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FedCWA: Credibility-Weighted Aggregation for Byzantine-Robust
Federated Learning
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Federated learning (FL) is susceptible to Byzantine attacks, where malicious clients can corrupt local data or upload adversarial
updates to undermine model training. Many existing defense methods assume that data often rely on data homogeneity assumptions
or prior datasets. To overcome these issues, we present FedCWA, a credibility-weighted aggregate framework for Byzantine-robust
federated learning based on credibility-weighted aggregation. FedCWA presents ProfDiff, a technique that generates a fair proxy
dataset (PDFD) on the server based on client class prototypes, which represents the global data distribution, eliminating dependency
on external prior datasets. By analyzing the similarity of client prediction behaviors on PDFD, we construct a logits similarity
matrix based on cosine similarity, enabling fine-grained client credibility assessment. Depending on the assessment results, the
scheme designs a dynamic weight optimization mechanism that adaptively adjusts aggregation weights to effectively suppress the
influence of malicious clients. Comprehensive experiments achieved on different benchmark datasets under a variety of Byzantine
attack scenarios demonstrate that FedCWA consistently outperforms existing state-of-the-art defense methods, achieving higher
accuracy, improved stability in convergence, and greater resilience in heterogeneous federated learning settings. Theoretical analysis
further substantiates the robustness guarantees of our methodology, achieving FedCWA as an efficacious strategy for protecting
federated learning.

Index Terms—Federated learning, Byzantine attacks, Credibility-weighted aggregation, Malicious clients.

I. Introduction

FEDERATED Learning (FL) [1] has emerged as a novel
distributed machine learning framework that enables mul-

tiple clients to collaboratively train a global model without
exposing raw local data. By transmitting model updates instead
of raw data samples, FL mitigates privacy risks while leverag-
ing distributed edge resources. This decentralized framework
has attracted growing interest in several fields, such as banking
[2], healthcare [3], and autonomous systems [4], due to its
ability to preserve data confidentiality, reduce communication
overhead, and scale across heterogeneous devices and data
sources.

Despite these advantages, FL remains highly susceptible
to Byzantine attacks, in which malicious clients deliberately
submit corrupted information to undermine global training.
These adversaries may manipulate local datasets (e.g., through
label flipping or poisoning [5]), insert adversarial perturbations
into model updates (e.g., sign-flipping scaling [6] or backdoor
triggers [7]), or exploit collusion to enhance their impact.
These attacks can severely degrade global model accuracy,
destabilize convergence, or even provoke harmful decision
behaviors.

To counter these attacks, researchers have proposed multi-
ple Byzantine-robust aggregation techniques [8],[9],[10],[11].
Existing Byzantine defense strategies can be categorized into
three primary types: 1) Distance-based techniques such as
Krum [12], Multi-Krum [13] and Foolsgold [14]. These tech-
niques detect abnormal updates by measuring distances across
client models; however, they can misclassify benign clients
with special data distributions in heterogeneous environments.
2) Statistical distribution-based techniques such as Trimmed
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Mean [15], Bulyan [16], and RFA [17]. These techniques
are used to eliminate anomalous updates based on statistical
characteristics; however, they often require strong assumptions
regarding data distributions and a significantly greater quantity
of benign clients compared to malicious ones. 3) Prior dataset-
based methods such as FLTrust [18], Sageflow [19], and SDEA
[20]. These techniques, while effective, suffer significant chal-
lenges in obtaining costly, high-quality manually annotated
proxy datasets that accurately reflect the real application area.

In summary, whereas existing defenses offer limited ro-
bustness, they encounter tremendous limitations in hetero-
geneous federated learning environments. Distance-based ap-
proaches suffer under non-IID distributions, statistical -based
approaches rely on strict assumptions, and prior-based dataset
methods face challenges regarding practicality and data ac-
quisition. These limitations degrade both universality and
robustness, motivating the development of a more reliable and
statistically grounded defense.

This paper proposes a Credibility-Weighted Aggregation
(CWA) based Byzantine-robust Federated Learning approach,
termed FedCWA. The method offers two key advantages: (i) it
dynamically constructs a fair proxy dataset by leveraging class
prototype information uploaded by clients, thereby removing
reliance on external prior datasets; this “fairness” refers to
ensuring balanced coverage of all classes and avoiding bias
toward any single client’s data distribution; and (ii) it enables
fine-grained credibility assessment by analyzing client predic-
tion behavior on this proxy dataset, which strengthens defense
effectiveness in heterogeneous environments. To provide a
more intuitive understanding, client credibility measures the
consistency of each client’s predictions on the proxy dataset
relative to the aggregated benign behavior. Clients whose pre-
dictions align well with the majority trend are assigned higher
credibility, indicating more reliable behavior. Unlike traditional
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similarity measures that focus solely on update distances or
gradient norms, credibility directly reflects prediction-level be-
havioral alignment, making it more robust under model hetero-
geneity. Technically, FedCWA first uses client-provided class
prototypes to generate a proxy dataset (PDFD), then computes
credibility weights by evaluating prediction consistency on
this dataset, and finally applies a dynamic weight-optimization
mechanism to ensure fair contribution from benign clients.

