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Knowledge graphs contain rich semantic information, and their integration into recommendation systems has significantly alleviated
challenges such as data sparsity and the cold-start problem. However, existing knowledge graph-based recommendation methods
primarily focus on optimizing the item side of the graph, often neglecting the user side. This limitation leads to insufficient
utilization of explicit collaborative information derived from user–item interactions, resulting in embedding representations that fail
to effectively capture the latent semantics of both users and items. To address this issue, we propose a novel approach, Course
Recommendation Method Based on Dual-End Collaborative Information of Knowledge Graph (DCIKG-Rec). The proposed method
simultaneously models both users and items, enabling the integration of collaborative information and knowledge associations
through heterogeneous propagation techniques to enhance representation learning. Furthermore, DCIKG-Rec employs a knowledge-
aware attention mechanism to evaluate the importance of neighbors at each layer for different entities, and a bias-based attention
mechanism to preserve collaborative information during multi-layer propagation. Finally, the learned representations of users and
items are utilized to predict the probability of user–item interactions. Extensive experiments conducted on a real-world dataset
demonstrate that DCIKG-Rec achieves an AUC of 0.8964 and an F1 score of 0.7952 in click-through rate prediction. In addition,
its Top-K recommendation performance shows superior recall compared with several state-of-the-art baseline models.

Index Terms—Recommendation System, Collaborative Filtering, Heterogeneous Propagation, Knowledge Graph.

I. INTRODUCTION

IN the era of booming digital learning, online learning
resources are becoming increasingly abundant [1]. How to

precisely recommend courses that meet learners’ personalized
needs from the vast amount of learning resources has already
become a hot issue that attracts common attention in both the
educational technology field and the computer science field
[2]. With the rise and development of Knowledge Graph (KG)
technology, integrating it into recommendation systems has
provided new ideas and approaches for solving the problem
of learning resource recommendation.

Knowledge graphs integrate a large number of entities and
the relationships between them in a structured manner [3].
They can unearth the deep semantic connections among learn-
ing resources (such as courses), learners, and related attributes,
thereby helping recommendation systems better understand
user preferences and resource characteristics.

In the early days, most of the recommendation meth-
ods based on knowledge graphs enhanced item represen-
tations through knowledge graph embedding [4]. Examples
include TransE [5], TransH [6], TransR [7], TransD [8], and
TranSparse [9], etc. This reduced the high dimensionality
and heterogeneity of knowledge graphs, but ignored the con-
nectivity among entities [10]. Subsequently, many scholars
used meta-paths to enrich the interactions between users
and items, improving the interpretability of recommendation
results. However, meta-paths need to be manually designed
[11]. Although these methods have improved the accuracy of
recommendations and the interpretability of recommendation
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results [12], they still have problems such as poor generaliza-
tion ability and unstable performance [13].

Graph convolutional network (GCN) has excellent infor-
mation extraction and representation capabilities on graph-
structured data and has gradually become a research hotspot in
recommendation systems [14]. Its powerful information prop-
agation ability can mine high-order semantic relationships be-
tween entities and enhance the expression ability of the model,
such as KGCN [15]. However, through in-depth research and
practice, it has been found that there are some limitations in
existing knowledge graph-based recommendation systems. On
the one hand, most of such systems focus on optimizing the
item (learning resource, such as a course) representation side,
devoting their main efforts to mining the characteristics of the
course itself and optimizing the course representation based on
knowledge graph relationships, while relatively ignoring the
refined modeling of the user side. This unbalanced modeling
approach makes it difficult for the system to comprehen-
sively capture the collaborative relationship between users
and learning resources, resulting in ignoring many explicit
collaborative information that should be emphasized during
the recommendation process, and further affecting the degree
of conformity of the recommendation results to the real needs
of users. On the other hand, some improved models such as
Knowledge Graph Attention Network (KGAT) [16] recognized
the necessity of dual-side modeling for both the user and item
domains, and their work marked an important step forward.
However, a key assumption in the modeling process of KGAT
is that the interaction items in the User-Item-Knowledge
Graph (UIG) and the associated entities in the Knowledge
Graph (KG) are treated as isomorphic nodes. In real learning
scenarios, however, there are fundamental differences between
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them in terms of semantic levels, functional attributes, and
the roles they play within the overall learning ecosystem.
Furthermore, as the propagation layers in the recommendation
system deepen, the user and item representations extracted
from different layers encapsulate information at varying levels
of abstraction. These representations reflect user interests and
resource characteristics in diverse forms. If such differences
are not properly leveraged, the recommendation system will
inevitably lose a significant amount of valuable information,
thereby undermining both the accuracy and the comprehen-
siveness of the recommendations.

