
Implementation of High-throughput PCIe based on
FPGA and PowerPC

Kun Cheng
Department of Modern Physics and Hefei National

Laboratory for Physical Sciences at Microscale
University of Science and Technology of China

Hefei, China
e-mail: chengkun@live.cn

Shengkai Liao, Qi Shen, Chengzhi Peng
The Chinese Academy of Sciences (CAS) Center for

Excellence and Synergetic Innovation Center in Quantum
Information and Quantum Physics

University of Science and Technology of China
Shanghai, China

Abstract—This paper designed and implemented a direct
memory access (DMA) architecture of PCI-Express (PCIe)
between Xilinx field programmable gate array (FPGA) and
Freescale PowerPC. The DMA architecture based on FPGA is
compatible with the Xilinx PCIe core while the DMA
architecture based on POWERPC is compatible with VxBus of
VxWorks. The solutions provide a high-performance and low-
occupancy alternative to commercial products. In order to
maximize the PCIe throughput while minimizing the FPGA
resources utilization, a novel strategy for the DMA engine is
adopted, where the DMA register list is stored not only inside
the FPGA during initialization phase but also in the central
memory of the host CPU. The FPGA design package is
complemented with simple register access to control the DMA
engine by a VxWorks driver. The design is compatible with
Xilinx FPGA Kintex Ultrascale Family, and operates with the
Xilinx PCIe endpoint Generation 1 with lane configurations x8.
A data throughput of more than 666 MBytes/s (memory write
with data from FPGA to PowerPC) has been achieved with the
single PCIe Gen1 x8 lanes endpoint of this design.

Keywords—PCIe, FPGA, PowerPC, DMA

I. INTRODUCTION
In lots of modern large-scale scientific experimental

facilities, such as Shanghai Synchrotron Radiation Facility
(SSRF) and Shanghai Deep Ultra Violation Free Electric
Laser (SDUV-FEL), there is a strong demand of real-time
online transmission and processing of a large amount of data
[1]. These scientific systems should contain data-acquiring
and data-processing subsystems with a Gigabyte-per-second
data transmission rate in-between. Depending on the
performance specifications of the particular application,
FPGAs with unique parallel processing and good timing
control characteristics are usually used to acquire data from
experiments, and PowerPCs with powerful computational
capacity are sometimes adopted as host embedded systems to
process data online. Consequently, the bottleneck of data
processing rate between the subsystems usually lies in the
data transmission link between FPGA and PowerPC. In this
paper, FPGA needs to send data to PowerPC at a rate of no
less than 500 MBps. To achieve this goal, we have
developed a PCI Express (PCIe) as a data link.

PCIe is a widely-used reliable high-speed data
transmission protocol. Both FPGA and PowerPC support
basic PCIe device. Xilinx provides FPGA (XCKU040) with
PCIe IP core (Gen3) [2]. Freescale provides PowerPC
(MPC8641D) with PCIe integrated as a peripheral device [3].
A board support package (BSP) compatible with PowerPC is

supplied by WindRiver VxWorks. To achieve the highest
data throughput while reducing the occupancy of PowerPC,
DMA engine is required to overcome the limitations caused
by the PowerPC scheduling of the operating system (OS).
Previous works in Refs. [4], [5],[6] has implemented DMA
architectures for PCIe core based on FPGA of Xilinx, but
subjecting to a limitation of a single FPGA device with a
high cost.

To overcome these drawbacks, we designed and
implemented a high-performance and compact DMA engine
architecture which is fully compatible with Xilinx FPGA
Ultrascale family, together with a custom-designed VxWorks
driver based on VxBus. Two development kit boards are
adopted in this work: KCU105 is for XCKU040-FPGA, and
HPCN8641D is for MPC8641D-PowerPC. This paper
illustrates the DMA engine architecture in FPGA, the
VxWorks driver in PowerPC, and the handshaking sequence
between FPGA and PowerPC. Different payload length
transmissions are discussed in the end.

II. SYSTEM OVERVIEW OF POINT-TO-POINT PCIE
PCIe is a layered protocol, containing a transaction layer,

a data link layer, and a physical layer [7]. The structures of
these layers for two different PCIe devices are illustrated in
Fig. 1 [8].

Figure 1. PCIe layer.

