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Abstract—This paper designed and implemented a direct 
memory access (DMA) architecture of PCI-Express (PCIe) 
between Xilinx field programmable gate array (FPGA) and 
Freescale PowerPC. The DMA architecture based on FPGA is 
compatible with the Xilinx PCIe core while the DMA 
architecture based on POWERPC is compatible with VxBus of 
VxWorks. The solutions provide a high-performance and low-
occupancy alternative to commercial products. In order to 
maximize the PCIe throughput while minimizing the FPGA 
resources utilization, a novel strategy for the DMA engine is 
adopted, where the DMA register list is stored not only inside 
the FPGA during initialization phase but also in the central 
memory of the host CPU. The FPGA design package is 
complemented with simple register access to control the DMA 
engine by a VxWorks driver. The design is compatible with 
Xilinx FPGA Kintex Ultrascale Family, and operates with the 
Xilinx PCIe endpoint Generation 1 with lane configurations x8. 
A data throughput of more than 666 MBytes/s (memory write 
with data from FPGA to PowerPC) has been achieved with the 
single PCIe Gen1 x8 lanes endpoint of this design. 

Keywords—PCIe, FPGA, PowerPC, DMA 

I. INTRODUCTION 
In lots of modern large-scale scientific experimental 

facilities, such as Shanghai Synchrotron Radiation Facility 
(SSRF) and Shanghai Deep Ultra Violation Free Electric 
Laser (SDUV-FEL), there is a strong demand of real-time 
online transmission and processing of a large amount of data 
[1]. These scientific systems should contain data-acquiring 
and data-processing subsystems with a Gigabyte-per-second 
data transmission rate in-between. Depending on the 
performance specifications of the particular application, 
FPGAs with unique parallel processing and good timing 
control characteristics are usually used to acquire data from 
experiments, and PowerPCs with powerful computational 
capacity are sometimes adopted as host embedded systems to 
process data online. Consequently, the bottleneck of data 
processing rate between the subsystems usually lies in the 
data transmission link between FPGA and PowerPC. In this 
paper, FPGA needs to send data to PowerPC at a rate of no 
less than 500 MBps. To achieve this goal, we have 
developed a PCI Express (PCIe) as a data link. 

PCIe is a widely-used reliable high-speed data 
transmission protocol. Both FPGA and PowerPC support 
basic PCIe device. Xilinx provides FPGA (XCKU040) with 
PCIe IP core (Gen3) [2]. Freescale provides PowerPC 
(MPC8641D) with PCIe integrated as a peripheral device [3]. 
A board support package (BSP) compatible with PowerPC is 

supplied by WindRiver VxWorks. To achieve the highest 
data throughput while reducing the occupancy of PowerPC, 
DMA engine is required to overcome the limitations caused 
by the PowerPC scheduling of the operating system (OS). 
Previous works in Refs. [4], [5],[6] has implemented DMA 
architectures for PCIe core based on FPGA of Xilinx, but 
subjecting to a limitation of a single FPGA device with a 
high cost. 

To overcome these drawbacks, we designed and 
implemented a high-performance and compact DMA engine 
architecture which is fully compatible with Xilinx FPGA 
Ultrascale family, together with a custom-designed VxWorks 
driver based on VxBus. Two development kit boards are 
adopted in this work: KCU105 is for XCKU040-FPGA, and 
HPCN8641D is for MPC8641D-PowerPC. This paper 
illustrates the DMA engine architecture in FPGA, the 
VxWorks driver in PowerPC, and the handshaking sequence 
between FPGA and PowerPC. Different payload length 
transmissions are discussed in the end. 

II. SYSTEM OVERVIEW OF POINT-TO-POINT PCIE 
PCIe is a layered protocol, containing a transaction layer, 

a data link layer, and a physical layer [7]. The structures of 
these layers for two different PCIe devices are illustrated in 
Fig. 1 [8]. 

 
Figure 1.  PCIe layer. 

The data link (DL) layer is subdivided to include a media 
access control (MAC) sublayer. The physical layer is 
subdivided into logical and electrical sublayers. The logical 
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sublayer contains a physical coding sublayer (PCS). The 
PCIe IP core of Xilinx comprises the DL layer and physical 
layer, offering an interface which complies with the bus of 
AXI-4 [9] of transaction layer. It is convenient for users to 
consider only the transaction layer protocol (TLP) logic to 
achieve PCIe transmission and message signaled interrupts 
(MSI). The PCIe is a peripheral of the PowerPC, and the 
BSP of the PowerPC contains a basic driver of PCIe. Users 
will need to develop a compatible driver complied with 
VxBus for PCIe [10]. 