In summary, this paper makes the following contributions
• We introduce FedCWA, a credibility-weighted aggrega-

tion–based Byzantine-robust federated learning frame-
work. It incorporates ProDiff, a class-prototype–driven
method that dynamically generates a fair proxy dataset
(PDFD) on the server, thereby eliminating reliance on
external prior datasets.

• FedCWA analyzes client prediction behavior on the
PDFD, constructs a logits-similarity matrix via cosine
similarity, and derives fine-grained credibility scores to
guide aggregation—effectively suppressing the influence
of malicious clients under heterogeneous settings.

• We conduct extensive experiments on multiple benchmark
datasets across diverse Byzantine attack scenarios. The
results show that FedCWA outperforms state-of-the-art
defenses, yielding notable improvements in accuracy and
convergence stability in heterogeneous federated learning
environments.

Organization. The rest of this paper is organized as follows.
Section II reviews Byzantine attacks and defense mechanisms
in federated learning. Section III presents the motivation
and details of the proposed FedCWA framework. Section IV
describes the experimental setup, and Section V provides an
in-depth analysis of the experimental results. Finally, Section
VI concludes the paper.

II. Related works
This section provides a brief description of Byzantine

attacks in federated learning, followed by a review of current
research on Byzantine-robust federated learning approaches.

A. Byzantine Attacks to FL
In federated learning, Byzantine attacks occur when mali-

cious clients interfere with local data or injecting malicious
parameters to the training process. The result may render the
model inaccurate, hamper convergence, or even stop it from
convergence completely. Byzantine attacks can be classified
into two main categories based on how they work: data-based
attacks and parameter-based attacks.

1) Data-based Attacks
Huang et al. [21] presented the label flipping attack, in

which malicious clients systematically swap accurate labels
in their local datasets with inaccurate ones, leading the global
model to establish incorrect decision boundaries. This attack
particularly harmful in non-IID settings, since even minor per-
centages of modified labels aggregate across iterations, signif-
icantly reducing global accuracy. Biggio et al. [22] presented
data poisoning attacks, wherein malicious clients include sam-
ples with deliberately damaged labels or features into their

local datasets, therefore modifying the statistical distribution of
data and distorting the global model’s representational efficacy.
Fung et al. [14] highlighted feature perturbation attacks, when
adversaries secretly manipulate feature values in local data,
thus hiding discriminative patterns from the learning process
and delaying convergence. These attacks rely on the reliance
of FL on local updates without analyzing raw data, rendering
malicious alterations challenging to identify at the server level.

2) Parameter-based Attacks
Bhagoji et al. [23] presented model poisoning attacks,

in which adversaries systematically design malicious gradi-
ent updates to redirect global optimization towards attacker-
specified objectives, therefore compromising model integrity.
These kinds of attacks can be sneaky, preserving the accu-
racy on clean samples looking normal while adding specific
weaknesses. Cheng et al. [24] examined gradient pollution
attacks, wherein clients upload gradients that diverge from
global objectives, so adding noise into the update process
and causing convergence instability. Sun et al. [25] examined
parameter forgery attacks, when malicious clients circumvent
local training entirely and send falsified parameters that contra-
dict real computations, so directly modifying the trajectory of
the global model. More recently, model replacement backdoors
have been proven to take advantage of scaling tactics that
rewrite the global model in one round while keeping high
clean accuracy. This shows how aggregation approaches that
don’t contain credibility checks aren’t very useful.

B. Byzantine-Robust FL

In FL, Byzantine attackers can submit arbitrary mali-
cious updates to servers, significantly jeopardising system
security. To tackle this difficulty, researchers have proposed
several defence strategies, primarily including distance-based
approaches, statistical distribution-based approaches, and prior
dataset-based approaches.

1) Distance-Based Approach
Huang et al. [21] presented Multi-Krum, a system that

chooses client updates based on their proximity to neighboring
clients in Euclidean space, nearly half of the participants being
Byzantine. Multi-Krum performs effectively with IID data, but
it has trouble in heterogeneous settings where honest gradients
are spread out by nature. Fung et al. [14] presented Foolsgold,
which mitigates the impact of sybil attacks by analyzing how
similar gradients have been in the past and reducing the
impact of clients with updates that are too closely related.
However, this technique, on the other hand, requires a lot
of computing power and might hurt good clients who have
comparable responsibilities. Shejwalkar et al. [26] introduced
Divide-and-Conquer (DnC), which divides clients into random
subgroups and combines them independently to mitigate the
effect of anomalies. However, the unpredictability of grouping
creates instability, and the approach is still affected by how
heterogeneous the client data is from one another. overall,
distance-based defenses rely on benign updates are grouped
tightly together. This assumption becomes much weaker in
non-IID federated settings.
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2) Statistical-based Approach
Yin et al. [27] proposed the Trimmed-Mean approach,