The data link (DL) layer is subdivided to include a media
access control (MAC) sublayer. The physical layer is
subdivided into logical and electrical sublayers. The logical

2019 International Computer Science and Applications Conference (ICSAC 2019)

Published by IEC © 2019 the Authors and IEC 107

sublayer contains a physical coding sublayer (PCS). The
PCIe IP core of Xilinx comprises the DL layer and physical
layer, offering an interface which complies with the bus of
AXI-4 [9] of transaction layer. It is convenient for users to
consider only the transaction layer protocol (TLP) logic to
achieve PCIe transmission and message signaled interrupts
(MSI). The PCIe is a peripheral of the PowerPC, and the
BSP of the PowerPC contains a basic driver of PCIe. Users
will need to develop a compatible driver complied with
VxBus for PCIe [10].

There are three kinds of memory spaces in PCIe: memory
space, configuration space, and I/O space. In this work, we
mainly develop PCIe with memory space. The configuration
space contains the PCIe configuration registers, each
including 6 base address registers (BAR 0-5). In this work,
only BAR0 is adopted, with the memory size configured as
2K bytes. The version of PCIe IP core is Gen3 in XCKU040
and Gen1 in MPC8641D. In order to match the FPGA and
PowerPC the PCIe IP core in FPGA is configured as Gen1
(since the PCIe is downward compatible).

Figure 2. PCIe protocol.

PCIe Gen1 offers a data link operating at 2.5 Gbps in
each lane and uses 8B/10B encoding. Therefore, the actual
maximum throughput of each its lane is 2 Gbps. Additional
packet overhead, except the basic payloads, are illustrated in
Fig. 2. The maximum theoretical throughput V for PCIe
Gen1 can be calculated as Equation (1) [8].

250
pcie

×
+

= N
HP

PV
l

l MBps. (1)

where Pl is the maximum payload size, Hpcie is the
protocol header, and N is the number of lanes.

III. PCIE BASED ON FPGA

A. A High-Throughput DMA Architecture for PCIe
Application

The DMA engine designed in this work adopts a stream
mode in order to maximize the data throughput and minimize
the FPGA resource utilization. The complete architecture of
PCIe-DMA is shown in Fig. 3.

Figure 3. Architecture of the DMA engine.

FPGA is configured as the PCIe bus master to start
memory write (MWR) and memory read (MRD) to PowerPC.
The DMA uses TX engine to transmit data to host and RX

engine to receive data from host. The PCIe core of
XCKU040 offers an advanced extensible interface (AXI4).
The width of AXI-4 interface is mainly configured as 128
bits. The AXI-4 contains four groups interface shown in
Figure 3.

1) Completer request interface (CRI): User application
receives completers from host via this interface group.

2) Completer completion interface (CCI): User
application replies the requester from host and delivers each
TLP on this interface.

3) Requester request interface (RRI): User application
delivers each TLP of requester as an AXI4-stream packet.

4) Requester completion interface (RCI): Host replies
user requester and delivers the TLP to FPGA via this
interface.

User logic of TX engine is complied with RRI and CCI
of PCIe core in AXI4-stream slave mode, while the RX
engine is complied with CRI and RCI. TX engine then sends
MWR and MRD TLP via RRI, and RX engine subsequently
receives requester completion information for MRD by RCI.
Xilinx offers a basic PCIe communication example which
implements MWR and MRD processing launched by host. It
is worth noting that MWR and MRD are launched by FPGA.
The user clock in FPGA is configured as 125 MHz and the
IP core is supplied with a reference clock 100 MHz from
standard PCIe slot which is mounted on HPCN8641D.

B. Base Address Register
BAR0 in FPGA is implemented as a list of registers

which are adopted as handshaking controlling. The width of
each register is 32 bits according to the RISC width of
PowerPC. The registers contain the following functions.

• Initialization flag.

• MWR and MRD start flag.

• MWR and MRD interrupt processing flag: It
indicates that the PCIe in FPGA generates a MSI and
is waiting for the PowerPC finishing processing the
interrupt.

• MWR address, payload length and MWR times.

• MRD address, payload length and MRD times.

• DMA MWR and MRD performance flag: It is used
to indicate the current throughput of PCIe.

C. TX Engine
A finite state machine (FSM) diagram of the MWR DMA

engine is shown in Fig. 4 and is described below, together
with the handshaking sequence with the VxWorks driver.

Figure 4. FSM of MWR DMA-PCIe in FPGA.

108

1) Initialization phase (state 0): PowerPC sets the
register values including times of memory write (MWR),
payload length and initial address in BAR0 space.

