
A Novel MapReduce Framework for Improving
Security of Cloud Computing

Junyi Deng, Yanheng Liu, and Jian Wang
College of Computer Science and Technology

Jilin University
Changchun, China

dengjunyi@vip.sina.com, {yhliu, wangjian591}@jlu.edu.cn

Lin Li
School of computer and information technology

Shanxi University
Taiyuan, China

lilynn1116@sxu.edu.cn

Abstract—Cloud computing is becoming a powerful parallel
data processing method and it can be adopted by many
network service providers to build a service framework.
Though the cloud computing is able to efficiently process a
huge amount of data, it is easy to be attacked due to the
massive distributed cluster nodes. In this paper, we propose a
novel Secured MapReduce Framework (SMRF), which
establishes a close relation between the Speculative Execution
(SE) and the security of the YARN. SMRF launches the
speculative executions in a certain ratio, computes and
compares their respective MD5 hashes of the intermediate and
final results in the MapReduce process. Moreover, the
proposed framework is able to discover the actual and
potential malicious nodes in the Hadoop cluster. In addition, a
prototype framework, called SecMR, is implemented based on
Hadoop 2.3.0. The theoretical derivations and experiments
show that the proposed SecMR not only guarantees the
security of the MapReduce process, but also successfully
locates two types of the malicious nodes in Hadoop while just
increasing a little overhead.

Keywords—Cloud computing, Hadoop, MapReduce,
Speculative execution, Security

I. INTRODUCTION
With the rapid development of the hardware, software

and high-speed network, many cloud service providers, e.g.,
Google and Amazon, are establishing more and more cloud
computing (CC) realities [1] around the world [2] as shown
in Fig. 1. However, many organizations and customers are
still reluctant to accept CC due to the security issues [3].
Therefore, solving these problems is of great significance for
the long-term development of CC [4].

Some safety precautions are already getting attention [5].
For instance, Gartner et. al identify seven security issues of
CC that need to be solved [6]. Grobauer et. al discuss the
security vulnerabilities of the cloud platform [7]. Jansen et. al
propose the guidelines on privacy in public CC [8].

Hadoop is considered as the most widely used CC
platform [9] and the MapReduce can be regarded as the most
efficient framework for processing vast amounts of the
distributed data. However, most of the current researches are
still paying increased attention to the MapReduce
performance rather than its security [10].

In this paper, we focus on improving the security of
MapReduce 2.0 (MRv2/YARN: Yet another Resource
Negotiator) [11], and a secured MapReduce 2.0 framework
(SMRF) is proposed. Moreover, we provide a prototype

called SecMR by extending Hadoop 2.3.0. Moreover, the
theoretical derivation and the extensive experiments are
performed to prove its validity, security and malicious node
detection efficiency.

The rest of the paper is organized as follows. Section II
introduces the SMRF design and the SecMR implementation
in details. Section III provides the theoretical derivation of
SecMR. Section IV shows the experiment results and
comparisons on SecMR. Finally, the conclusions are drawn
in Section V.

II. SMRF AND SECMR

A. SMRF
In MRv1, the programming model decomposes the

problem processing procedure into the Map phase and the
Reduce phase. Moreover, the runtime environment consists
of JobTracker and TaskTracker. Although the programming
model of MRv2 (YARN) is the same, NodeManager (NM)
takes the place of TaskTracker, and JobTracker is separated
into ResourceManager (RM) and MRAppMaster in YARN.
Every MRAppMaster only manages one job and creates the
new JobImpls and TaskImpls. TaskImpl contains Map Tasks
and Reduce Tasks. Because SMRF will verify the validity of
the intermediate and final results generated by Map and
Reduce, the programming model and runtime environment
are needed to be changed accordingly.

In the programming model of SMRF, there will be more
TaskAttempts because it launches the speculative execution
in a certain ratio. These additional TaskAttempts execute the
same tasks and compute the MD5 hashes of results. The
programming model of SMRF is shown in Fig. 1.

Job

Task Task Task

TaskAttempt TaskAttempt
TaskAttempt
（MD5）

TaskAttempt
TaskAttempt
（MD5）

TaskAttempt
（MD5）

······

······
TaskAttempt
（MD5）

Fig. 1. The programming model of SMRF

B. SecMR
The template is used to format your paper and style the

text. All margins, column widths, line spaces, and text fonts
are prescribed; please do not alter them. You may note
peculiarities. For example, the head margin in this template

2019 International Computer Science and Applications Conference (ICSAC 2019)

Published by IEC © 2019 the Authors and IEC 76

javascript:void(0);

measures proportionately more than is customary. This
measurement and others are deliberate, using specifications
that anticipate your paper as one part of the entire
proceedings, and not as an independent document. Please do
not revise any of the current designations.