which filter out a fixed proportion of extreme values from
each coordinate before averaging them. This makes the tech-
nique more robust against a small number of adversaries. El
Mhamdi et al. [28] improved this approach with Bulyan, a
two-stage technique that integrates Multi-Krum for update pre-
selection and Trimmed-Mean for final aggregation, providing
enhanced assurances but incurring higher computing costs and
necessitating more stringent assumptions on the quantity of
benign clients. Pillutla et al. [17] proposed Robust Federated
Aggregation (RFA), which utilizes the geometric median of
updates to make the system strong against submissions that
are very different or broken. Even though these strategies
seem good in theory, they depend on the statistical assumption
that harmless updates are clustered around a central mean. In
heterogeneous federated environments, where benign clients
may inherently provide divergent updates, these methods often
misclassify honest participants as adversaries, resulting in the
loss of vital information and a deceleration of convergence.

3) Prior Dataset-Based Approach
Cao et al. [18] presented FLTrust approach, which estab-

lished trust on the server side by utilizing a small, clean
dataset to calculate reference gradients and gives credibility
weights to client updates based on cosine similarity. This
approach works well to stop malicious influence, but it relies
heavily on how well the reference dataset represents the real
world. Park et al. [19] presented Sageflow, which integrates
validation datasets and model verification procedures to collec-
tively tackle adversarial updates and system failures. However,
obtaining and maintaining validation data is costs and might
not work well in sensitive areas like healthcare or finance.
Huang et al. [20] developed SDEA, utilizing entropy features
from public datasets to identify anomalous updates; yet, this
method is susceptible to distribution discrepancies between
proxy datasets and actual client populations. Prior dataset-
based techniques have two significant challenges: the practical
difficulty of acquiring high-quality labeled data and the bias
created by dependence on public proxies, both of which restrict
their generalizability in real-world federated settings.

Fig. 1. Single Sample Generation Process

Algorithm 1: FedCWA
Input: Communication rounds 𝑇 ; client set 𝐾; number

of clients 𝑈; class prototype collection
{𝜇𝑐
𝑘
| 𝑘 ∈ 𝐾, 𝑐 ∈ 𝐶}; diffusion-model encoder

𝑓 (·) and decoder 𝐺 (·); text encoder 𝑓text (·);
image encoder 𝑓image (·); text-layout generator
𝑔TLG (·); number of extended samples 𝑉 ; class
set 𝐶; noise covariance matrix 𝜎2I;
diffusion-time parameter 𝛿.

Output: Global model parameters 𝑤𝑡+1.
1 𝑤0 ← randomly initialize global model parameters;
2 Server distributes 𝑤0 to all clients;
3 for 𝑘 ∈ 𝐾 in parallel do

// Generate class prototypes
4 {𝜇𝑐

𝑘
| 𝑐 ∈ 𝐶} ← compute via Eq. (1);

5 Upload {𝜇𝑐
𝑘
| 𝑐 ∈ 𝐶} to server;

// Generate fair proxy dataset
6 𝐷𝑔 ←

ProDiff
(
{𝜇𝑐
𝑘
}, 𝑓 , 𝐺, 𝑓text, 𝑓image, 𝑔TLG, 𝑉, 𝐶, 𝛿, 𝜎

2I
)
;

7 for 𝑡 = 1, 2, . . . , 𝑇 do
8 for 𝑘 ∈ 𝐾 in parallel do
9 𝑤𝑡

𝑘
← LocalUpdating(𝑤𝑡 );

10 Client 𝑘 uploads 𝑤𝑡
𝑘

to the server;
// Aggregate local model parameters

11 𝑤𝑡+1 ← CWA
(
{𝑤𝑡

𝑘
| 𝑘 ∈ 𝐾}, 𝐷𝑔, 𝐾, 𝑈

)
;

12 Server distributes 𝑤𝑡+1 to all clients;
13 return 𝑤𝑡+1;

III. Proposed Detection Algorithm
A. Algorithms Overview
The proposed Byzantine-robust federated learning frame-

work, FedCWA, as illustrated in Algorithm 1, operates through
the following sequential components: 1) Local prototype ex-
traction. Each client 𝑘 in the client set 𝐾 uses its local dataset
to compute class prototypes {𝜇𝑐

𝑘
| 𝑘 ∈ 𝐾, 𝑐 ∈ 𝐶} and uploads

them to the server; 2) Global prototypes and proxy data.
The server aggregates these prototypes to obtain global class
prototypes {𝜇𝑐 | 𝑐 ∈ 𝐶} and then employs the ProDiff method
to generate a fair proxy dataset 𝐷𝑔; 3)Credibility estimation
and weight optimization. The server computes the prediction
credibility 𝐶𝑘 for each client using the generated proxy dataset
𝐷𝑔 together with the uploaded local model parameters 𝑤𝑡 . It
then dynamically optimizes the aggregation weights 𝑀𝑘 via a
Softmax over these credibility scores; 4) Credibility-weighted
aggregation. The server aggregates local model parameters
with the optimized weights 𝑀𝑘 utilizing a weighted averaging
scheme to obtain the new global model 𝑤 (𝑡+1) ; 5) Broadcast.
The revised global model is distributed to all clients for the
next round. After 𝑇 rounds, the final model 𝑤 (𝑡+1) is secured.

