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Abstract—Cloud computing is becoming a powerful parallel 
data processing method and it can be adopted by many 
network service providers to build a service framework. 
Though the cloud computing is able to efficiently process a 
huge amount of data, it is easy to be attacked due to the 
massive distributed cluster nodes. In this paper, we propose a 
novel Secured MapReduce Framework (SMRF), which 
establishes a close relation between the Speculative Execution 
(SE) and the security of the YARN. SMRF launches the 
speculative executions in a certain ratio, computes and 
compares their respective MD5 hashes of the intermediate and 
final results in the MapReduce process. Moreover, the 
proposed framework is able to discover the actual and 
potential malicious nodes in the Hadoop cluster. In addition, a 
prototype framework, called SecMR, is implemented based on 
Hadoop 2.3.0. The theoretical derivations and experiments 
show that the proposed SecMR not only guarantees the 
security of the MapReduce process, but also successfully 
locates two types of the malicious nodes in Hadoop while just 
increasing a little overhead.  

Keywords—Cloud computing, Hadoop, MapReduce, 
Speculative execution, Security 

I. INTRODUCTION  
With the rapid development of the hardware, software 

and high-speed network, many cloud service providers, e.g., 
Google and Amazon, are establishing more and more cloud 
computing (CC) realities [1] around the world [2] as shown 
in Fig. 1. However, many organizations and customers are 
still reluctant to accept CC due to the security issues [3]. 
Therefore, solving these problems is of great significance for 
the long-term development of CC [4]. 

Some safety precautions are already getting attention [5]. 
For instance, Gartner et. al identify seven security issues of 
CC that need to be solved [6]. Grobauer et. al discuss the 
security vulnerabilities of the cloud platform [7]. Jansen et. al 
propose the guidelines on privacy in public CC [8].  

Hadoop is considered as the most widely used CC 
platform [9] and the MapReduce can be regarded as the most 
efficient framework for processing vast amounts of the 
distributed data. However, most of the current researches are 
still paying increased attention to the MapReduce 
performance rather than its security [10].  

In this paper, we focus on improving the security of 
MapReduce 2.0 (MRv2/YARN: Yet another Resource 
Negotiator) [11], and a secured MapReduce 2.0 framework 
(SMRF) is proposed. Moreover, we provide a prototype 

called SecMR by extending Hadoop 2.3.0. Moreover, the 
theoretical derivation and the extensive experiments are 
performed to prove its validity, security and malicious node 
detection efficiency. 

The rest of the paper is organized as follows. Section II 
introduces the SMRF design and the SecMR implementation 
in details. Section III provides the theoretical derivation of 
SecMR. Section IV shows the experiment results and 
comparisons on SecMR. Finally, the conclusions are drawn 
in Section V. 

II. SMRF AND SECMR 

A. SMRF 
In MRv1, the programming model decomposes the 

problem processing procedure into the Map phase and the 
Reduce phase. Moreover, the runtime environment consists 
of JobTracker and TaskTracker. Although the programming 
model of MRv2 (YARN) is the same, NodeManager (NM) 
takes the place of TaskTracker, and JobTracker is separated 
into ResourceManager (RM) and MRAppMaster in YARN. 
Every MRAppMaster only manages one job and creates the 
new JobImpls and TaskImpls. TaskImpl contains Map Tasks 
and Reduce Tasks. Because SMRF will verify the validity of 
the intermediate and final results generated by Map and 
Reduce, the programming model and runtime environment 
are needed to be changed accordingly. 

In the programming model of SMRF, there will be more 
TaskAttempts because it launches the speculative execution 
in a certain ratio. These additional TaskAttempts execute the 
same tasks and compute the MD5 hashes of results. The 
programming model of SMRF is shown in Fig. 1. 
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Fig. 1. The programming model of SMRF 

B. SecMR 
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measures proportionately more than is customary. This 
measurement and others are deliberate, using specifications 
that anticipate your paper as one part of the entire 
proceedings, and not as an independent document. Please do 
not revise any of the current designations. 

In YARN, RMApp is a data structure that preserves an 
application life cycle in RM. Its realization instance is 
RMAppImpl. This class maintains an application state 
machine that records several application states and state-
driven events. The Finite State Machine (FSM) of RMApp is 
shown in Fig. 2. 
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Fig. 2. The Finite State Machine of RMAppImpl 

When MRAppMaster is launched, the application will 
enter into the core state “RUNNING” marked in red in Fig. 
2. Every application may run several times. The transitions 
of states are determined by the return values of 
MRAppMaster. RMApp judges an application failed when 
all of RMAppAttempts failed. Therefore, MRAppMaster is 
the most important module in SMRF. 

