, 
equipment factor and human factor. For nature factor, we add 
two weather events represented by the resulting influence 
and corresponding forecast records to simulation. For 
equipment factor, the malfunction probability ( )ip t  of 
equipment at time t  is suggested as: 

/( ) 1 ,it TT
ip t e−= −                            (4) 

which exponentially correlates to the running period and 
specific duration constant iT . For human factors, without any 
extra assumptions, human intervention can be formulated by 
Poisson distribution as: 

( )( ) 1 ,i in t
ip t e λλ −= −                           (5) 

where iλ  average arrival rate constant of human factor. 

We train the prediction model with generated operation 
records over one year. All records consist of aforementioned 
entries as described in Section II. The learned model is 
exploited to predict reliabilities on a test set with similar 
generated patterns. Predictions are combined with PSO 
method to implement the routing programming. By the 
optimization of routing, services are re-arranged to bypass 
links with higher potential risks. In Fig. 3, we demonstrate 
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the risk control by our proposed method against different 
external influences.  

Here we take link ‘A4-A3’ and a service with route ‘A5-
A4-A3-A2’ as example. We illustrate the performance of 
proposed method at two different 90 days. The comparison 
of each period consists of simulated reliability of link (Sim 
A4-A3), predicted reliability of link (Predict A4-A3) and 
reliability of the whole service (Service). Here reliability is 
calculated according to equation 2. The first period ranges 
from day 50 to day 139, in which we simulate a weather 
attack as well as a human mis-operation respectively. From 
Fig. 3, one can see that the proposed method predicted the 
severe reduction of reliability from weather forecast data. 
Hence the routing optimization method attempted to avoid 
the interruption by modifying the topological graph and 
delivering the service through backup route. However, for 
unpredictable human factors, the method failed to predict the 
incoming interruption in advance. The adjustment of routing 
was only achieved by direct features of interruption. Also 
note that after external interruption disappeared, our 
proposed method recovered the default routing 
autonomously. 

For the second period covering day 350 to day 439. We 
observe another routing switch due to aging factor of 
equipments. When reliability prediction showed that some 
link retained higher reliability than current candidate, it 
optimized the route of service autonomously. Therefore, we 
believe that our proposed method can serve as a long term 
dynamic routing programming mechanism. 

We also compare the influence of iteration number k  in 
algorithm 1 in Table I. Here the case of disastrous weather 
attack as in the first period of Fig. 3 is adopted for 
comparison. One can see that the prompt brought by PSO 
method is saturated when 3k ≥ . This is because our 
proposed routing optimization is well initialized by existing 
full functional routing system. Only a few steps of iterations 
can result in acceptable optimization during interruption. 

 
Fig. 3. The performance of dynamic routing programming with reliability 
prediction at different periods. 

B. Performance on Realistic Operation Records 
In this section, we experimentally test the performance of 

our proposed routing programming method on realistic 
running records. Our data comes from operation and 
maintenance records of optical transmission equipments in 
state grid, in which typical entries such as SES, FEC number 

and CRC errors as described in section II are contained. The 
weather forecast reports are also supplemented into data at 
corresponding dates. We train our prediction model with data 
covering one year from 2016 to 2017. The adjacent data from 
year 2018 is utilized for validation. With the dynamic routing 
optimization, we observe an obvious gain of 30% at average 
reliability of different services. In Fig. 4, we illustrate the 
number of routing switches at each month during the running 
of routing optimization method. One can see that most of the 
routing changes are caused by external factors such as human 
mis-operation or equipment aging. There also exists obvious 
increasing of routing changes during summer due to some 
weather conditions. 

TABLE I.  PROMPTS BROUGHT BY DIFFERENT ITERATIONS k  IN 
ALGORITHM 1. 

Iteration number Average reliability prompt 

1 0.31 0.31→  

2 0.31 0.62→  
3 0.31 0.79→  
4 0.31 0.79→  

 
Fig. 4. The number of routing switches caused by dynamic routing 
programming at each month in our validation set. 

V. CONCLUSION 
This paper proposes a two stage dynamic programming 

method for services on PCN. By integrating LSTM units as 
reliability prediction models and PSO method as routing 
optimization method, we propose a comprehensive routing 
programming system to autonomously adjust routing strategy 
to avoid potential risk to services. Experimental results on 
both simulated and realistic data show that our proposed 
method can follow the variation of environment with only 
trivial extra computation cost. In our future work, we will 
further study the possibility of jointly learning prediction and 
optimization method as a whole entirety for dynamic routing 
programming. 
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