To more effectively leverage knowledge graphs to enhance
the quality of course recommendations, this study proposes a
course recommendation method based on collaborative knowl-
edge dual-end embedding. This method focuses on modeling
both the user side and the item side, fully considering the
characteristics of each side and the complex and subtle col-
laborative relationships between them. This ensures that no
information is lost due to an overemphasis on one side during
the recommendation process. Additionally, an innovative bias
attention mechanism is introduced, which effectively integrates
information based on its importance at different levels and its
relevance to the recommendation goal. This allows the user
and project representations used for the final recommendation
decision to reflect key information as fully as possible. As a
result, the accuracy of course recommendations is significantly
improved, providing learners with more personalized course
suggestions and driving the continuous development of online
learning resource recommendation systems. The contributions
of the paper are as follows:

• We propose a novel course recommendation method,
DCIKG-Rec, which differs from existing knowledge
graph-based recommendation approaches. The model
jointly considers both the user side and the item side,
effectively integrating collaborative information with
knowledge associations.

• We design a knowledge-aware attention mechanism to
evaluate the importance of neighbors at each propaga-
tion layer for different entities, and further introduce an
innovative bias-based attention mechanism to preserve
collaborative information during multi-layer propagation.

• The effectiveness of the proposed DCIKG-Rec is val-
idated through extensive experiments on real-world
datasets, demonstrating its superior performance com-
pared with state-of-the-art baselines.

The remainder of this paper is organized as follows. Section
II reviews the current research progress in related fields.
Section III defines the key concepts involved in this study and
discusses the new challenges that need to be addressed. Section
IV provides a detailed description of the proposed DCIKG-
Rec model. Section V presents experimental evaluations of
the proposed method against several baseline approaches on
real-world datasets, followed by an in-depth analysis and
comparison of the results. Finally, Section VI concludes the
paper and outlines directions for future work.

II. RELATED WORKS

In this section, we introduce recommendation methods
based on knowledge graphs. With the deep integration of
recommendation systems and knowledge graph technology,
such methods have continuously evolved and gradually formed
several mainstream categories, including embedding-based
methods, path-based methods, and neural network-based meth-
ods.

A. Embedding Based Methods

Represented by the Trans series of algorithms [4] [5], these
methods map the entities and relations of knowledge graphs
into a low-dimensional vector space and learn embedding
representations through specific models and loss functions.
For instance, TransE optimizes by treating relations as trans-
lation vectors from the head entity to the tail entity. While
such approaches demonstrate clear advantages in knowledge
graph completion and link prediction, they perform poorly
in recommendation tasks. This is because recommendation
tasks are inherently complex and highly sensitive to user
personalization, making it difficult to accurately capture the as-
sociations between users and items solely through embedding
representations. When confronted with diverse user interests
and intricate item relationships, the information obtained is
insufficient to support high-quality recommendations.

B. Path Based Methods

These methods focus on the connections among entities in
the knowledge graph and make recommendations by utilizing
the entity connection patterns. For example, Hu et al. [17]
combined the convolutional neural network with meta-paths
to obtain the vector representations of users and items, and
mined the connection path information by manually designing
meta-paths. However, it relies on manually designed meta-
paths. When the application scenarios change, it is necessary
to redesign them, which is costly and lacks scalability, making
it difficult to be widely adapted to different recommendation
scenarios.