III. THEORETICAL DERIVATION 
The Map speculative task and the Reduce speculative 

task are slightly different. However, the principles are 
basically the same. Thus, we take the Map task replication 
as the example to illustrate the theoretical arithmetic. 

For easily comparing differences and similarities without 
losing generality, we set every MRv2 job disposing the 
same size of data. It means that the total blocks are fixed in 
every experiment, but the data of every block is absolutely 
different. Every Map task only processing one block implies 
that the number of the copied blocks is equal to the number 
of the replicated Map tasks. We assume the number of 
blocks (Map tasks) is b. And that a container is the 
abstraction conception of a resource set in YARN. It will be 
allocated by RM and supervised by NM. Every task is must 
executed in a container so that the number of containers is 
also b. 

In addition, even for the security of MRv2, it is not 
practical to replicate all of MRv2 tasks by speculative 
execution because this must consume a lot of resources and 
time. So we introduce Execution Ratio Er to indicate b*Er 
blocks will be duplicated. It is equal to the number of the 
Map speculative tasks. If a MRv2 job involves one 
MRAppMaster and n containers, m containers might be 
malicious and m<n. A malicious node may execute the 
vicious actions in P probability. And the variable t 
represents the number of jobs executed by MRv2. 

The aims of SMRF are to ensure the integrity of MRv2 
results and find out the malicious nodes. Theoretical 
arithmetic will show the relationship between Detection 
Ratio and the above parameters as follows. 

The probability of a malicious Map task in b Map tasks 
is 1/b, then 1-1/b is the probability that any Map task is not 
malicious. If there are b*Er  duplicated blocks in a MRv2 
job, rb*E(1 1/ b)− is the probability that all of b*Er Map 

tasks are secure. And rb*E1 (1 1 / b)− −    is the probability 
that at least one of b*Er Map tasks is not secure (i.e. a Map 
task is not executed in a secure container). Then the 
probability of the malicious containers(nodes) executing the 
vicious actions is rb*E1 (1 1 / b) * P− −   . And 

rb*E1 1 (1 1 / b) * P− − −    is the probability that the malicious 
nodes do not carry out the baleful behaviors. If the 
malicious nodes perform the tasks correctly in t MRv2 jobs, 

this probability is { }r
tb*E1 1 (1 1 / b) * P− − −   . So 

{ }r
tb*E1 1 1 (1 1 / b) * P− − − −    is the probability that the 

malicious nodes expose themselves in t MRv2 jobs. In the 
meanwhile, it also is the probability of discovering the 
malicious nodes by SecMR. 

Therefore, Detection Ratio can be defined as Equation 
(1). 

                    Dratio = { }r
tb*E1 1 1 (1 1 / b) * P− − − −              (1) 

We investigate the effects of three factors b, P and t on 
the detection ratio Dratio. 

Fig. 3 shows the change of Dratio against the Execution 
ratio Er and the number of the blocks b, where t=40 and 
P=0.2. One could observe that Dratio increases along with 
the augment of Er, but little decreases with increase of b. 

 
Fig. 3. The effect of the parameter b on the Detection Ratio 
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Fig. 4. The effect of the parameter P on the Detection Ratio 

Fig. 4 shows the change of Dratio against the Execution 
ratio Er and the malicious behavior probability P, where 
b=20 and t=10. One could observe that Dratio increases 
along with the augment of P. Given a certain Er, the more 
malicious behaviors there are, the more effectively SecMR 
works. 

Fig. 5 shows the change of Dratio against the execution 
ratio Er and the number of jobs t, where b = 20 and P = 0.2. 
One could observe that Dratio increases along with the 
increase of Er and t. If t=25 and Er=30%, Dratio is close to 
90%. 

 
Fig. 5. The effect of the parameter t on the Detection Ratio 

In a conclusion, the detection ratio Dratio increases with 
the augment of the Execution ratio Er, the number of jobs t 
and the malicious action Probability P. And the influence of 
the number of blocks b on Dratio is weak. Theoretical 
derivation indicates that SecMR is quite effective to discover 
the malicious behaviors. As long as the parameters b and t 
are set appropriately, such as b=20 and t >= 25, we can set Er 
at a low level (<=30%) to achieve a desired Dratio (>=85%) 
when P >= 0.2. And the more P is, the better Dratio is. 
Moreover, if combining Map speculative task and Reduce 
speculative task together, it is reasonable to believe Dratio 
will be more than 90%. 

