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Abstract: In this paper, a control method is proposed for spacecraft with unknown disturbances. 
For attitude subsystem, an adaptive estimator is designed to deal with the unknown disturbances. 
For angular velocity subsystem, the actual control input is designed. If the designed control law is 
added to angular velocity subsystem, a nonlinear closed-loop system of angular velocity error is 
arrived. The convergence of closed-loop system is proved by input-output stability theory. The 
derivative of virtual control and unknown disturbances in the actual control are also estimated using 
adaptive estimator. It can be proved that, with the proposed controller, the attitude can converge to a 
small-neighbourhood of the designed attitude. Theoretical results are illustrated by numerical 
simulation. 

1.   Introduction 
To improve the anti-disturbance performance of control systems, disturbance-observer-based 

control strategies were designed in recent years. In [1], a high-order sliding mode observer based 
time-varying sliding mode control strategy is presented to address the robust attitude control 
problem. In [2], a disturbance observer-based exponential time-varying sliding mode attitude 
controller was designed to achieve precise attitude control when the matched parametric 
uncertainties and external disturbances occurred. Based on adaptive disturbance observer, an output 
feedback controller is employed to provide a solution to the robust tracking control problem of an 
electrically driven free-floating space manipulator with internal parameter uncertainties and external 
disturbances in [3]. In [4], a direct feedback linearization control method with nonlinear disturbance 
observer was proposed to achieve excellent control performance for permanent magnet synchronous 
motor. In [5], a nonlinear disturbance observer based command filtered backstepping control 
method is proposed for nonlinear missile system in face of multiple disturbances. In [6], to solve the 
control problem of a general hyper-sonic vehicle, a robust backstepping control strategy based on 
the disturbance- observer is proposed to estimate and compensate for disturbances by using the 
super-twisting algorithm; finite time convergence is guaranteed by the proposed control. In [7], 
non-singular terminal sliding mode control and finite-time disturbance observer were introduced to 
design the composite guidance law for the terminal guidance of missile to intercept maneuvering 
targets; disturbance rejection is guaranteed, and chattering phenomenon is alleviated. 

Used aforementioned methods for reference, a new control method with estimate and offset 
about mismatch disturbance is proposed for a MIMO spacecraft subject to external disturbances in 
the paper. In control design, the mismatched disturbance is fully considered. Adaptive estimator and 
controller are designed for attitude subsystem and angular velocity subsystem, respectively. For 
angular velocity subsystem, the actual control input is designed. If the designed control law is added 
to angular velocity subsystem, a nonlinear closed-loop system of angular velocity error is arrived. 
The convergence of closed-loop system is proved by input-output stability theory. The derivative of 
virtual control and unknown disturbances in the actual control are also estimated and compensated 
using adaptive estimator. It can be proved that, with the proposed controller, tracking error of the 
attitude converges to a bounded small-neighborhood of the reference attitude. 
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2.   Spacecraft Model for Attitude Control 
During the attitude control of spacecraft, it is susceptible to the orbital motion, measuring noise 

and other factors. For high-precision attitude control problems, these interfering factors can not be 
ignored. In the paper, attitude equation is described as following: 

                                                            ( )q B q ω f= +                               (1) 

Where B is a reversible attitude rotation matrix when spacecraft attitude q  change in a certain set 
(it is researched only that the case of B  is reversible in the paper), ω is attitude angular velocity, 
f is disturbance of impacting on attitude system. The dynamic equation of spacecraft can be written 

by: 

                                                             Jω ω Jω u d×+ = +                         (2) 

Where J is the moment of inertia, ω× denotes the skew-symmetric cross product matrix 
corresponding toω , u , d are control vector and external disturbance, respectively. 

3.   Attitude Tracking Control 
The objective of this paper is design a controller for system described by (1) and (2), such that 

the spacecraft attitude ( )q t  follows the desired attitude ( )qr t  as closely as possible, that is 

                                                               ( )lim ( ) ( ) 0q qrt
t t

→∞
− =               (3) 

For spacecraft model (1) and (2), the strategy of attitude control is based on the following 
concerns: 1) a virtual predictive control is introduced to attitude subsystem, where the uncertainties 
are estimated and compensated by using adaptive estimator; 2) the actual control input is designed 
by constructing a nonlinear closed-loop system of angular velocity error, and adaptive estimator is 
planned again. 

In this paper, we suppose and satisfy following conditions: 
1)  d and ( )qr t are bounded; 2) ( )qr t and its derivatives are bounded. 