2) After the initialization phase, the FSM waits in idle
(state 0) for starting MWR (state 1).

a) FPGA loads the payload length and address to
which it will send the data.

b) FPGA checks the MWR times and updates the WR
pointer with the last loaded address.

3) If FPGA has already prepared the data for once
DMA-TX, then it starts moving data from FPGA to
PowerPC (state 2).

4) After finishing MWR, FPGA generates an MSI (state
2).

5) If MSI is sent to IP core, then FPGA will wait for the
“int processed done” signal from host (state 3).

6) CPU deals with the MSI and returns “interrupt done”
to FPGA, then FPGA returns to idle (state 0).

We denote the DMA MWR payload length (DWORDs
number) with PLmwr, and DMA MWR times with Nmwr. It
takes one clock for FPGA to request MWR once, and the rest
of clocks are for valid data. The clock of user logic is 125
MHz. Then the theoretical efficiency Fmwr and speed Vmwr of
DMA, respectively, are shown in Equation (2a) and (2b).

1mwr

mwr
mwr +

=
PL

PLF , (2a)

8)1(
4

mwr

mwr
mwr ×+

×
=

PL
PLV GBps. (2b)

In our work, we count the real clock consumption as the
following: when “mwrstartsig” is valid, the counter will start
to count. When “mwrdone”, indicating the termination of
DMA-MWR, is valid, the counter stops counting. Each clock
denotes 8 ns, so it takes 8 × countervalue ns [[it takes ... to ...,
add to ...]]. The actual MWR speed can be calculated as
Equation (3).

value

mwr
realmwr, counter8×

=
DV GBps. (3)

where Dmwr (bytes) is the data size.

D. RX Engine
An FSM diagram of the memory read (MRD) DMA

engine is illustrated in Fig. 5. The details, together with the
handshaking sequence with the VxWorks driver, are
described.

Figure 5. FSM of MRD DMA-PCIe in FPGA.

1) Initialization phase (state 0): PowerPC sets the
register values including times of MRD, payload length and
initial address in BAR0 space.

2) After the initialization phase, PowerPC prepares the
data which will be moved from PowerPC to FPGA. Once
the data is ready, PowerPC sends a MRD command (state
0).

3) If FPGA receives the MRD command, it starts the
MRD (state 1).

a) FPGA loads the payload length and initial address.
b) FPGA sends an MRD TLP to PowerPC.

4) FPGA waits for the ack from host, updates the RD
pointer with the last loaded address and checks whether it is
the last transmission of a MRD.

5) After FPGA receives all the data from PowerPC, it
generates a MSI (state 3) and waits for the MRD stop
command from VxWorks (state 2).

6) If MSI is sent to IP core, then FPGA waits for the “int
processed done” signal from host (state 4).

7) After FPGA receives the stop command, it returns to
idle (state 0).

We denote the DMA MRD payload length (DWORDs
number) with PLmrd and DMA MRD times with Nmrd. It
takes one clock for FPGA to request MRD once. Then FPGA
will receive the completion packet from PowerPC, and the
completion TLP contains one clock header for user logic to
analyze. The rest of the closes are for valid payloads. The
clock of user logic is 125 MHz. Then the theoretical
efficiency Fmrd and speed Vmrd of DMA, respectively, are
shown in Equation (4a) and (4b).

1mrd

mrd
mrd +

=
PL

PLF , (4a)

8)1(
4

mrd

mrd
mrd ×+

×
=

PL
PLV . (4b)

In our implementation, we count the real clock
consumption as the following: when the TLP in RX is valid,
the counter starts counting, until “mrddone” which indicates
the termination of DMA-MRD becomes valid. Each clock
denotes 8 ns, so it takes 8 × countervalue ns [[takes ... to do
what?]]. If we denote the data size with Dmrd bytes, the actual
MRD speed can be calculated as Equation (5).

value

mrd
realmrd, counter8×

=
DV GBps. (5)

E. Interrupt Controller
It is convenient to generate an interrupt of MSI with

Xilinx PCIe core by producing corresponding signals to the
IP core.When the IP core feeds back a sent signal, it means
the IP core has already successfully sent a MSI to PowerPC.
Here, finishing both DMA-MWR and DMA-MRD will
generate MSI, and PowerPC will poll the MSI register which
illustrates the current interrupt type in BAR0 space. The
actual MSI timing diagram acquired by ILA is shown in Fig.
6, which is the same as in [2].