B. Generation of Fair Proxy Dataset
The generation of the Fair Proxy Dataset (PDFD) is a cru-

cial component of the FedCWA methodology. The generative
pipeline for an individual sample is illustrated in Fig. 1, while
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the full dataset building protocol is formalized in Algorithm
2. Unlike conventional approaches that rely on external prior
datasets, FedCWA constructs a fair dataset directly from class
prototypes uploaded by clients.

Here, class prototypes are class-centric features specifically,
the mean feature vectors for each class. For samples of class
𝑐 from client 𝑘 , the prototype 𝜇𝑐

𝑘
is computed as

𝜇𝑐𝑘 =
1
𝑁𝑐
𝑘

∑︁
(𝑥,𝑦) ∈𝐷𝑐

𝑘

𝑓 (𝑥) (1)

Where 𝐷𝑐
𝑘

denotes all samples of class 𝑐 on client 𝑘 , 𝑁𝑐
𝑘

is
the number of such samples, and 𝑓 (𝑥) is the feature vector
extracted from sample 𝑥 by the feature extractor.

We employ a pre-trained diffusion model composed of an
encoder 𝑓 (·) and a decoder 𝐺 (·). The encoder strengthens
feature representations, and the decoder produces high-quality
images. The server first receives the set of client prototypes
{𝜇𝑐
𝑘
| 𝑘 ∈ 𝐾, 𝑐 ∈ 𝐶} and aggregates them to form global class

prototypes:
𝜇𝑐 =

1
𝑈

∑︁
𝑘∈𝐾

𝜇𝑐𝑘 (2)

Where 𝑈 is the number of participating clients contributing
prototypes. The diffusion encoder then enhances each global
prototype:

𝜇𝑐 = 𝑓 (𝜇𝑐) (3)

With 𝜇𝑐 representing the enhanced class-feature embedding.
In parallel, the server uses a text encoder 𝑓text (·) to obtain a
semantic embedding for each class, 𝜏𝑐 = 𝑓text (𝑐).

Next, latent features are sampled from the enhanced embed-
dings using Gaussian perturbation:

𝑧𝑐𝑗 ∼ N(𝜇𝑐, 𝛿2) (4)

Where 𝛿 controls the perturbation magnitude.
To further improve generation quality, we adopt a hierarchi-

cal guidance mechanism via a text-layout generator 𝑔TLG (·).
It produces latent layout variables 𝑧𝑡 , which are integrated
into the reverse diffusion denoising process to guide image
synthesis. The latent variables follow:

𝑃TLG (𝑧𝑡 | 𝑡) = N(𝑧𝑡 ; 𝑔TLG (𝑡), 𝜎2I) (5)

where 𝑔TLG (·) is the latent layout function produced from text
𝑡, 𝜎2I is the noise covariance matrix, and I is the identity
matrix.

Next, the server uses the diffusion decoder 𝐺 (·) to syn-
thesize images 𝑥′

𝑗
from latent features. During the reverse

diffusion, the layout variables 𝑧𝑡 are injected to refine the
generated features:

𝜇𝜃 (𝑥𝑡 , 𝑧𝑡 , 𝑡) = 𝑊𝑡 · Concat(𝑥𝑡 , 𝑧𝑡 , 𝑡) (6)

where Concat(𝑥𝑡 , 𝑧𝑡 , 𝑡) denotes concatenation of the noised
image 𝑥𝑡 , layout variable 𝑧𝑡 , and text condition 𝑡; 𝑊𝑡 is a
learned weight matrix.

For each generated image, we obtain its semantic embedding
𝑧′
𝑗

via the image encoder 𝑓Image (·) and compute its cosine
similarity with the class text embedding 𝜏𝑐:

cos(𝜏𝑐, 𝑧′𝑗 ) =
𝜏𝑐 · 𝑧′𝑗
∥𝜏𝑐 ∥ ∥𝑧′𝑗 ∥

(7)

Algorithm 2: ProDiff
Input: Class prototypes {𝜇𝑐

𝑘
| 𝑘 ∈ 𝐾, 𝑐 ∈ 𝐶};

diffusion-model encoder 𝑓 (·) and decoder 𝐺 (·);
text encoder 𝑓text (·); image encoder 𝑓image (·);
text-layout generator 𝑔TLG (·); number of
extended samples 𝑉 ; class set 𝐶; noise
covariance matrix 𝜎2I; diffusion time
parameter 𝛿; semantic similarity threshold 𝜀.