There are three kinds of memory spaces in PCIe: memory 
space, configuration space, and I/O space. In this work, we 
mainly develop PCIe with memory space. The configuration 
space contains the PCIe configuration registers, each 
including 6 base address registers (BAR 0-5). In this work, 
only BAR0 is adopted, with the memory size configured as 
2K bytes. The version of PCIe IP core is Gen3 in XCKU040 
and Gen1 in MPC8641D. In order to match the FPGA and 
PowerPC the PCIe IP core in FPGA is configured as Gen1 
(since the PCIe is downward compatible). 

 
Figure 2.  PCIe protocol. 

PCIe Gen1 offers a data link operating at 2.5 Gbps in 
each lane and uses 8B/10B encoding. Therefore, the actual 
maximum throughput of each its lane is 2 Gbps. Additional 
packet overhead, except the basic payloads, are illustrated in 
Fig. 2. The maximum theoretical throughput V for PCIe 
Gen1 can be calculated as Equation (1) [8]. 
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+
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where Pl is the maximum payload size, Hpcie is the 
protocol header, and N is the number of lanes. 

III. PCIE BASED ON FPGA 

A. A High-Throughput DMA Architecture for PCIe 
Application 

The DMA engine designed in this work adopts a stream 
mode in order to maximize the data throughput and minimize 
the FPGA resource utilization. The complete architecture of 
PCIe-DMA is shown in Fig. 3. 

 
Figure 3.  Architecture of the DMA engine. 

FPGA is configured as the PCIe bus master to start 
memory write (MWR) and memory read (MRD) to PowerPC. 
The DMA uses TX engine to transmit data to host and RX 

engine to receive data from host. The PCIe core of 
XCKU040 offers an advanced extensible interface (AXI4). 
The width of AXI-4 interface is mainly configured as 128 
bits. The AXI-4 contains four groups interface shown in 
Figure 3. 

1) Completer request interface (CRI): User application 
receives completers from host via this interface group. 

2) Completer completion interface (CCI): User 
application replies the requester from host and delivers each 
TLP on this interface. 

3) Requester request interface (RRI): User application 
delivers each TLP of requester as an AXI4-stream packet. 

4) Requester completion interface (RCI): Host replies 
user requester and delivers the TLP to FPGA via this 
interface. 

User logic of TX engine is complied with RRI and CCI 
of PCIe core in AXI4-stream slave mode, while the RX 
engine is complied with CRI and RCI. TX engine then sends 
MWR and MRD TLP via RRI, and RX engine subsequently 
receives requester completion information for MRD by RCI. 
Xilinx offers a basic PCIe communication example which 
implements MWR and MRD processing launched by host. It 
is worth noting that MWR and MRD are launched by FPGA. 
The user clock in FPGA is configured as 125 MHz and the 
IP core is supplied with a reference clock 100 MHz from 
standard PCIe slot which is mounted on HPCN8641D. 

B. Base Address Register 
BAR0 in FPGA is implemented as a list of registers 

which are adopted as handshaking controlling. The width of 
each register is 32 bits according to the RISC width of 
PowerPC. The registers contain the following functions. 

• Initialization flag. 

• MWR and MRD start flag. 

• MWR and MRD interrupt processing flag: It 
indicates that the PCIe in FPGA generates a MSI and 
is waiting for the PowerPC finishing processing the 
interrupt. 

• MWR address, payload length and MWR times. 

• MRD address, payload length and MRD times. 

• DMA MWR and MRD performance flag: It is used 
to indicate the current throughput of PCIe. 

C. TX Engine 
A finite state machine (FSM) diagram of the MWR DMA 

engine is shown in Fig. 4 and is described below, together 
with the handshaking sequence with the VxWorks driver. 

 
Figure 4.  FSM of MWR DMA-PCIe in FPGA. 
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1) Initialization phase (state 0): PowerPC sets the 
register values including times of memory write (MWR), 
payload length and initial address in BAR0 space. 

2) After the initialization phase, the FSM waits in idle 
(state 0) for starting MWR (state 1). 

a) FPGA loads the payload length and address to 
which it will send the data. 

b) FPGA checks the MWR times and updates the WR 
pointer with the last loaded address. 

3) If FPGA has already prepared the data for once 
DMA-TX, then it starts moving data from FPGA to 
PowerPC (state 2). 