C. Graph Neural Network Based Methods

An increasing number of studies have demonstrated that
graph neural network (GNN) methods are highly effective in
addressing the cold-start problem in recommendation, with the
application of Graph Convolutional Networks (GCN) being
particularly extensive. Wang et al. [15] proposed Knowledge
Graph Convolutional Networks (KGCN), which employed
GCN to aggregate entity representations in a biased manner
and leveraged high-order links in the Knowledge Graph (KG)
to explore users’ latent interests, thereby alleviating the issue
of sparse user interaction data. However, KGCN overlooked
the modeling of user-side information and explicit collabora-
tive signals. Lei et al. [18] introduced a knowledge graph-
enhanced neural collaborative recommendation framework.
Building on GCN, this framework mined high-order semantics
from the KG and modeled entity context information by
stacking multiple convolutional layers. An attention network
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was then designed to learn the weight distribution of user
interaction items and candidate items. Through weighted
aggregation, user representations were obtained. Finally, the
representations of items and users were fed into the Neural
Collaborative Filtering (NCF) model to capture their interac-
tion features and predict users’ latent preferences for items.
Wang et al. [16] proposed the Knowledge Graph Attention
Network (KGAT), which recursively propagated high-order
neighborhood information of nodes by stacking propagation
layers. KGAT employed Graph Attention Networks (GAT) to
learn neighbor weights during propagation, thereby exploring
the importance of different high-order connections. However,
KGAT failed to distinguish between user nodes and other
entity nodes, which was unreasonable and limited its ability
to handle new users effectively.

Based on the limitations of existing methods, this research
proposes a course recommendation method based on dual-end
collaborative information of the knowledge graph (DCIKG-
Rec). This method conducts dual-end modeling for the user
end and the item end, aiming to fully consider the respective
characteristics of users and items as well as the collaborative
relationship between them. Meanwhile, it effectively integrates
information at different levels through the biased attention
mechanism, thereby improving the accuracy of course recom-
mendations.

III. PROBLEM STATEMENT

In this section, we first formulate the course-recommended
problem and mentioning some key definitions and notations
used.

Definition 1 Interactive Matrix Y: We have a set of M
students U = {u1, u2, ..., uM} and a set of N courses C =
{c1, c2, ..., cN}. Based on students’ viewing history records,
we can obtain the interaction matrix Y ∈ R|M |∗|N |, where
yuc = 1 indicates that student u has interacted with course c,
and yuc = 0 otherwise. Please note that yuc = 0 does not mean
that the student dislikes or does not need course c, maybe the
student likes course c but just accidentally overlooked it or
failed to find it.

Definition 2 Knowledge Graph G: The knowledge graph
is denoted as G = {(h, r, t)|h, t ∈ E, r ∈ R}, where h, r,
and t are the head entity, relation, and tail entity, respectively.
Moreover E and R are the set of entities and the set of
relations in G, respectively. For example, the triple (Data
Structures, Discipline, Computer Science) indicates that the
course Data Structures belongs to the discipline of Computer
Science.

We define the set A = {(c, e)|c ∈ C, e ∈ E, where each
pair (c, e) indicates that course c can be aligned with entity e
in the knowledge graph, thereby clarifying the correspondence
between courses and entities.

Definition 3 Course Recommendation: Given the user-
item interaction matrix Y and the knowledge graph G, the
current task is to predict the probability that a student u will
interact with the courses c that he has not previously engaged
with. Specifically, we aim to learn the prediction function
ŷuc = F(u, c|Y,G,Θ), where ŷuc represents the probability

that student u clicks on course c, and Θ denotes the training
parameters of the prediction function F .

For better readability and ease of reference, the key no-
tations and their definitions used throughout this paper are
summarized in Table I.

IV. THE PROPOSED METHOD

The DCIKG-Rec is designed as an end-to-end model that
performs joint modeling from both the user side and the
item side. The overall framework of the model is illus-
trated in Fig. 1. It consists of three main components:1)
The heterogeneous propagation layer: This layer effectively
propagates collaborative signals by leveraging students’ in-
teraction histories with courses as well as knowledge asso-
ciations within the knowledge graph. 2) Knowledge-aware
Attention Embedding Layer: To differentiate the contributions
of various neighbors, the weights of entity neighbors are
learned through a knowledge-aware attention mechanism. The
final representation of each entity is then composed of its
weighted neighbors. 3) The prediction layer: The embedding
representations obtained from different propagation layers are
aggregated using a biased attention mechanism to generate the
final representations of students and courses. The prediction
probability is subsequently computed by taking the dot product
of these two representations.