109

Figure 6. MSI timing diagram (AXI4-128) in FPGA.PCIe Based on Power PC

The BSP in VxWorks contains a kernel, an I/O system, a
file system and a network support. WindRiver develops a
brand-new architecture called VxBus for driver development
since VER 6.6. The relationship between VxBus and
VxWorks is shown in Fig. 7.

Figure 7. Diagram of VxBus in VxWorks [10].

VxWorks maintains two linked lists: driver list and
devices list. After power is on, the initialization will match
the drivers and devices. If the two are matched, the driver
and device will combine into an instance. This instance is
connected to an instance list which can be called by user
application. Generally, user needs to register the custom-
designed driver to VxBus via “vxbDevRegister ()” function.
Then “pcieInstInit ()”, “pcieInstInit2 ()”, and
“pcieInstConnect ()” functions will be called to initialize
PCIe device. After that, “pcieDMAInt ()” is defined as the
interrupt service function and connected to the list of
interrupt list.

The control registers that used as handshaking with
FPGA is listed as a head file in the driver. The registers are
the same as registers in BAR0 of PCIe in FPGA. The buffers
for TX and RX are both allocated for 2 Mb. The driver also
realizes MWR and MRD with payload length of double
words (DWORD) to handshake with FPGA via PCIe.

The interrupt service routine (ISR) in this work deals
with interrupt as follows.

• After initialization, the ISR waits for coming of
interrupt from MSI via PCIe.

• If the interrupt is generated, ISR first reads the
interrupt status register in FPGA, and then checks
whether it is MWR or MRD interrupt.

• If it is DMA MWR rendering the interrupt, PowerPC
will move the data from the buffer in host to another
address, and process these data. After that, the
PowerPC will send a “MWR ISR done” signal to
FPGA. If the FPGA receives this signal, it will
permit the next DMA MWR.

• If it is DMA MRD rendering the interrupt, PowerPC
will prepare new data to the MRD buffer for the next
transmission and send an “ISR done” signal to
FPGA. If the FPGA receives this signal, it will
permit the next DMA MRD.

IV. TEST RESULT
The performance of the DMA engine has been measured

using a Xilinx PCIe Gen1 core with different configurations.
A KCU105 Kintex Ultrascale-PCIe board mounting on a
HPCN8641D was used for the measurements with the
Gen1x8 lanes endpoints. The KCU105 contains a Xilinx
XCKU040 device and HPCN8641D contains a Freescale
MPC8641D device. The FPGA is plugged into the PCIe slot
of the HPC�N8641D. BSP is an original driver supplied by
VxWorks and it is packaged as VxBus. User driver
application is designed according to VxBus. The system
architecture is shown in Fig. 8.

Figure 8. System overview.

The measurements don’t take into account the
initialization phase: the driver is loaded by the OS and
registers are written into FPGA BAR0. The memory
addressing is a 32-bit.

FPGA issues an MWR with a constant payload length of
16 bytes to PowerPC. There is one dummy clock beat
between each MWR TLP. The measurements of this
condition are issued in Fig. 9.

Figure 9. MWR throughput vs. Data size.

110

We also issued a single MRD TLP from FPGA to
PowerPC with different payload lengths. The result for
receiving a single MRD completion TLP from PowerPC is
shown in Fig. 10.

Figure 10. Single MRD completion TLP with different payload size.

The architecture of DMA-PCIe in this paper is
lightweight. The resource requirements of this architecture
are listed in Table I.

TABLE I. RESOURCE CONSUMPTION ON XCKU040.

Resource Estimation Available Utilization

LUT 6689 242420 2.76%

LUTRAM 1174 112800 1.04%

FF 11222 484800 2.31%

BRAM 34.5 600 5.75%

V. CONCLUSION
A high-throughput PCIe with DMA engine based on

FPGA and PowerPC is described in this paper, The DMA
engine is made compatible with the Xilinx Kintex Ultrascale

PCIe Gen1 core, and a special PCIe driver complied with
VxBus is implemented in VxWorks 6.6 based on Freescale
MPC8641D. We can easily apply this work in real-time data
acquiring and processing system.

The DMA architecture achieves a high-throughput more
than 666 MBps. This design satisfies our data transmission
target. Our efficiency of DMA-MRD is limited by a long
delay between the FPGA issuing MRD and PowerPC
answering the MRD TLP. As a result, a MWR with payload
more than 16 bytes has not been accomplished. A more
efficient DMA�MWR will be designed in our future work.