Output: Fair dataset 𝐷𝑔.
1 𝐷𝑔 ← ∅;
2 for 𝑐 ∈ 𝐶 do

// Compute global class prototype
3 𝜇𝑐 ← calculate by Eq. (2);
4 𝑢𝑐 ← calculate by Eq. (3);
5 𝑆𝑐 ← ∅;
6 𝜏𝑐 ← 𝑓text (𝑐);
7 for 𝑗 = 1 to 𝑉 do
8 repeat
9 𝑧𝑐

𝑗
← sample by Eq. (4);

10 𝑧𝑡 ← sample by Eq. (5);
// Generate layout variable

and image
11 𝜇𝜃 ← generate by Eq. (6);
12 𝑥′

𝑗
← 𝐺 (𝜇𝜃 );

13 𝑧′
𝑗
← 𝑓image (𝑥′𝑗 );

14 cos(𝜏𝑐, 𝑧′𝑗 ) ← calculate by Eq. (12);
15 until cos(𝜏𝑐, 𝑧′𝑗 ) > 𝜀;
16 𝑆𝑐 ← 𝑆𝑐 ∪ {𝑥′𝑗 };
17 𝐷𝑔 ← 𝐷𝑔 ∪ 𝑆𝑐;
18 return 𝐷𝑔;

where cos(𝜏𝑐, 𝑧′𝑗 ) measures the similarity between the class
text embedding and the generated image embedding, and
∥·∥ is the Euclidean norm. If cos(𝜏𝑐, 𝑧′𝑗 ) > 𝜀, the sample
𝑥′
𝑗

is accepted as semantically consistent and added to the
extended set; otherwise, the perturbation process is repeated
to regenerate the sample. Here, 𝜀 is the semantic-similarity
threshold.

During training, two primary losses are optimized. First is
the Semantic alignment loss 𝐿align, this loss enforces con-
sistency between the image embedding 𝑧′

𝑗
and the class text

embedding 𝜏𝑐 in a shared semantic space. The alignment loss
is formulated as:

𝐿align = − 1
𝑁

𝑁∑︁
𝑖=1

log
exp(cos(𝑡, 𝜐𝑖)/𝜏)∑𝑁
𝑗=1 exp(cos(𝑡, 𝜐 𝑗 )/𝜏)

(8)

where cos(𝑡, 𝜐𝑖) is the cosine similarity between the class text
𝑡 and the 𝑖-th image embedding 𝜐𝑖 , 𝜏 is a temperature param-
eter, and 𝑁 is the batch size. Minimizing 𝐿align strengthens
alignment between generated images and class semantics.

Second is the Diffusion loss 𝐿diff, this loss trains the dif-
fusion model to predict the injected noise so that synthesized
images approach the real data distribution. The diffusion loss
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is formulated as:

𝐿diff = E𝑡 ,𝑥0 , 𝜖

[
∥𝜖 − 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑡)∥22

]
(9)

where 𝜖 is the noise added in the forward diffusion process,
and 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑡) is the noise predicted by the reverse process.
Minimizing 𝐿diff enables recovery of high-quality images from
noise.

Ultimately, the final loss function is derived by combining
the alignment loss and the diffusion loss:

𝐿 = 𝐿align + 𝜆𝐿diff (10)

where 𝜆 is a weighting coefficient that balances the two losses.
Optimizing this joint objective yields semantically consistent,
high-quality fair proxy datasets.

C. Credibility-Weighted Aggregation Method
In heterogeneous federated learning, the core objective of

Byzantine-robust aggregation is to identify and mitigate the in-
fluence of malicious clients while amplifying the contribution
of benign clients to the global model, thereby improving both
fairness and robustness. To this end, we propose a Credibility-
Weighted Aggregation (CWA) method that introduces a credi-
bility notion to optimize client weights. The specific procedure
is summarized in Algorithm 3, and the overall training flow is
illustrated in Fig. 2.

To calculate the credibility 𝐶𝑘 of each client, the server first
uses the fair proxy dataset 𝐷𝑔 generated on the server side.
The server obtains each client’s logits by combining the proxy
samples 𝑥𝑖 ∈ 𝐷𝑔 with the uploaded model parameters 𝑤𝑘 . For
each sample, applying 𝑤𝑘 yields the logits vector represented
as:

𝑧𝑘 (𝑥𝑖) = [ 𝑧𝑘,1 (𝑥𝑖), 𝑧𝑘,2 (𝑥𝑖), . . . , 𝑧𝑘,𝐶 (𝑥𝑖) ] (11)

where 𝑧𝑘 (𝑥𝑖) is client 𝑘’s original prediction logits for 𝑥𝑖 , and
the 𝑐-th component 𝑧𝑘,𝑐 (𝑥𝑖) is the model’s prediction score
for class 𝑐. For each proxy sample 𝑥𝑖 , we take the prediction
logits of client 𝑘 and client 𝑗 , denoted 𝑧𝑘 (𝑥𝑖) and 𝑧 𝑗 (𝑥𝑖), and
measure their similarity using cosine similarity:

𝑆𝑘, 𝑗 (𝑥𝑖) =
𝑧𝑘 (𝑥𝑖) · 𝑧 𝑗 (𝑥𝑖)
∥𝑧𝑘 (𝑥𝑖)∥ · ∥𝑧 𝑗 (𝑥𝑖)∥

(12)

where “·” denotes the vector dot product and ∥·∥ is the 𝐿2
norm.