A. Heterogenous Propagation Layer

The heterogeneous propagation layer consists of two com-
ponents: collaborative propagation and knowledge graph prop-
agation. Collaborative propagation utilizes the embedding
representations of students and courses to transmit essential
collaborative signals, whereas knowledge graph propagation
disseminates knowledge associations along the edges of the
knowledge graph, thereby enhancing the representations of
both courses and students.

1) Collaborative Propagation
The courses that students have studied in the past can reflect

their preference tendencies to some extent. Therefore, the
courses that students have studied before are used to represent
the students. After the alignment and transformation between
the set of courses that student u has studied in history and the
entities in the knowledge graph, it will be taken as the initial
seed set for student u to carry out information propagation in
the knowledge graph.

The definition of the set of courses that student u has studied
in history is as follows:

U0
c = {c | yuc = 1} (1)

Align the set of courses that student u has studied in history
with the entities in the knowledge graph to obtain the initial
entity set of student u. The initial entity set of student u is
defined as follows:

ε0u = {e | (c, e) ∈ A and c ∈ U0
c } (2)

Similarly, following the principle of collaborative filtering,
students who have taken the same course are likely to share
similar learning preferences. This information can be utilized
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Fig. 1. The DCIKG-Rec Method

to refine the representation of a course. Specifically, other
courses that these students have previously studied are incor-
porated to represent the target course. The courses studied by
the same student are referred to as collaborative neighbors.
Accordingly, the collaborative neighbor set of course C is
defined as follows:

Cc = {cs | u ∈ {u | yuc = 1} and yucu = 1} (3)

Here, cu represents the set of courses, excluding c, that
student u has previously studied. Align the collaborative
neighbors with the entities in the knowledge graph to obtain
the initial entity set of course c. The initial entity set of course
c is defined as follows:

ε0c = {e | (cu, e) ∈ A and cu ∈ Cc} (4)

After collaborative propagation, the embedding sequences
of students and courses are processed into combinations of
entity sequences in the knowledge graph. To distinguish the
importance of different relationships of the same entity in the
knowledge graph, we use the TransR method to handle the
complex relationships between entities. More specifically, if
there is a triple (h, r, t) in the graph, optimize the translation to

learn to embed each entity and relationship. The optimization
translation principle is as follows:

ehr + er ≈ etr (5)

where, eh, et ∈ Rd and er ∈ Rk denote the embedding
representations of h, r, and t, respectively. Furthermore, ehr
and etr represent the projection vectors of h and t in the relation
space r. Therefore, for a given triple (h, r, t), its scalability
score (or energy score) is defined as:

g(h, r, t) = ∥Wreh + er −Wret∥22 (6)

where, Wr ∈ Rk×d is the transformation matrix of relation
r, which projects entities in the d-dimensional entity space
into the k-dimensional relation space. The lower the score,
the more similar.

The training of TransR takes into account the relative order
between valid triples and corrupted triples and measures their
discrimination through pairwise ranking loss:

LKG =
∑

(h,r,t,t′)∈Γ

− lnσ(g(h, r, t′)− g(h, r, t)) (7)

where Γ = {(h, r, t, t′) | (h, r, t) ∈ G, (h, r, t′) /∈ G} is a
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TABLE I
SUMMARY OF NOTATIONS

Symbol Definition

U Set of users (students)

C Set of courses

Y ∈ R|M |×|N | Student–course interaction matrix

G Knowledge graph

A Alignment set between courses and KG
entities

E Entity set in the knowledge graph

ŷsc Predicted interaction probability

R Relation set in the knowledge graph

(h, r, t) Knowledge graph triple

eh Embedding of head entity h

et Embedding of tail entity t

er Embedding of relation r

Wr Relation-specific projection matrix

ehr Projection of entity h in relation r space

s0c Courses previously taken by student s

ε0s Initial entity set of student s

ε0c Initial entity set of course c

εlo Entity set at layer l (o ∈ {s, c})

U l
o Triple set at layer l

elo Layer-wise embedding

eorigin
c Original entity-based embedding of course

si Unnormalized attention score

ai Normalized attention weight

W1,W2 Trainable weight matrices

b1, b2 Bias vectors

σ(·) Sigmoid activation function

ReLU(·) Rectified Linear Unit

∥ Concatenation operator

BA(·) Bias-based attention mechanism

LKG KG embedding loss

LCF Collaborative filtering loss

λ Regularization coefficient

Θ Trainable parameter set

corrupted triple constructed by randomly replacing one entity
in a valid triple; σ(·) is the sigmoid function.