4) After finishing MWR, FPGA generates an MSI (state 
2). 

5) If MSI is sent to IP core, then FPGA will wait for the 
“int processed done” signal from host (state 3). 

6) CPU deals with the MSI and returns “interrupt done” 
to FPGA, then FPGA returns to idle (state 0). 

We denote the DMA MWR payload length (DWORDs 
number) with PLmwr, and DMA MWR times with Nmwr. It 
takes one clock for FPGA to request MWR once, and the rest 
of clocks are for valid data. The clock of user logic is 125 
MHz. Then the theoretical efficiency Fmwr and speed Vmwr of 
DMA, respectively, are shown in Equation (2a) and (2b). 

1mwr

mwr
mwr +

=
PL

PLF ,   (2a) 

8)1(
4

mwr

mwr
mwr ×+

×
=

PL
PLV GBps.  (2b) 

In our work, we count the real clock consumption as the 
following: when “mwrstartsig” is valid, the counter will start 
to count. When “mwrdone”, indicating the termination of 
DMA-MWR, is valid, the counter stops counting. Each clock 
denotes 8 ns, so it takes 8 × countervalue ns [[it takes ... to ..., 
add to ...]]. The actual MWR speed can be calculated as 
Equation (3). 

value

mwr
realmwr, counter8×

=
DV GBps.  (3) 

where Dmwr (bytes) is the data size. 

D. RX Engine 
An FSM diagram of the memory read (MRD) DMA 

engine is illustrated in Fig. 5. The details, together with the 
handshaking sequence with the VxWorks driver, are 
described. 

 
Figure 5.  FSM of MRD DMA-PCIe in FPGA. 

1) Initialization phase (state 0): PowerPC sets the 
register values including times of MRD, payload length and 
initial address in BAR0 space. 

2) After the initialization phase, PowerPC prepares the 
data which will be moved from PowerPC to FPGA. Once 
the data is ready, PowerPC sends a MRD command (state 
0). 

3) If FPGA receives the MRD command, it starts the 
MRD (state 1). 

a) FPGA loads the payload length and initial address. 
b) FPGA sends an MRD TLP to PowerPC. 

4) FPGA waits for the ack from host, updates the RD 
pointer with the last loaded address and checks whether it is 
the last transmission of a MRD. 

5) After FPGA receives all the data from PowerPC, it 
generates a MSI (state 3) and waits for the MRD stop 
command from VxWorks (state 2). 

6) If MSI is sent to IP core, then FPGA waits for the “int 
processed done” signal from host (state 4). 

7) After FPGA receives the stop command, it returns to 
idle (state 0). 

We denote the DMA MRD payload length (DWORDs 
number) with PLmrd and DMA MRD times with Nmrd. It 
takes one clock for FPGA to request MRD once. Then FPGA 
will receive the completion packet from PowerPC, and the 
completion TLP contains one clock header for user logic to 
analyze. The rest of the closes are for valid payloads. The 
clock of user logic is 125 MHz. Then the theoretical 
efficiency Fmrd and speed Vmrd of DMA, respectively, are 
shown in Equation (4a) and (4b). 

1mrd

mrd
mrd +

=
PL

PLF ,   (4a) 

8)1(
4

mrd

mrd
mrd ×+

×
=

PL
PLV .   (4b) 

In our implementation, we count the real clock 
consumption as the following: when the TLP in RX is valid, 
the counter starts counting, until “mrddone” which indicates 
the termination of DMA-MRD becomes valid. Each clock 
denotes 8 ns, so it takes 8 × countervalue ns [[ takes ... to do 
what?]]. If we denote the data size with Dmrd bytes, the actual 
MRD speed can be calculated as Equation (5). 

value

mrd
realmrd, counter8×

=
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E. Interrupt Controller 
It is convenient to generate an interrupt of MSI with 

Xilinx PCIe core by producing corresponding signals to the 
IP core.When the IP core feeds back a sent signal, it means 
the IP core has already successfully sent a MSI to PowerPC. 
Here, finishing both DMA-MWR and DMA-MRD will 
generate MSI, and PowerPC will poll the MSI register which 
illustrates the current interrupt type in BAR0 space. The 
actual MSI timing diagram acquired by ILA is shown in Fig. 
6, which is the same as in [2]. 
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Figure 6.  MSI timing diagram (AXI4-128) in FPGA.PCIe Based on Power PC 

The BSP in VxWorks contains a kernel, an I/O system, a 
file system and a network support. WindRiver develops a 
brand-new architecture called VxBus for driver development 
since VER 6.6. The relationship between VxBus and 
VxWorks is shown in Fig. 7. 