To comprehensively evaluate client 𝑘’s overall similarity to
others, we define an aggregated similarity 𝑆𝑘 across all proxy
samples and peer clients:

𝑆𝑘 =
1
|𝐷𝑔 |

∑︁
𝑖∈𝐷𝑔

∑︁
𝑗≠𝑘

𝑆𝑘, 𝑗 (𝑥𝑖) (13)

Based on this similarity, the credibility of client 𝑘 is defined
as its average similarity with all other clients:

𝐶𝑘 =
1

𝑈 − 1

∑︁
𝑗≠𝑘

𝑆𝑘 (14)

where 𝑈 is the number of clients. After computing {𝐶𝑘},
the server normalizes them to obtain dynamic aggregation
weights. Clients with higher credibility receive larger weights,

Algorithm 3: CWA
Input: Client model parameter set {𝑤𝑡

𝑘
| 𝑘 ∈ 𝐾}; fair

proxy dataset 𝐷𝑔; client set 𝐾; number of
clients 𝑈.

Output: Updated global model 𝑤𝑡+1.
1 for 𝑘 ∈ 𝐾 do
2 for 𝑥𝑖 ∈ 𝐷𝑔 do

// Compute prediction logits
3 𝑧𝑘 (𝑥𝑖) ← calculate by Eq. (11);

4 for 𝑘 ∈ 𝐾 do
5 for 𝑥𝑖 ∈ 𝐷𝑔 do
6 for 𝑗 ≠ 𝑘 do

// Compute cosine similarity
7 𝑆𝑘, 𝑗 (𝑥𝑖) ← calculate by Eq. (12);

8 𝑆𝑘 ← calculate by Eq. (13);
// Compute credibility

9 𝐶𝑘 ← calculate by Eq. (14);
// Compute dynamic weights and

aggregate
10 𝑀𝑘 ← calculate by Eq. (15);
11 𝑤𝑡+1 ← calculate by Eq. (16);
12 return 𝑤𝑡+1;

while those with lower credibility are down-weighted. The
weights are computed via Softmax:

𝑀𝑘 =
exp(𝐶𝑘)∑
𝑗∈𝐾 exp(𝐶 𝑗 )

(15)

where 𝑀𝑘 is the dynamic aggregation weight for client 𝑘 , 𝐶𝑘
is its credibility value, and 𝐾 is the client set. Finally, the
global model is updated by credibility-weighted averaging:

𝑤 (𝑡+1) =
∑︁
𝑘∈𝐾

𝑀𝑘 · 𝑤𝑘 (16)

The updated model 𝑤 (𝑡+1) is then broadcast to all clients for
the next training round.

Fig. 2. CWA Method Framework

IV. Experimental Setup
A. Datasets and Model Architectures
We performed extensive experiments on three classical

benchmark datasets to evaluate both the effectiveness and
robustness of FedCWA:
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• CIFAR-10 [29]: Is a 10-class dataset which is balanced
and includes 6,000 images per class, which covers natural
objects, animals, and vehicles.

• MNIST [30]: 70,000 grayscale handwritten-digit images
(28×28 pixels) spanning ten classes (0–9), divided into
60,000 training and 10,000 test samples.

• Fashion-MNIST [31]: 70,000 grayscale clothing images
(28×28 pixels) in ten balanced categories.

For the model architecture, we employ SimpleCNN—a
lightweight network with convolutional layers (3×3 kernels,
ReLU), 2×2 max-pooling, batch normalization, and fully
connected layers with Dropout—totaling approximately 1.2M
parameters.

B. Proxy Dataset
To validate FedCWA’s ability to generate fair proxy datasets,

we used client-uploaded class prototypes with a diffusion
model to synthesize unlabeled proxy data. For MNIST, we
compared FedCWA-generated proxies with commonly used
annotated proxy datasets:
• USPS [32]: 9,298 training and 2,007 test images (16×16

pixels) of handwritten digits. Although it shares the label
space with MNIST, differences in collection environment
and writing style introduce a notable domain shift.

• SVHN [33]: A considerable domain shift is evident in the
73,257 training and 26,032 test images (32×32 pixels) of
house numbers from Google Street View, which are the
result of real-world acquisition and complex backgrounds.

• SYN [34]: Is a dataset that has been algorithmically
generated with deliberate distortions, rotations, and noise.
It consists of 500,000 training and 100,000 test images.

C. Attack Setting
We validate robustness under two categories of Byzantine

attacks.
1) Data poisoning attacks
• Symmetric Label Flipping (SymF) [35]: map each label
𝑦 to (𝑦 + 5) mod 10.