2) Knowledge Graph Propagation
Based on the above circumstances, under the premise of

ensuring that it will not have an adverse impact on the
propagation of the entity sequences of students and courses
along the knowledge graph to expand their potential vector
representations, student u and course c can be defined in the
following recursive manner:

εlo = {Wrt | (h, r, t) ∈ G, h ∈ εl−1
o }, and l = 1, 2, . . . , L (8)

Here, l represents the number of times the initial entity set
is propagated. The symbol o is used to denote the placeholder
for student u or course c. The definitions of student u and
course c contained in the set of the l-th layer are as follows:

U l
o = {(Wrh, r,Wrt) | (h, r, t) ∈ G, h ∈ εl−1

o },
l = 1, 2, . . . , L (9)

The initial entity set obtained through collaborative prop-
agation spreads outward in the knowledge graph like ripples
in water, gradually expanding layer by layer from near to far.
Through the knowledge-aware deep propagation process, high-
order interaction information between students and courses
can be effectively captured at the knowledge level, thereby
enhancing the model’s ability to represent users and items with
latent vectors.

B. Knowledge-aware Attention Embedding Layer

When entities propagate through the knowledge graph,
different relationships within the formed triples exert varying
influence weights on the tail entities. For instance, although the
courses “Computer Network” and “Appreciation of Crosstalk
Art” are both taught by the same instructor and thus share
the same teacher attribute, they differ completely in the
discipline attribute. Motivated by this observation, we propose
a knowledge-aware attention embedding method that distin-
guishes the attention weights of different head entities and
relationships for tail entities during the propagation process
in the knowledge graph. This approach is similar to the
KGAT model; however, to more effectively preserve the initial
collaborative information, the aggregation strategy adopted
here first aggregates relevant tail entities according to the
attention mechanism within the ripples of the l-th layer, and
then aggregates the tail entities across layers to obtain the
representation of the current layer.

Fig. 2 illustrates the workflow of the Knowledge-aware
Attention Embedding Layer. First, the head entity embedding
and relation embedding are concatenated and fed into a neural
network to compute the attention weights of the head entity in
the relation space with respect to candidate tail entities. These
attention weights are then applied to the tail entity embeddings
through element-wise multiplication to obtain weighted tail
vectors. Finally, all weighted tail vectors are aggregated by
summation to generate the output embedding of layer elo.
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Fig. 2. Knowledge-aware Attention Embedding Network

Assume that the i-th triple in the l-th layer is (h, r, t), then
the weighted embedding representation ai of the tail entity of
this triple can be expressed as:

ai = π(eWrh
i · ri) · eWrt

i (10)

In the formula, eWrh
i is the embedding representation of the

head entity in the relationship r space, eWrt
i is the embedding

representation of the tail entity in the relationship r space.
π(eWrh

i , ri) represents the weight of the head entity on the
tail entity in the relationship r space. Different relationship
spaces correspond to different embedding representations of
the head and tail entities. The specific process is described as
follows:

Z0 = ReLU(W0(e
Wrh
i ∥ri) + b0)

π(eWrh
i , ri) = σ(W2ReLU(W1Z0 + b1) + b2) (11)

During this process, we choose ReLU [19] to serve as the
non-linear activation function, and the final activation step is
achieved by using the Sigmoid [20] function. The symbol “∥”
here represents the concatenation operation, whose function is
to sequentially concatenate the relevant elements or vectors.
Both the matrix and the vector are parameters that can be
trained and optimized. Among them, W is the weight matrix,
and b is the bias vector. The different subscripts they carry
clearly indicate the different layers to which they belong.

