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Abstract—To evaluate reliability of equipments plays a key 
role for the robustness of modern power communication 
network. Such tasks imply to learn a regression model with 
limited samples and heterogeneous formats. In this paper, we 
address this problem by introducing a deep learning based 
model containing the latest proposed capsule structures. The 
model can take raw maintenance data as input directly by 
treating them as unified document without any extra manual 
preprocessing. We propose a multiple stages strategy to train 
the model with original data as well as generated perturbed 
data from a decoder as augmentation. Experimental results 
demonstrate that not only the proposed method shows 
acceptable performance to predict the reliability of 
communication equipments, but also it shows potentiality 
especially in learning deep models with fewer samples in 
different Natural Language Processing tasks. Thus, the 
proposed capsule networks framework with data generation 
mechanism could be considered as a promising way to drive 
deep models in practical learning tasks in which only limited 
training data is available. 

Keywords—Capsule Networks, Natural Language Processing, 
Deep Learning, Smart Grid, Reliability Evaluation 

I. INTRODUCTION 
Recently, electric power communication networks have 

experienced a significant development from the perspective 
of equipments and coverage area. The modern 
communication network is important infrastructure of power 
system since not only it provides the service of network 
management, but also it delivers pivotal running data of 
various equipments and sensors on power grid. Therefore, 
the reliability evaluation and analysis of electric power 
communication network itself also becomes increasingly 
important. Conventional power communication network 
maintenance normally corresponds to periodically 
inspections or fault recovery after alarm [1]. To evaluate the 
reliability status and realize real-time prediction for 
equipment faults based on running records gradually extract 
attention from the community since it provides a potential 
way to protect networks from serious faults before alarm 
occurs [2]. 

Learning reliability evaluation model for equipments of 
power communication network is still a challenging problem 

since it requires extracting mutual information from 
multimedia data with complicated structures. Conventional 
methods for sensor health prediction [3] or equipment 
reliability evaluation [2] normally rely on heuristically 
designed features from raw data as well as training classifiers 
such as Support Vector Machine (SVM) [4], decision tree [5]. 
The disadvantages of such frameworks are obvious. The 
human designed features can only consider local information 
on single node, rather than treating equipments on the same 
network comprehensively. The training of classifier is not 
end-to-end, thus the prediction performance of resulting 
model is strongly restricted by the quality of feature 
extraction algorithm, which mainly depends on the specific 
knowledge of developer. On the other side, raw running data 
of power communication networks normally contains 
heterogeneous formats such as documents and structural data. 
It is difficult to mine relevant information manually as 
preprocessing for further regression. Hence in this paper we 
propose to learn the evaluation model based on capsule 
networks [6] by treating running data as documents with 
unified format directly. 

Deep neural networks based methods have achieved 
extensive applications in the fields of Natural Language 
Processing (NLP) [7], computer vision [8], etc. The end-to-
end training framework ensures that such models can 
autonomously learn the most representative features for 
specific task. However, the huge quantity of parameters 
within such deep models normally require large scale data to 
drive training. It is not a serious problem for daily NLP tasks 
due to easily accessible training corpus. Contrarily, for the 
problem of equipments reliability evaluation, the training set 
is relatively small and most data shows similar pattern. 
Differing from typical deep learning based models, capsule 
network integrates unsupervised routing with standard back 
propagation (BP) learning of neural networks. It helps model 
to extrapolate latent samples with the same distribution by 
affine transformation, and thus significantly prompt the 
generalization capacity especially on small datasets [9], [10]. 

In this paper, we proposed a simple generation 
framework to further reduce the amount of samples for 
learning a capsule network for NLP tasks. On top of that, we 
apply the proposed model on the problem of reliability 
evaluation of power communication network equipments. 
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Our proposed method outperforms conventional regression methods with much simpler preprocessing mechanisms. 

 
Fig. 1. Capsules and dynamic routing between them. Here 4 capsules are affine transformed to 8 candidates and then routed to 2 capsules as output. 

II. CAPSULE NETWORKS 
Capsule structures as well as routing algorithm is 

proposed in [11]. As illustrated in Fig. 1, the building block 
here is so called capsule consisting of a vector as pose and a 
corresponding scalar as activation. The pose vector, normally 
8D or 16D, is realized by grouping features from previous 
layers of neural network. A scalar is combined to pose as the 
nonlinear activation of the capsule. As the output of network, 
activations represent the magnitude of capsule corresponding 
to specific semantic category of target. Meanwhile, the pose 
of capsule is exploited to reconstruct instantiation 
information of input as extra regularization for learning. 