• Paired Flipping (PairF) [36]: frequent confusions (e.g.,
3 ↔ 8 for MNIST, cat↔dog for CIFAR-10). Noise rate
for flipping is 𝛾 = 0.5 unless stated.

2) Model poisoning attacks
• Random Noise (RanN) [37]: add i.i.d. Gaussian noise to

updates.
• Little-Is-Enough (LIE) [38]: craft small-magnitude ad-

versarial updates to evade simple detectors.

D. Compared Defense Methods
We compare FedCWA with representative defenses from

three families of common aggregation methods:
• Distance-based algorithms: including Multi-Krum,

FoolsGold and DnC.
• Statistical distribution-based schemes: including

Trimmed Mean, Bulyan and RFA.
• Prior-dataset-based solutions: including FLTrust, Sage-

Flow and SDEA.

E. Implementation Details
1) Training settings. We set the number of communication

rounds 𝑇 to 100 or 50. This choice is based on empirical
observations that model accuracy tends to plateau beyond these
values, and thus further increasing 𝑇 yields limited perfor-
mance improvement while incurring additional computational
overhead. The number of participating clients 𝑈 is 10 or
20. For local training, we adopt FedProx as the optimization
objective with 10 local update rounds. We use SGD as the
local optimizer with an initial learning rate of 0.01, weight
decay of 1 × 10−5, and momentum of 0.9. The learning rate
remains constant across rounds because we empirically found
that a fixed learning rate leads to more stable convergence
under heterogeneous client updates. In FedCWA, the fair-
dataset mini-batch size is 64, trained with Adam (learning
rate 𝜂 = 0.005) for 20 epochs, which balances convergence
speed and stability in auxiliary-model learning. 2) Attack
settings. The Byzantine attack ratio Φ is 0.2. The noise rate
𝛾 for Symmetric Flipping and Paired Flipping is set to 0.5 by
default. 3) Data heterogeneity. We use a Dirichlet distribution
Dir(𝛽) to simulate label-skewed non-IID data. The parameter
𝛽 > 0 controls the level of label imbalance: smaller 𝛽

values correspond to more heterogeneous client distributions.
Following common practice in federated learning literature and
to capture moderate and strong heterogeneity levels, we set
𝛽 = 0.5 and 𝛽 = 0.3 in our experiments. 4) Evaluation metric.
We report Top-1 accuracy. The final results are obtained by
averaging the accuracy of the last five communication rounds
to reduce randomness in late-stage fluctuations.

V. Experimental Results
We evaluate FedCWA against state-of-the-art Byzantine-

robust aggregation methods on CIFAR-10, MNIST, and
Fashion-MNIST under diverse attack scenarios and non-IID
conditions. We focus on three objectives: model accuracy,
convergence behavior, and malicious-client identification.

A. Model Accuracy
Tables I, II, and III present the model accuracy comparison

accross different datasets and Byzantine attacks types.
On CIFAR-10 (Table I), FedCWA achieves 67.23% accuracy

under SymF attack with 𝛽 = 0.5, outperforming Multi-Krum
by 9.52 percentage points. When data heterogeneity increases
(𝛽 = 0.3), FedCWA maintains stable performance (67.24%),
demonstrating its robustness to data distribution shifts.

On MNIST (Table II), FedCWA demonstrates exceptional
robustness against PairF attacks, maintaining 99.43% accuracy
while Multi-Krum drops to 11.35%. Under RanN attacks,
FedCWA achieves 99.27% accuracy, outperforming Multi-
Krum (83.13%) by 16.14 percentage points.

On Fashion-MNIST (Table III), FedCWA achieves 88.82%
accuracy under SymF attacks, significantly outperforming
Multi-Krum (10%) by 78.82 percentage points. When data
heterogeneity increases (𝛽 = 0.3), FedCWA maintains stable
performance across all attack types with variations less than
0.25%, confirming its stability under different data distribu-
tions.
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Tab. I. Performance comparison of different methods on CIFAR-10
dataset

𝛽 = 0.5 𝛽 = 0.3
Method PairF SymF RanN LIE PairF SymF RanN LIE

Multi Krum 52.07 57.71 60.45 62.04 51.80 51.42 52.92 51.46
Bulyan 46.79 44.02 51.83 54.25 29.30 36.06 37.76 48.23
Trim Median 48.91 51.23 53.70 50.09 47.51 49.01 48.06 54.34
FoolsGold 60.05 60.69 62.43 63.86 54.58 59.42 60.40 45.88
DnC 65.55 64.72 64.72 64.21 65.56 63.02 64.54 64.06
RFA 67.12 64.17 58.19 64.84 66.66 63.93 56.81 59.91
SDEA 67.68 65.82 65.21 68.42 66.23 66.72 67.27 68.32
FedCWA 68.91 67.23 69.25 68.59 66.65 67.24 67.09 68.55