After the weight scores corresponding to different neighbors
are successfully obtained, the set of triples of students or
courses in the l-th layer can be represented as:

elo =

|Sl
o|∑

i=1

a
(o)
i , l = 1, 2, . . . , L (12)

Among them, the subscript and superscript o are uni-
fied placeholder identifiers for the symbols u (student) or c
(course). And |slo| represents the number of triples in the set
slo. It should be noted that, since the entities in the initial entity
set are just like the seeds in the process of knowledge-based
propagation and are very close to the original representations,
there is an extremely close correlation between the initial
entity set and the original students as well as courses. Based on
this, we define the initial representation e

(0)
o for both students

and courses. When the object is a student, it is denoted as
e
(0)
s , when the object is a course, it is denoted as e

(0)
c . The

term |ε0o| represents the size of the set of entities related to
the object.

elo =

∑
e∈ε0o

e

|ε0o|
(13)

Particularly, since course nodes usually have explicit static
semantic neighbors in the knowledge graph (such as textbooks
and subject labels), the course c has entities related to its orig-
inal representation, while the student u does not. The original
related entities are composed of the entities corresponding to
it in the set of course entities:

eorigin
c =

∑
e∈{e|(c,e)∈A}

e

|{e | (c, e) ∈ A}|
(14)

After completing the knowledge-aware attention embedding
operation, we use formulas to present the sets of knowledge-
based attention-weighted representations for students u and
courses c. The specific forms are shown as follows.

Tu = {e0u, e1u, . . . , eLu},
Tc = {eorigin

c , e0c , e
1
c , . . . , e

L
c } (15)

C. Prediction Layer

After going through the knowledge-based attention embed-
ding layer, the final representations of student s and course c
are as follows:

eu =

L∑
l=0

al e
l
s, ec =

L∑
l=0

al e
l
c (16)

where al is the attention weight of the l-th layer embedding,
which measures the importance of this layer during the aggre-
gation phase. The weights of different layers are obtained by
computing and normalizing them through the biased attention
mechanism, thereby reducing the dilution of collaborative
information caused by multi-layer propagation and improving
the accuracy of recommendation results. Among them, the
calculation formula of the Bias-based Attention mechanism
is as follows:

BA(h, r, t) = WT
1 · [W2(hr + er)⊗ tr] (17)

where WT
1 is a trainable attention parameter vector, and

W2 ∈ Rn×n is a trainable student-course interaction matrix.
hr denotes the contextual embedding of a student under
relation r, er denotes the embedding of the recommended
course set, and tr denotes the embedding of the student’s
true preferred courses. The term hr + er represents the set of
recommended courses for the student, while tr corresponds
to the courses in which the student is originally interested.
An inner product operation is then performed. Through these
parameters and operations, an attention score is obtained to
measure the deviation between the recommended courses and
the courses that the student truly prefers, thereby adjusting the
weights of embeddings across different layers.

The deviation-based attention mechanism function is nor-
malized through the softmax function, The attention weights
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are obtained through softmax normalization:

αl =
exp(BAl)∑L

l=0 exp(BAl′)
(18)

where al denotes the normalized weight of the l-th layer.
A higher score indicates a smaller deviation between the
recommended courses and the student’s true interests, meaning
that the embedding of this layer contributes more to the final
aggregation.

After obtaining the final representations of students and
courses, the probability of a student selecting a course is
predicted through an inner product:

ŷuc = eTu · ec (19)

This score reflects the similarity between the two in the latent
semantic space. A larger value indicates a higher semantic
matching degree between the student and the course, as well
as a stronger interest of the student in that course.

D. Loss Function

The loss function of the DCIKG-Rec model is composed of
two parts. The first part is the loss function of the prediction
result, and it is expressed as:

LCF =
∑
s∈U

(
∑

(s,c)∈P+

F (ysc, ŷsc)−
∑

(s,c)∈P−

F (ysc, ŷsc))

(20)
where F is the cross-entropy loss, P+ represents the set

of positive student-course pairs, while P− is the opposite.
The second part of the loss function is the pairwise ranking
loss between entities in the knowledge graph. The final loss
function is:

LDCIKG−Rec = LKG + LCF + λ ∥ θ ∥22 (21)

where θ = {E,R,Wr,Wi, bi, ∀i ∈ (0, 1, 2, a)} is the set of
model parameters. E and R are embedding tables used for all
entities and relations, and ∥ θ ∥22 is the L2-regularization term
with parameter.

V. EXPERIMENTS

To prove the effectiveness and accuracy of our proposed
DCIKG-Rec model, we conducted the following experiments.
This section will focus on the baseline methods used for com-
parison, the evaluation metrics for performance assessment,
the performance of the proposed DCIKG-Rec on real datasets,
and the analysis of important parameters in the model.