Based on the capsule structures, a dynamic routing 
algorithm can be exploited to compress capsules and to 
formulate the relationship over different capsules. At the first 
stage of routing, input poses of capsules are extrapolated by 
affine transformation matrices for more abundant 
information. Then some unsupervised clustering methods 
can be deployed on transformed candidates. Here routing 
methods are only based on the similarity between capsules 
without any supervision. Capsule networks integrate 
conventional discriminative BP learning with generative 
affine transformation and routing, thus demonstrate some 
attractive features. The output of capsule networks can serve 
as conventional probability of hypothesis while pose vector 
can bring specific interpretable information as auxiliary 
evidence to final decision. Also, since the extrapolation 
during affine transformation and generative routing method, 
capsule network can be learned with many fewer samples 
and prevail deep models [9], [10]. 

A. Routing by Kernel Density Estimation 
The routing method originally proposed in [6] reweighs 

the connections between candidate capsules and output 
capsules by a heuristic clustering method with dot product as 
the metric. The clustering ensures that similar capsules 
contribute to the same resulting capsule as the representative 
feature. However, the so called “routing-by-agreement” 
framework in [6] requires too intensive computation during 
routing. In this paper, we adopt the kernel density estimation 

(KDE) based clustering as a fast routing algorithm [12]. 

Given a defined distance metric ( )d −u v  between pose 
of candidate capsule u  and pose of output cluster v , the 
KDE based routing aims to maximize the weighted sum of 
density estimations at clusters as 
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where ln  and 1ln +  are the number of capsules at input 
and output layers respectively, kz  is a partition constant and 

( )k ⋅  is the kernel function. ijr s are weights of connections 
between capsules and clusters. u

ia  is the activation of input 
capsule. 
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On the other hand, ijr  is optimized by standard gradient 
descent method as 

1 ( ( )),u
ij ij i j ir r a k dτ τ τa+ = + −v u                         (3) 

where α  is a constant to control the step of gradient 
descent. The whole entirety of KDE based routing can be 
summarized as algorithm 1. 
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Algorithm 1 Dynamic routing based on mean shift. 

Require: poses iu , activations u
ia  

Initialize 1, : 1 /ij li j r n +∀ =  
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end for 
return capsules with poses jv  

Here α  is simply set to 1. Given the resulting poses jv , 
nonlinear activations are attached as 

0
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where 'ijr  is the normalized version of ijr  as in step 1 of 
algorithm 1 and D  is the dimension of pose vector. 

1D
j

+∈β   is linear coefficient at each entry of pose. 

III. RELIABILITY EVALUATION FRAMWORK 
As illustrated in Fig. 2, our proposed evaluation 

framework treats input data as natural documents with 
unified structure. The input is processed by word embedding 
method to get vectors with the same dimension. Then 
convolutional filters with different sizes (2, 4 and 8) are 
deployed to extract features from embedded words. Features 
are concatenated directly to formulate the relationship 
between data at different scales. A 1 1×  convolutional filter 
is implemented at each position of features to form the poses 
of capsules. For every pose, an activation as shown in Fig. 2 
is attached as the softmax version of the length of pose. 

Since the amount of capsules now is too much to realize 
routing with a practical computation cost, capsules are 
compressed in the format of weighted sum as 

ˆ ,k i ki ib= Σu u                                   (5) 

where kjb  is the weight learned by standard BP. By 
compression the number of capsules is reduced to a 
reasonable level for routing and some outliers are removed. 

 
Fig. 2. Evaluation framework based on capsule networks. 

Then the dynamic routing algorithm as depicted in Fig. 1 
is executed to further combine these compressed capsules as 
resulting representative capsules. The activations of 
representative capsules are trained for regression. 
Simultaneously, poses of capsule are exploited to reconstruct 
features of input instance by a decoder. 

Here we adopt a structure consisting of one fully 
connected layer and three deconvolutional layers as decoder 
to reconstruct instantiation features from poses. 

The decoder not only helps to regulate the learning as 
proposed in [6], but also it can generate extra samples 
sharing similar distribution with original samples. As shown 
in Fig. 3, at the first stage of training, both capsules network 
and decoder are trained from original data. Then at the 
second stage, we generate extra data by feeding original data 
with perturbation into the decoder learned at the first stage. 
Here we adopt the proposed perturbation method in [10] at 
each dimension of the convolutional features of input data. 
Finally we re-train the capsule network with the combination 
of both original data and perturbed data at the third stage. 
Our experimental results demonstrate that the augmentation 
method based on the decoder can help to drive the learning 
of model with relatively fewer samples as well as trivial 
reduction of performance. This is especially suitable in the 

scenario of learning tasks with limited training samples, such 
as reliability evaluation of power communication network 
equipments. 