3.1.   Control Design for Attitude Subsystem 
Define attitude tracking error and angular velocity error: 

                                                                  ( ) ( ) ( )q q qrt t t= −                                 (4) 

                                                                  ( ) ( ) ( )ω ω ωdt t t= −                             (5) 

Where ( )ωd t is a virtual control input to be designed and ( )qr t  is desired attitude trajectory. 
For attitude subsystem, choose virtual control law as follows: 

                                                              ( )1( ) ( )ω B K q q Bω fd d rt t−= + + −        (6) 

Where Kd is a positive diagonal matrix. Substituting virtual control law (6) into spacecraft 
attitude motion equation (1) yields that 

                                                                     ( ) ( ) 0q K qdt t+ =                       (7) 

Hence, (7) implies that lim ( ) 0q
t

t
→∞

= . It indicates that the tracking error of the closed-loop system is 
globally asymptotically stable. 

The virtual control (6) is unable to implement, since there are unknown term f . To compensate 
for the influence of the unknown terms in (6) meanwhile maintain the independence of control 
every subsystem, a feasible way is design a new control law to approximate the ideal control law (6). 
Let ( )T Bω fn t= − , and suppose that 1Tn δ≤ , where 1 0δ > is an unknown and bounded constant. 
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Defined 1 1 1
ˆδ δ δ= − , which is estimate error of 1δ , and 1̂δ  is estimate value of 1δ . The control law can 

be redesigned as: 

                                                               
1 1 1

1

ˆ
( )ω B K q q q

qd d r
ct

b
d−  

= + +  + 
 

                         (8) 

                                                                   
1 1

1
1

ˆ q q
q


 


Ta c

b
δ =

+                              (9) 

Where 1 1 1, 0, 1a b c> > are constants to be designed. Define Lyapunov function ( )T 2
1 1 11 2 1 2V a δ= +q q 

  , 
Differentiating 1V  on time yields that 

                                                           
T 1 1

1 1
1

q K q q q q
q

T
d

cV
b

d
d≤ − + −

+
     

 .                                                (10) 

3.2.   Control Design for Angular Velocity Subsystem 
For angular velocity subsystem, the control law is designed as follows: 

                                                     ( )* ( ) +p d d dt ×= − + −u K J ω ω Jω ω Jω d                                                (11) 
Where K p is a positive diagonal matrix. Substituting control law (11) into spacecraft attitude 

dynamics equation (2) yields that the closed-loop system equation is 

                                                  ( ) ( ) ( )+ 0J ω ω ω J ω ω K J ω ωd d p d
×− − + − =                                           (12) 

That is different from the classical scheme of feedback control. The close-loop system equation 
derived from the designed control law is a nonlinear differential equation. A compact format of 
above-mentioned equation can be rewritten as 

                                                              0Jω ω Jω K Jωp
×− + =                                                 (13) 

Choose pseudo-Lyapunov function T T
2 1 2V = ω J Jω  , Differentiating 2V  on time yields that 

                                                                
T T

2 0ω J K JωpV = − ≤                                                   (14) 

This means the trajectory of close-loop system 2 ( )V t  is monotonously and bounded, and 
0 0t t∀ ≥ ≥ , one can get 

                                                               2 2 2 00 ( ) ( ) ( )V V t V t≤ ∞ ≤ ≤ < ∞                                        (15) 

Based on above inequality and definition of 2 ( )V t , one arrive 

                                                         ( ) 2T T T
min

1 10
2 2

J K J ω ω J K Jωp pλ≤ ≤ < ∞                                       (16) 

Therefore, one hasω L∞∈ . From equation (14), one can find 

                                                 ( ) 2T T T
2 min( ) ω J K Jω J K J ωp pV t λ= − ≤ −                                                   (17) 

Integrating above inequality (17), one obtains 

                   ( ) ( ) ( ) ( )0 0

2
2 2 0 2 2 0T T T

min min min

1 1 1d ( )d ( ) ( ) ( )
t t

p p p

t V t t V t V V t
λ λ λ

∞ ∞
≤ − = − ∞ ≤ < ∞∫ ∫ω

J K J J K J J K J


      (18) 

So that 2ω L∈ . 
According to the suppose with ( )qr t and the conclusion ( )q t L∞∈ , one can get from the equation 

(8). Under the condition on the suppose of d and ( )qr t , the control law satisfies: 
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( )* ( ) +p d d dt L× ∞= − + − ∈u K J ω ω Jω ω Jω d  
From the dynamic equation of spacecraft, one has 

( )-1 +ω J ω Jω u d L× ∞= + ∈  

so that ω L∞∈ . 
Based on the above analyze, 2ω L∈  andω L∞∈ is valid, and then lim ( ) 0ω

t
t

→∞
= is reasonable. 

One can see from (11) that the term ωd  in the control law would greatly increase the 
computational burden, and the unknown terms d  make the controller impracticability. In the 
section, the virtual control derivative ωd  is regarded as uncertainty to avoid the huge computational 
burden. LetT Jω dm d= − , and given 2Tm δ≤ , where 2 0δ > is an unknown and bounded constant. 