REFERENCES
[1] Yang Guisen, Leng Yongbin, Lai Longwei,YU Luyang, YUAN

Renxian,YAN Yingbing, Research of bunch by bunch data
acquisition system in SSRF[J]. Nuclear Science, 2013, 36(12).

[2] Xilinx, “UltraScale Devices Gen3 Integrated Block for PCI Express
v4.4”,2017 [Online]. Available:
https://www.xilinx.com/support/documentation/ip
documentation/pcie3 ultrascale/v4 4/pg156-ultrascale-pcie-gen3.pdf.

[3] Freescale Semiconductor, “MPC8641 and MPC8641D Integrated
Host Processor Hardware Specifications”, 2014[Online].
https://www.nxp.com/docs/en/data-sheet/MPC8641DEC.pdf.

[4] Xillybus, “An FPGA IP core for easy DMA over PCIE with Windows
and Linux”, 2013 [Online]. Available: http://xillibus.com/.

[5] PLDA, “Ezdma2 for Xilinx”, 2014 [Online]. Available:
http://new.plda.com/products/fpga-ip/xilinx/fpga-ip-pcie/ezdma2-
xilinx .

[6] NorthwestLogic, “Expresso DMA core”, 2014 [Online]. Available:
http://nwlogic.com/packetdma/.

[7] Wikipedia, “PCI Express”, 2017 [Online]. Available:
https://en.wikipedia.org/wiki/PCI Express.

[8] Rota L, Caselle M, Chilingaryan S, et al. A PCIe DMA Architecture
for Multi-Gigabyte Per Second Data Transmission[J]. IEEE
Transactions on Nuclear Science, 2015, 62(3):972-976.

[9] Yin L, Xie M, Li H, et al. Design and implementation of the digital
radio frequency memory system based on advanced extensible
interface 4.0[C]//International Congress on Image and Signal
Processing, Biomedical Engineering and Informatics. IEEE, 2017.

[10] WindRiver, ”VxWorks BSP Developer’s Guide”, 2006 [Online].
Avail�able: http://www.windriver.com.

111

	I. Introduction
	II. System OVERVIEW of Point-to-Point PCIe
	III. PCIe Based on FPGA
	A. A High-Throughput DMA Architecture for PCIe Application
	1) Completer request interface (CRI): User application receives completers from host via this interface group.
	2) Completer completion interface (CCI): User application replies the requester from host and delivers each TLP on this interface.
	3) Requester request interface (RRI): User application delivers each TLP of requester as an AXI4-stream packet.
	4) Requester completion interface (RCI): Host replies user requester and delivers the TLP to FPGA via this interface.

	B. Base Address Register
	C. TX Engine
	1) Initialization phase (state 0): PowerPC sets the register values including times of memory write (MWR), payload length and initial address in BAR0 space.
	2) After the initialization phase, the FSM waits in idle (state 0) for starting MWR (state 1).
	a) FPGA loads the payload length and address to which it will send the data.
	b) FPGA checks the MWR times and updates the WR pointer with the last loaded address.

	3) If FPGA has already prepared the data for once DMA-TX, then it starts moving data from FPGA to PowerPC (state 2).
	4) After finishing MWR, FPGA generates an MSI (state 2).
	5) If MSI is sent to IP core, then FPGA will wait for the “int processed done” signal from host (state 3).
	6) CPU deals with the MSI and returns “interrupt done” to FPGA, then FPGA returns to idle (state 0).

	D. RX Engine
	1) Initialization phase (state 0): PowerPC sets the register values including times of MRD, payload length and initial address in BAR0 space.
	2) After the initialization phase, PowerPC prepares the data which will be moved from PowerPC to FPGA. Once the data is ready, PowerPC sends a MRD command (state 0).
	3) If FPGA receives the MRD command, it starts the MRD (state 1).
	a) FPGA loads the payload length and initial address.
	b) FPGA sends an MRD TLP to PowerPC.

	4) FPGA waits for the ack from host, updates the RD pointer with the last loaded address and checks whether it is the last transmission of a MRD.
	5) After FPGA receives all the data from PowerPC, it generates a MSI (state 3) and waits for the MRD stop command from VxWorks (state 2).
	6) If MSI is sent to IP core, then FPGA waits for the “int processed done” signal from host (state 4).
	7) After FPGA receives the stop command, it returns to idle (state 0).

	E. Interrupt Controller

	IV. Test Result
	V. Conclusion
	References