 
Fig. 3. Three stages for learning capsule network with few samples and 
augmentation method. 
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IV. EXPERIMENTAL RESULTS 

A. Text Classification with Fewer Samples 
Our main concern in this paper is to learn evaluation 

models with fewer samples. To this end, we first validate the 
proposed three stages training strategy on a typical multilabel 
text classification task. The experiments are executed on the 
dataset EUR-Lex [13], which consists of 3,956 labels and 
15.59 examples per label. By varying the fraction of training 
samples from 30% to 100%, we study the influence brought 
by extra perturbed data that are generated by decoder. The 
finale performances of models are compared in Fig. 4. 

 
Fig. 4. Performances of models on EUR-Lex with different number of 
training samples. 

Here we compared three methods: XML-CNN [14], 
NLPCap [9] and our proposed NLP-Cap with perturbed 
samples (NLP-Cap-Ge). The performances at two standard 
rank-based tasks, Precision@k and Normalized Discounted 
Cumulative Gain (NDCG@k), are considered. From Fig. 4, 
one can observe that the proposed method effectively 
exploited the generation capability of the decoder. The 
complementary samples during training prompt the 
performance of model with obvious margin especially in the 
cases with insufficient training samples. In contrast, when 
training samples are abundant, since our proposed method is 
basically similar to NLP-Cap method, both of them show 
approximately the same performance. The potentiality of 
sample generation is specifically suitable for learning tasks 
with fewer samples, such as reliability evaluation of 
equipments. 

B. Reliability Evaluation with Capsule Network 
In this section, we empirically test the capacity of capsule 

networks to evaluate the reliability of power communication 
network equipments. The data is collected from operation 
and maintenance data of optical transmission equipments in 
state grid. The training date covers the range from 2016 to 
2017, while we adopt the data at 2018 as test set. We treat 
data within one week as the essential unit of sample. Each 
sample is fed into our proposed evaluation framework as Fig. 
2 as input with unified document format. The information of 
data mainly includes both specific features of equipments 
such as optical power, jitter, drift, Bit Error Rate (BER) and 
Signal Noise Rate (SNR), etc., and environment parameters 
such as temperature and power supply state of equipment 
room. To evaluate the reliability of equipment, we propose to 
comprehensively consider following features of an 
equipment: number of interface alarms, number of power 
alarms, mean of CPU temperature, bias current and 
receive/launch optical power. All these features within one 
week are weighed by empirical weights and finally 
normalized to [0, 1] as resulting evaluation, i.e., reliability of 
the equipment. 

Since our average training data for every equipment is 
less than 1000 samples. We adopt the training strategy with 
generated data in Fig. 3 for higher generalization. 
Performances of four different methods are listed in Table I. 
First, we train a CNN with similar architecture as Fig. 2, 
except that capsule layer is replaced by two fully connected 
layers. One can see that the training cannot converge to a 
rational point since samples are insufficient for normal deep 
models. Then we learn a conventional capsule network with 
only the first stage in Fig. 3. The final regression error is 
significantly reduced. For comparison, we also learn a linear 
SVM based on features extracted by conventional layers in 
the left part of Fig. 2. One can see that the evaluation result is 
also unacceptable as direct CNN model. Finally, capsule 
network with generated samples performs best here. 

TABLE I.  FOUR METHODS ARE COMPARED ON THE TASK OF RELIABILITY 
REGRESSION. WE REPORT MEAN ERROR BETWEEN INFERENCE RELIABILITIES 

AND THE GROUND TRUTH. 

Method Regression error 

CNN 0.43 

Cap 0.09 

SVN 0.41 

Cap-Ge 0.03 

 
Fig. 5. Reliability evaluation by different methods over 12 months. We 
compare mean reliability as well as variation within one month here. 

Note that, generated samples from decoder further 
prompt evaluation performance especially when drastic 
disturbances occur at equipments. We illustrate this 
difference in Fig. 5. One can see that without serious 
turbulence, two methods show approximately the same 
performance. However, due to some outside influence at July, 
there is an obvious reduction of reliability occurring. The 
model learned with proposed three stages strategy with 
generated samples follows this disturbance effectively. 

V. CONCLUSION 
In this paper, we address the reliability evaluation 

problem of power communication network equipments by 
introducing capsule networks from the field of NLP. To learn 
model with limited samples with heterogeneous structures, 
we proposed a three stages based learning framework. The 
framework exploit both original samples as well as generated 
samples by learned decoder with perturbation. Our 
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experimental results demonstrate that, capsule network is 
capable to learn deep models with small amount of samples 
and delivers acceptable performance in regression tasks such 
as reliability evaluation. We believe the proposed method 
also has extensive potential applications in various practical 
machine learning scenarios due to its low requirement of 
training samples. 
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