IV. SECMR EXPERIMENTS 
We evaluate the validity and performance of SMRF by 

conducting three experiments on SecMR. Restricted by the 
experimental conditions, there are 1 RM node and 3 NM 
nodes in Hadoop cluster. RM machine is equipped with one 
4-core 3.1GHz Intel Xeon(R) CPU E31225, 4GB memory, 
one 1TB SCSI disk and 1000M NIC. Three NM machines 
are respectively equipped with one 2-core 2.93GHz Intel 

CoreTM2 Duo CPU E7500, 4GB memory, one 160GB SCSI 
disk and 1000M NIC. All machines have the same software 
configurations, i.e., Ubuntu 14.04.1 LTS server (64 bit), Java 
SE Runtime 1.8.0 and Hadoop 2.3.0. 

A. WordCount Benchmark 
WordCount is a classic MapReduce program. It can 

count the occurrence numbers of each word in a specified 
data set. We choose various test files and compare the time 
cost in three different scenarios. The size of small file is 
larger than 64M to avoid affecting the scalability and 
performance of Hadoop. The results are the average values 
of 25 WordCount experiments according Section III. The 
corresponding histogram is shown in Fig. 6. 

 
Fig. 6. The Execution Time of WordCount 

In Fig. 6, one can get three conclusions. (1) In the 
original condition, the time cost is proportional to the 
number of blocks and the total input paths. In MapReduce 
Framework, “6000M”, “2*3000M” and “3*2000M” are 
divided into 96 blocks. “10*600M” and “20*300M” are 
equal to 100 blocks. “60*100M” is split into 120 blocks. 
And that the different numbers of the input paths make the 
execution time of “30*200M” different from that of 
“60*100M”. Because “60*100M” has 60 input paths that is 
twice as much as that of “30*200M”. (2) Without the 
malicious nodes, the time cost of WordCount just increases 
about 9% in the SecMR. A new speculative TaskAttempt is 
not equal to a new same task so the time of Job do not 
increase by 30%. The extra time cost mainly comes from the 
inconformity of TaskAttempt times and the low 
performance of small cluster. By contrast, MD5 hash 
computing and comparing bring little influence. (3) Owing 
to load balancing and a malicious node in the cluster, the 
tasks assigned to it are close to 33.3%. And the probability 
of malicious behavior is 20% so that the increasing time is 
mainly due to Task waiting for the returned values of extra 
speculative TaskAttempts. Time cost increases 
approximately between 16% and 21% compared to that of 
the original condition. 

B. Mrbench Benchmark 
Mrbench repeats a little job many times specified by the 

user, which is designed for checking whether the little job 
running on a Hadoop cluster is repeatable and efficient. It is 
used to test the performance to handle lots of little jobs and 
the security protection ability of SecMR. Therefore, the 
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times of Job repetition are set as 10, 15, 20, 25, 30 and 40. 
The experiment results in three scenarios are shown in Fig. 
7. 

One can get three conclusions. (1) In three conditions, 
every experiment is executed in the different repetition 
times but in the same configurations. The execution time is 
an average value of SecMR handling the same job in several 
times. The more times is repeated, the more accurate the 
execution time is. (2) Adding 30% speculative executions 
makes the execution time increase approximately 9%, 
mainly because the inconsistent Task Attempt completion, 
the MD5 hashes computation and comparison. (3) Execution 
time increases approximately 16% by reason of adding 
33.3% malicious nodes will result in the inconformity of 
two comparative MD5 hashes, and the extra speculative 
TaskAttempts.  

 
Fig. 7. The results of Mrbench Test 

V. CONCLUSIONS 
In this paper, a secured and high-integrated MapReduce 

2.0 Framework (SMRF) is proposed. The relevant 
parameters of SMRF are accurately set according to the 
theoretical derivation. The prototype framework SecMR is 
implemented based on Hadoop 2.3.0, which takes advantage 
of Speculative Execution and MD5 hashes verification to 
ensure the integrity and validity of MapReduce results. 
Moreover, SMRF is able to locate two kinds of malicious 
nodes and the potential malicious nodes. Three experiments 
on SecMR adequately demonstrate its malicious nodes 
detection Dratio and computing resources consumption can 
achieve the expected goals. Especially, Dratio is more than 
86% at least while just increasing a little overhead. 
Therefore, the proposed SMRF will use lower speculative 
execution ratio and less resource consumption to achieve a 

more desirable Dratio, as long as it is built on the more 
excellent machines in the large Hadoop cluster and disposes 
the more Jobs. 
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