A. Datasets

The datasets used in this study are from the XuetangX [21]
MOOC platform, as detailed in Table II. We focused on the
course interaction data from June 1, 2018, to December 10,
2018.

TABLE II
MOOCCUBE DATASET DESCRIPTION

name number
users 6461

courses 329

Student Course interactions 51124

Interaction Statistics entities 40428

relations 6

KG triple 34061

B. Evaluation Metrics

To comprehensively evaluate the performance of the trained
model, the experiment considers two recommendation scenar-
ios.

Click-Through Rate (CTR) Prediction: This task esti-
mates the probability of each interaction in the test set. The
evaluation employs the AUC and F1 metrics. Specifically,
AUC measures the likelihood that a user’s preferred items
are ranked ahead of non-preferred items, thereby reflecting
performance across recommendation lists of varying lengths.
However, when the area under the ROC curve is identical,
AUC alone is insufficient to fully assess the quality of the
algorithm. Therefore, the experiment complements it with the
F1 score. The corresponding evaluation metric formulas are
as follows:

Recall =
TP

TP + FN

Precision =
TP

TP + FP
(22)

F1 = 2× Precision×Recall

Precision+Recall

Top-K Recommendation: The trained model is utilized to
select the top K items with the highest predicted probabilities
for each user in the test set. The items that a user has
actually interacted with in the test set are regarded as the
ground-truth set. The model ranks the preference probabilities
of the un-interacted items, and the top K items with the
largest probability values are selected as the candidate set to
recommend to the user. The evaluation metric Recall@K is
then employed to measure the proportion of relevant items
successfully retrieved within the top K recommendations. In
addition, we will also analyze the effect of changing the
maximum depth of the knowledge-aware propagation layer L
on the performance of DCIKG-Rec.

C. Parameter Analysis

We partitioned the dataset into training, validation, and
testing sets with a ratio of 6:2:2. In terms of optimization, the
Adam optimizer [22] was employed to optimize all models,
with the batch size fixed at 2048. For parameter initialization,
we adopted the default Xavier initializer [23]. We implemented
the proposed DCIKG-Rec model using the PyTorch framework



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 4, DECEMBER 2025 155

and applied a grid search strategy to determine the optimal hy-
perparameters. Specifically, the learning rate was tuned within
{10−3, 5×10−4, 10−4, 5×10−5}, the L2 regularization coeffi-
cient was adjusted among {10−5, 10−4, 10−3, 10−2}, and the
embedding size was searched within {8, 16, 32, 64, 128, 256}.
Since the optimal size of the triple sets for users and items
might vary, we searched for the set sizes within {4, 8, 32, 64}.
The experimental equipment configuration is shown in Ta-
ble III. Additionally, our experiments identified the optimal
configuration of the attention network: a two-layer structure
with the hidden layer dimension set equal to the embedding
size. The hyperparameters of all comparison methods were
tuned either through empirical exploration or by adopting the
optimal settings reported in the original literature.

TABLE III
EXPERIMENTAL ENVIRONMENT CONFIGURATION

Component Specification

CPU AMD Ryzen 5 4600H with Radeon Graphics
GPU NVIDIA GeForce GTX 1650
RAM 24GB DDR4
Operating System Windows 10 Professional 64-bit
Development Environment Anaconda3
Programming Language Python 3.11.4
Deep Learning Framework PyTorch 2.5.1+cu121

D. Baseline Methods

The baseline methods that we want to compare is as follows:
1) CKE [24] is a typical embedding-based model that

combines the CF module with the structural, textual, and visual
knowledge embeddings of items within a unified Bayesian
framework.

2) RippleNet [25] is a state-of-the-art propagation-based
model that employs a memory-like network and propagates
users’ latent preferences within the KG to enrich user repre-
sentations.

3) KGCN [15] is another state-of-the-art propagation-based
model that extends the non-spectral GCN method to the
knowledge graph by selectively and biasedly aggregating
neighborhood information, enabling it to learn the structural
and semantic information of the KG as well as users’ person-
alization and latent interests.

4) KGNN-LS [26] is yet another state-of-the-art propagation-
based model that converts the heterogeneous KG into a user-
specific weighted graph and computes personalized item em-
beddings in the graph neural network using label smoothing
regularization.