In YARN, RMApp is a data structure that preserves an
application life cycle in RM. Its realization instance is
RMAppImpl. This class maintains an application state
machine that records several application states and state-
driven events. The Finite State Machine (FSM) of RMApp is
shown in Fig. 2.

NEW

ACCEPPTED

SUBMITTED

FINISHING

RUNNING
(MRAppMaster)

FINISHED

FAILEDKILLED

START

APP_
ACCEPTED

ATTEMPT
_FAILED

ATTEMPT_
REGISTERED

ATTEMPT_FAILED

ATTEMPT_FINISHEDATTEMPT_FINISHING

ATTEMPT_FINISHED

KILL
ATTEMPT_FINISHING

KILL
NODE_UPDATE

APP_REJECTEDAPP_REJECTED

KILL

KILL

KILL

KILL

APP_ACCEPTED
APP_REJECTED

KILL
ATTEMPT_FINISHED
ATTEMPT_FAILED
ATTEMPT_KILLED KILL

ATTEMPT_FINISHED

Fig. 2. The Finite State Machine of RMAppImpl

When MRAppMaster is launched, the application will
enter into the core state “RUNNING” marked in red in Fig.
2. Every application may run several times. The transitions
of states are determined by the return values of
MRAppMaster. RMApp judges an application failed when
all of RMAppAttempts failed. Therefore, MRAppMaster is
the most important module in SMRF.

III. THEORETICAL DERIVATION
The Map speculative task and the Reduce speculative

task are slightly different. However, the principles are
basically the same. Thus, we take the Map task replication
as the example to illustrate the theoretical arithmetic.

For easily comparing differences and similarities without
losing generality, we set every MRv2 job disposing the
same size of data. It means that the total blocks are fixed in
every experiment, but the data of every block is absolutely
different. Every Map task only processing one block implies
that the number of the copied blocks is equal to the number
of the replicated Map tasks. We assume the number of
blocks (Map tasks) is b. And that a container is the
abstraction conception of a resource set in YARN. It will be
allocated by RM and supervised by NM. Every task is must
executed in a container so that the number of containers is
also b.

In addition, even for the security of MRv2, it is not
practical to replicate all of MRv2 tasks by speculative
execution because this must consume a lot of resources and
time. So we introduce Execution Ratio Er to indicate b*Er
blocks will be duplicated. It is equal to the number of the
Map speculative tasks. If a MRv2 job involves one
MRAppMaster and n containers, m containers might be
malicious and m<n. A malicious node may execute the
vicious actions in P probability. And the variable t
represents the number of jobs executed by MRv2.

The aims of SMRF are to ensure the integrity of MRv2
results and find out the malicious nodes. Theoretical
arithmetic will show the relationship between Detection
Ratio and the above parameters as follows.

The probability of a malicious Map task in b Map tasks
is 1/b, then 1-1/b is the probability that any Map task is not
malicious. If there are b*Er duplicated blocks in a MRv2
job, rb*E(1 1/ b)− is the probability that all of b*Er Map

tasks are secure. And rb*E1 (1 1 / b)− −   is the probability
that at least one of b*Er Map tasks is not secure (i.e. a Map
task is not executed in a secure container). Then the
probability of the malicious containers(nodes) executing the
vicious actions is rb*E1 (1 1 / b) * P− −   . And

rb*E1 1 (1 1 / b) * P− − −   is the probability that the malicious
nodes do not carry out the baleful behaviors. If the
malicious nodes perform the tasks correctly in t MRv2 jobs,

this probability is { }r
tb*E1 1 (1 1 / b) * P− − −   . So

{ }r
tb*E1 1 1 (1 1 / b) * P− − − −   is the probability that the

malicious nodes expose themselves in t MRv2 jobs. In the
meanwhile, it also is the probability of discovering the
malicious nodes by SecMR.

Therefore, Detection Ratio can be defined as Equation
(1).

 Dratio = { }r
tb*E1 1 1 (1 1 / b) * P− − − −   (1)

We investigate the effects of three factors b, P and t on
the detection ratio Dratio.

Fig. 3 shows the change of Dratio against the Execution
ratio Er and the number of the blocks b, where t=40 and
P=0.2. One could observe that Dratio increases along with
the augment of Er, but little decreases with increase of b.