Defined 2 2 2
ˆδ δ δ= − , which is estimate error of 2δ , and 2̂δ  is estimate value of 2δ . Similarly to the 

attitude sub-system, the control law can be designed as follows: 

                                                          
2 2

2

ˆ
( ) +u K Jω ω Jω Jω

Jωp d
ct

b
d×= +
+

 
                                   (19) 

                                                            
2 2

2
2

ˆ T Ta c
b

δ =
+

ω J Jω
Jω



 



                   (20) 

Where 2 2 2, 0, 1a b c> > are constants to be designed. Define Lyapunov function ( ) 2
3 2 2 21 2V V a δ= +  , 

Similarly to the attitude subsystem, one has 

                                                
2

2 2T T
3 2

2

Jω
ω J K Jω Jω

Jωp

c
V

b
δ

δ≤ − + −
+

   
                                                   (21) 

3.3.   Main Result 
Theorem: Consider the spacecraft system (1) and (2), if the control laws are given by (8) and 

(19), the adaptive estimators are defined by (9) and (20), and the conditions satisfies ( )1 1 1q b c> − , 
( )( )2 2 1ω Jb c> − , then close-loop system is stable, moreover, the attitude of spacecraft could 

converge to a small neighborhood of the desired attitude. 
proof: If ( )2

1 1 1 1 0q q qc bδ δ− + ≤   , that is ( )1 1 1q b c> − , then equation (10) is transformed into 

                                                                           
T

1 q K qdV ≤ −                                     (22) 

Similarly, if ( )( )2 2 1ω Jb c> − , then equation (21) is rewritten into 

                                                                     
T T

3 ω J K JωpV ≤ −                                      (23) 

From equation (22) and (23), if one chooses Lyapunov function 1 3V V V= + , the derivative of 
V is 1 3 0V V V= + ≤   . Therefore, the close-loop system is stable. 

From equation (22), the attitude tracking error q  is ultimately bounded stable, and the stable 
region is ( ){ }1 1 1q q qS b c= ≤ −   . From equation (23), the angular velocity tracking error ω  is also 

ultimately bounded stable, and the stable region is ( )( ){ }2 2 1ω ω ω JS b c= ≤ −   . Therefore, if one can 
choose appropriate parameters such that 1 10, 1b c> > and 2 20, 1b c> > , then, the designed control law 
can guarantee that the attitude of spacecraft could converge to a small neighborhood of the desired 
attitude. 
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4.   Simulation 
In simulation, the spacecraft inertia matrix J , attitude rotation matrix B  and disturbance d , f  

are 

2

1320 194 176 cos 0 sin
1194 9600 145 (kg m ), cos sin 1 sin sin

cos
176 145 6400 sin 0 cos

0.05 0.1sin 0.1 0.1sin5
0.01 0.03sin 2 (rad/ s), 0.2 0.15cos(2 / 6)
0.01 0.02sin3 0.3

t t
t t
t

θ θ
θ ψ θ ψ

ψ
θ θ

π

   
   = ⋅ =   
   −   

+ + 
 = + = + + 
 + + 

J B

f d 210 (N m)
0.15cos(2 / 4)t π

−

 
  × ⋅ 
 + 

 

The aim is control spacecraft attitude from initial attitude [ ]T0 12.6 5 27.29= ° − ° − °q  to the 

terminal attitude d =q 0 along the desired attitude trajectory ( )
3 4 5

0 03 4 5

10 15 6
20 20 20r d

t t t 
= + − + − 

 
q q q q . To this 

end, we assign the gain matrix 310d =K I , 340p =K I . Moreover, the initial values of the estimator are 
set to 1 2

ˆ ˆ(0) (0) 0δ δ= = , and adaptive parameters are 1 2 0.005b b= = . Other parameters are given by 1 1a = , 
2 0.01a = . 

For attitude error, two cases are considered about the different adaptive parameter 1c under the 
same parameter 2 2c = , respectively. One is 1 3c = , then, one can calculate the stable region of 
q is { }0.143S = ≤q q q 



  . The other one is 1 4c = , then, one can calculate the stable region of 

q is { }0.095S = ≤q q q 



  . 
The simulation results are displayed in Fig.1 and Fig.2. 
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Fig.1. Attitude curve with 1 3c =   
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Fig.2. Attitude curve with 1 4c =   

It can be seen from the simulation results that the attitude of the closed-loop system would take 
about 140s to arrive at the stable region correspondingly with the proposed control. Since there are 
mismatch external disturbances in spacecraft model, the attitude of spacecraft would converge into 
a small neighborhood of the reference attitude, and the control precision is better. 

5.   Conclusion 
An attitude control method is proposed for MIMO spacecraft subject to external disturbances in 

the paper. In control design, the disturbance is fully considered and resolved by virtual control 
design of subsystem. On the other hand, the nonlinear of model is utilized adequately, which make 
the designed controller add to spacecraft dynamics equation and receive a nonlinear close-loop error 
equation. The reference worth of proposed controller is higher in engineering study. 
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