5) KGAT [16] is also a typical model based on propagation.
It combines the user-item graph and the knowledge graph
to enhance the integration of collaborative information and
knowledge, and uses the attention mechanism to distinguish
the importance of different neighbors of entities.

E. Experimental Results and Comparative Analysis

The specific experimental results and analysis of the com-
parison between the DCIKG-Rec model and other baseline
models on the Mooccube dataset are as follows:

1) Top-K Recommendation
The experimental results of the proposed algorithm, together

with those of the comparison algorithms, in the Top-20 and
Top-50 recommendation scenarios are presented in Table IV.
Here, R@20 and R@50 denote Recall@20 and Recall@50,
respectively.

TABLE IV
EXPERIMENTAL RESULTS OF THE TOP-20 AND TOP-50

RECOMMENDATIONS.

Models R@20 R@50

CKE 0.2282 0.3334

RippleNet 0.1867 0.2898

KGCN 0.2271 0.3034

KGCN-LS 0.2461 0.3127

KGAT *0.2336 *0.3304

DCIKG-Rec 0.2595 0.3518

According to the comparison results in Table IV, the recall
rate of DCIKG-Rec on the Mooccube dataset is superior
to that of the baseline models. In general, the Recall value
increases as the value of K grows. However, because DCIKG-
Rec effectively integrates additional auxiliary information and
more accurately captures knowledge representations as K
increases, its advantage becomes more pronounced when K
is relatively large.

2) Click-Through Rate Prediction
The AUC and F1 results on each dataset in the CTR

prediction are shown in Table V.

TABLE V
THE AUC AND F1 RESULTS ON EACH DATASET IN THE CTR

PREDICTION.

Models AUC F1

CKE 0.7543 0.7012
RippleNet 0.7934 0.7246

KGCN 0.8797 0.7640
KGCN-LS 0.8724 0.7632

KGAT *0.8846 *0.7767
DCIKG-Rec 0.8964 0.7952

In the Click-Through Rate (CTR) prediction scenario, ac-
cording to the comparison results in Table III, both the
AUC and F1 scores of DCIKG-Rec on the Mooccube dataset
are higher than those of several state-of-the-art baselines.
Compared with KGCN and KGCN-LS, this demonstrates the
necessity of encoding information on both the user side and
the item side. In comparison with KGAT, it highlights that
leveraging explicit collaborative information between users
and courses helps to improve recommendation performance.
Moreover, the knowledge graph-based methods, namely Rip-
pleNet and KGCN, outperform traditional collaborative fil-
tering approaches, which further indicates the importance of
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incorporating the knowledge graph as auxiliary information in
recommendation algorithms.

3) Effect of Depths of Layer.
Under different maximum depths of the knowledge-aware

propagation layer L, the performance of DCIKG-Rec is shown
in Figure 3.

Fig. 3. The performance of DCIKG-Rec at different maximum depths of the
knowledge-aware propagation layer L

As we can see from Figure 3, when the value of L is 3,
all the indicators of the model achieve the best performance.
One possible reason for this phenomenon is that as the
number of propagation layers increases, the model acquires
more knowledge information but is also subject to more
noise interference, especially when the data volume is large.
Maintaining a reasonable depth of the propagation layer can
maximize the utilization of knowledge information in different
scenarios.

VI. CONCLUSION

In light of the limitations of existing knowledge graph-
based recommendation methods in user-end modeling and the
utilization of interactive collaborative information, the pro-
posed DCIKG-Rec model holds significant value. By jointly
modeling both the user side and the course side, integrat-
ing collaborative information with knowledge associations,
employing a heterogeneous propagation strategy to enrich
user and course representations, and leveraging knowledge-
aware attention embedding together with biased attention
mechanisms to strengthen semantic information from entity
neighbors while mitigating the loss of collaborative infor-
mation in multi-layer propagation, the model substantially
enhances the effectiveness of course recommendations. Rig-
orous experiments on real-world datasets demonstrate that
DCIKG-Rec consistently outperforms several state-of-the-art
baselines. Looking ahead, future work will further evaluate the
feasibility of the model on additional datasets and incorporate
students’ historical learning information as auxiliary data,
thereby improving both the accuracy and interpretability of
the recommendation framework.
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