Fig. 3. The effect of the parameter b on the Detection Ratio

77

javascript:void(0);

Fig. 4. The effect of the parameter P on the Detection Ratio

Fig. 4 shows the change of Dratio against the Execution
ratio Er and the malicious behavior probability P, where
b=20 and t=10. One could observe that Dratio increases
along with the augment of P. Given a certain Er, the more
malicious behaviors there are, the more effectively SecMR
works.

Fig. 5 shows the change of Dratio against the execution
ratio Er and the number of jobs t, where b = 20 and P = 0.2.
One could observe that Dratio increases along with the
increase of Er and t. If t=25 and Er=30%, Dratio is close to
90%.

Fig. 5. The effect of the parameter t on the Detection Ratio

In a conclusion, the detection ratio Dratio increases with
the augment of the Execution ratio Er, the number of jobs t
and the malicious action Probability P. And the influence of
the number of blocks b on Dratio is weak. Theoretical
derivation indicates that SecMR is quite effective to discover
the malicious behaviors. As long as the parameters b and t
are set appropriately, such as b=20 and t >= 25, we can set Er
at a low level (<=30%) to achieve a desired Dratio (>=85%)
when P >= 0.2. And the more P is, the better Dratio is.
Moreover, if combining Map speculative task and Reduce
speculative task together, it is reasonable to believe Dratio
will be more than 90%.

IV. SECMR EXPERIMENTS
We evaluate the validity and performance of SMRF by

conducting three experiments on SecMR. Restricted by the
experimental conditions, there are 1 RM node and 3 NM
nodes in Hadoop cluster. RM machine is equipped with one
4-core 3.1GHz Intel Xeon(R) CPU E31225, 4GB memory,
one 1TB SCSI disk and 1000M NIC. Three NM machines
are respectively equipped with one 2-core 2.93GHz Intel

CoreTM2 Duo CPU E7500, 4GB memory, one 160GB SCSI
disk and 1000M NIC. All machines have the same software
configurations, i.e., Ubuntu 14.04.1 LTS server (64 bit), Java
SE Runtime 1.8.0 and Hadoop 2.3.0.

A. WordCount Benchmark
WordCount is a classic MapReduce program. It can

count the occurrence numbers of each word in a specified
data set. We choose various test files and compare the time
cost in three different scenarios. The size of small file is
larger than 64M to avoid affecting the scalability and
performance of Hadoop. The results are the average values
of 25 WordCount experiments according Section III. The
corresponding histogram is shown in Fig. 6.

Fig. 6. The Execution Time of WordCount

In Fig. 6, one can get three conclusions. (1) In the
original condition, the time cost is proportional to the
number of blocks and the total input paths. In MapReduce
Framework, “6000M”, “2*3000M” and “3*2000M” are
divided into 96 blocks. “10*600M” and “20*300M” are
equal to 100 blocks. “60*100M” is split into 120 blocks.
And that the different numbers of the input paths make the
execution time of “30*200M” different from that of
“60*100M”. Because “60*100M” has 60 input paths that is
twice as much as that of “30*200M”. (2) Without the
malicious nodes, the time cost of WordCount just increases
about 9% in the SecMR. A new speculative TaskAttempt is
not equal to a new same task so the time of Job do not
increase by 30%. The extra time cost mainly comes from the
inconformity of TaskAttempt times and the low
performance of small cluster. By contrast, MD5 hash
computing and comparing bring little influence. (3) Owing
to load balancing and a malicious node in the cluster, the
tasks assigned to it are close to 33.3%. And the probability
of malicious behavior is 20% so that the increasing time is
mainly due to Task waiting for the returned values of extra
speculative TaskAttempts. Time cost increases
approximately between 16% and 21% compared to that of
the original condition.

B. Mrbench Benchmark
Mrbench repeats a little job many times specified by the

user, which is designed for checking whether the little job
running on a Hadoop cluster is repeatable and efficient. It is
used to test the performance to handle lots of little jobs and
the security protection ability of SecMR. Therefore, the

78

times of Job repetition are set as 10, 15, 20, 25, 30 and 40.
The experiment results in three scenarios are shown in Fig.
7.