 
Figure 7.  Diagram of VxBus in VxWorks [10]. 

VxWorks maintains two linked lists: driver list and 
devices list. After power is on, the initialization will match 
the drivers and devices. If the two are matched, the driver 
and device will combine into an instance. This instance is 
connected to an instance list which can be called by user 
application. Generally, user needs to register the custom-
designed driver to VxBus via “vxbDevRegister ()” function. 
Then “pcieInstInit ()”, “pcieInstInit2 ()”, and 
“pcieInstConnect ()” functions will be called to initialize 
PCIe device. After that, “pcieDMAInt ()” is defined as the 
interrupt service function and connected to the list of 
interrupt list. 

The control registers that used as handshaking with 
FPGA is listed as a head file in the driver. The registers are 
the same as registers in BAR0 of PCIe in FPGA. The buffers 
for TX and RX are both allocated for 2 Mb. The driver also 
realizes MWR and MRD with payload length of double 
words (DWORD) to handshake with FPGA via PCIe. 

The interrupt service routine (ISR) in this work deals 
with interrupt as follows. 

• After initialization, the ISR waits for coming of 
interrupt from MSI via PCIe. 

• If the interrupt is generated, ISR first reads the 
interrupt status register in FPGA, and then checks 
whether it is MWR or MRD interrupt. 

• If it is DMA MWR rendering the interrupt, PowerPC 
will move the data from the buffer in host to another 
address, and process these data. After that, the 
PowerPC will send a “MWR ISR done” signal to 
FPGA. If the FPGA receives this signal, it will 
permit the next DMA MWR. 

• If it is DMA MRD rendering the interrupt, PowerPC 
will prepare new data to the MRD buffer for the next 
transmission and send an “ISR done” signal to 
FPGA. If the FPGA receives this signal, it will 
permit the next DMA MRD. 

IV. TEST RESULT 
The performance of the DMA engine has been measured 

using a Xilinx PCIe Gen1 core with different configurations. 
A KCU105 Kintex Ultrascale-PCIe board mounting on a 
HPCN8641D was used for the measurements with the 
Gen1x8 lanes endpoints. The KCU105 contains a Xilinx 
XCKU040 device and HPCN8641D contains a Freescale 
MPC8641D device. The FPGA is plugged into the PCIe slot 
of the HPC�N8641D. BSP is an original driver supplied by 
VxWorks and it is packaged as VxBus. User driver 
application is designed according to VxBus. The system 
architecture is shown in Fig. 8. 

 
Figure 8.  System overview. 

The measurements don’t take into account the 
initialization phase: the driver is loaded by the OS and 
registers are written into FPGA BAR0. The memory 
addressing is a 32-bit. 

FPGA issues an MWR with a constant payload length of 
16 bytes to PowerPC. There is one dummy clock beat 
between each MWR TLP. The measurements of this 
condition are issued in Fig. 9. 

 
Figure 9.  MWR throughput vs. Data size. 
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We also issued a single MRD TLP from FPGA to 
PowerPC with different payload lengths. The result for 
receiving a single MRD completion TLP from PowerPC is 
shown in Fig. 10. 

 
Figure 10.  Single MRD completion TLP with different payload size. 

The architecture of DMA-PCIe in this paper is 
lightweight. The resource requirements of this architecture 
are listed in Table I. 

TABLE I.  RESOURCE CONSUMPTION ON XCKU040. 

Resource Estimation Available Utilization 

LUT 6689 242420 2.76% 

LUTRAM 1174 112800 1.04% 

FF 11222 484800 2.31% 

BRAM 34.5 600 5.75% 

V. CONCLUSION 
A high-throughput PCIe with DMA engine based on 

FPGA and PowerPC is described in this paper, The DMA 
engine is made compatible with the Xilinx Kintex Ultrascale 

PCIe Gen1 core, and a special PCIe driver complied with 
VxBus is implemented in VxWorks 6.6 based on Freescale 
MPC8641D. We can easily apply this work in real-time data 
acquiring and processing system. 

The DMA architecture achieves a high-throughput more 
than 666 MBps. This design satisfies our data transmission 
target. Our efficiency of DMA-MRD is limited by a long 
delay between the FPGA issuing MRD and PowerPC 
answering the MRD TLP. As a result, a MWR with payload 
more than 16 bytes has not been accomplished. A more 
efficient DMA�MWR will be designed in our future work. 
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