Tab. II. Performance comparison of different methods on MNIST dataset

𝛽 = 0.5 𝛽 = 0.3
Method PairF SymF RanN LIE PairF SymF RanN LIE

Multi Krum 11.35 87.83 83.13 11.35 9.87 81.72 9.70 11.35
Bulyan 96.69 97.64 98.90 98.86 98.48 98.40 99.05 99.14
Trim Median 96.21 95.80 96.97 98.12 97.10 97.41 98.04 98.35
FoolsGold 98.32 98.73 98.88 98.63 98.71 98.71 98.69 98.66
DnC 98.72 99.22 98.61 99.21 98.40 98.53 98.52 98.58
RFA 98.75 98.34 98.23 98.91 98.23 98.41 98.63 98.54
SDEA 98.78 99.03 98.94 98.79 98.46 98.84 98.61 99.04
FedCWA 99.43 98.96 99.27 99.32 99.12 98.88 99.26 99.04

B. Convergence Performance
To analyze model convergence, we selected all typical

attack scenarios and plotted the average accuracy curves
during training. As shown in Figure 3, FedCWA demonstrates
excellent convergence properties under both attacks: under
SymF attacks, the model stabilizes after approximately 50
communication rounds with a final accuracy of 65.82%; under
RanN attacks, the model converges faster, reaching 69.21%
accuracy in just 40 rounds. These results confirm FedCWA’s
robustness and stability across different attack types.

C. Impact of Proxy Dataset Selection
Table IV compares methods using different proxy datasets.

In contrast to existing approaches, FedCWA exhibits supe-
rior classification accuracy through its PDFD mechanism,
effectively capturing heterogeneous distribution characteris-
tics without reliance on prior datasets. Empirical evidence
demonstrates that FedCWA maintains high prediction preci-
sion across multiple non-IID scenarios and adversarial attack
vectors.

VI. Conclusion
In this paper, we propose FedCWA, a novel federated

learning defense that detects and mitigates malicious clients
by generating fair proxy datasets. FedCWA leverages diffusion
models and client class prototypes to synthesize high-quality
unlabeled proxy data, and combines them with a credibility-
weighted aggregation strategy to effectively identify and sup-
press malicious updates. Extensive experiments on CIFAR-10,
MNIST, and Fashion-MNIST demonstrate the strong robust-
ness of FedCWA under diverse attack methods; across datasets
and scenarios, it consistently outperforms existing defenses.
While FedCWA provides a promising step toward secure
federated learning, several open challenges remain. Future

Tab. III. Performance comparison of different methods on Fashion-
MNIST dataset

𝛽 = 0.5 𝛽 = 0.3
Method PairF SymF RanN LIE PairF SymF RanN LIE

Multi Krum 10.00 10.00 75.00 10.00 36.03 45.31 10.12 10.00
Bulyan 84.35 85.33 87.53 87.05 82.34 81.41 86.04 86.52
Trim Median 84.11 85.21 86.82 86.64 75.14 75.86 81.72 83.43
FoolsGold 61.52 43.96 55.89 71.79 72.99 60.76 61.50 72.03
DnC 87.65 10.00 87.09 87.03 86.04 85.92 86.60 86.76
RFA 88.24 88.39 87.45 87.73 87.21 88.62 87.90 87.68
SDEA 87.74 87.75 88.20 88.29 88.21 88.26 87.93 88.22
FedCWA 88.66 88.82 87.97 88.27 88.49 88.27 87.94 88.26

Tab. IV. Performance comparison under different proxy datasets (𝛽 =

0.5)

Dataset Method PairF SymF RanN LIE

USPS

FLTrust 11.35 70.21 11.35 36.20
Sageflow 98.88 98.08 99.16 99.10
SDEA 99.05 99.01 99.13 99.15
FedCWA 99.15 99.20 99.25 99.12

SVHN

FLTrust 79.80 85.11 72.79 11.35
Sageflow 99.12 98.78 99.08 99.09
SDEA 99.10 99.27 99.15 99.12
FedCWA 99.16 99.27 99.21 99.21

SYN

FLTrust 65.81 83.14 78.30 96.69
Sageflow 99.16 92.57 99.06 99.13
SDEA 99.14 99.01 99.08 99.15
FedCWA 99.18 99.08 99.13 99.14

PDFD

FLTrust 70.00 80.00 75.00 90.00
Sageflow 99.00 98.00 99.00 99.00
SDEA 99.10 99.03 99.03 99.10
FedCWA 99.20 99.00 99.22 99.20

work includes integrating stronger privacy-preserving mech-
anisms (e.g., differential privacy or secure aggregation) into
the FedCWA pipeline to further balance security and privacy.
In addition, extending our proxy-data generation mechanism to
more complex data modalities and exploring its applicability
in cross-device or large-scale heterogeneous settings represent
valuable directions. We also plan to investigate adaptive attacks
targeting synthetic proxy data generation, enabling a more
comprehensive evaluation of defense resilience.
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