One can get three conclusions. (1) In three conditions,
every experiment is executed in the different repetition
times but in the same configurations. The execution time is
an average value of SecMR handling the same job in several
times. The more times is repeated, the more accurate the
execution time is. (2) Adding 30% speculative executions
makes the execution time increase approximately 9%,
mainly because the inconsistent Task Attempt completion,
the MD5 hashes computation and comparison. (3) Execution
time increases approximately 16% by reason of adding
33.3% malicious nodes will result in the inconformity of
two comparative MD5 hashes, and the extra speculative
TaskAttempts.

Fig. 7. The results of Mrbench Test

V. CONCLUSIONS
In this paper, a secured and high-integrated MapReduce

2.0 Framework (SMRF) is proposed. The relevant
parameters of SMRF are accurately set according to the
theoretical derivation. The prototype framework SecMR is
implemented based on Hadoop 2.3.0, which takes advantage
of Speculative Execution and MD5 hashes verification to
ensure the integrity and validity of MapReduce results.
Moreover, SMRF is able to locate two kinds of malicious
nodes and the potential malicious nodes. Three experiments
on SecMR adequately demonstrate its malicious nodes
detection Dratio and computing resources consumption can
achieve the expected goals. Especially, Dratio is more than
86% at least while just increasing a little overhead.
Therefore, the proposed SMRF will use lower speculative
execution ratio and less resource consumption to achieve a

more desirable Dratio, as long as it is built on the more
excellent machines in the large Hadoop cluster and disposes
the more Jobs.

ACKNOWLEDGMENT
This work is supported in part by the National Natural

Science Foundation of China (Grant No. 61373123), and in
part by the Jilin Province Science and Technology
Development Plan (Key Science and Technology Tackling)
Project (Grant No. 20160204041GX).

REFERENCES
[1] Armbrust M, Fox A, Griffith R, et al. A view of cloud computing[J].

Communications of the ACM, 2010, 53(4): 50-58.
[2] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I.

(2009). Cloud computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the 5th utility. Future
Generation computer systems, 25(6), 599-616.

[3] Takabi, H., Joshi, J.B.D., and Ahn, G.J.: ‘Security and Privacy
Challenges in Cloud Computing Environments’, IEEE Secur. Priv.,
2010, 8, (6), pp. 24-31

[4] Subashini, S., and Kavitha, V.: ‘A survey on security issues in service
delivery models of cloud computing’, Journal of Network and
Computer Applications, 2011, 34, (1), pp. 1-11.

[5] Jensen, M., Schwenk, J., Gruschka, N., Lo Iacono, L., and Ieee: ‘On
Technical Security Issues in Cloud Computing’: ‘Cloud: 2009 Ieee
International Conference on Cloud Computing’ (Ieee, 2009), pp. 109-
116

[6] Brodkin, J.: ‘Gartner: Seven cloud-computing security risks’,
Infoworld, 2008, pp. 1-3

[7] Grobauer, B., Walloschek, T., and Stocker, E.: ‘Understanding cloud
computing vulnerabilities’, Security & privacy, IEEE, 2011, 9, (2), pp.
50-57.

[8] Jansen, W., and Grance, T.: ‘Guidelines on security and privacy in
public cloud computing’, NIST special publication, 2011, 800, pp.
144.

[9] Srirama, S.N., Jakovits, P., and Vainikko, E.: ‘Adapting scientific
computing problems to clouds using MapReduce’, Future Generation
Computer Systems, 2012, 28, (1), pp. 184-192.

[10] Mackey, G., Sehrish, S., Bent, J., Lopez, J., Habib, S., and Wang, J.:
‘Introducing map-reduce to high end computing’, in Editor
(Ed.)^(Eds.): ‘Book Introducing map-reduce to high end computing’
(IEEE, 2008, edn.), pp. 1-6.

[11] Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M.,
Evans, R., Graves, T., Lowe, J., Shah, H., Seth, S., Saha, B., Curino,
C., O'Malley, O., Radia, S., Reed, B., and Baldeschwieler, E.:
‘Apache Hadoop YARN: yet another resource negotiator’. Proc.
Proceedings of the 4th annual Symposium on Cloud Computing,
Santa Clara, California2013 pp. Pages

79

	I. Introduction
	II. SMRF and SecMR
	A. SMRF
	B. SecMR

	III. Theoretical Derivation
	IV. SecMR Experiments
	A. WordCount Benchmark
	WordCount is a classic MapReduce program. It can count the occurrence numbers of each word in a specified data set. We choose various test files and compare the time cost in three different scenarios. The size of small file is larger than 64M to avoid...

	B. Mrbench Benchmark

	V. Conclusions
	Acknowledgment
	References

