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With the rapid development of Internet of Things (IoT) and Artificial Intelligence (AI) technologies, Vehicular Fog Computing
(VFC) has emerged as a crucial technology in Intelligent Transportation Systems (ITS). Fog computing is a distributed computing
model. VFC is a network architecture formed by applying fog computing technology to the Internet of Vehicles (IoV). In VFC,
vehicles can offload tasks to other vehicles or roadside units with more powerful resources, leveraging their idle computing power to
boost system performance. As vehicles usually run on batteries, reducing energy consumption can extend battery life, support more
computing tasks, and cut down device maintenance and replacement frequency. Therefore, how to efficiently perform task offloading
to minimize energy consumption has become a key research challenge. This paper proposes a joint task offloading scheme based
on the Hungarian algorithm and Particle Swarm Optimization (PSO) algorithm to optimize energy consumption and latency in fog
computing networks. First, the Hungarian algorithm is employed to achieve optimal matching between User Vehicles (UVs) and
Fog Vehicles (FVs), ensuring efficient task allocation. Subsequently, the PSO algorithm is utilized to optimize transmission power,
further reducing energy consumption and interference. Experimental results demonstrate that the proposed scheme significantly
reduces the system’s total energy consumption while meeting task latency constraints. Simulation results also show that the scheme
exhibits excellent performance and stability in complex network environments, providing an effective solution for task offloading in
fog computing networks.

Index Terms—Vehicular fog computing, Energy-Minimization, Task offloading, Hungarian algorithm, Particle Swarm Optimization

algorithm.

I. INTRODUCTION

ITH the advancement of autonomous driving, Intelli-
W gent Transportation Systems (ITS), and 5G/6G com-
munication technologies, vehicle-generated tasks often have
high computational density and strict latency constraints. For
instance, real-time perception and decision-making tasks in au-
tonomous driving must be completed within an extremely short
time frame. Traditional cloud computing, due to its centralized
architecture, suffers from high latency and limited bandwidth,
making it difficult to meet real-time requirements.To address
this issue, Vehicular Fog Computing (VFC) has emerged as a
solution.

VEC is a fusion of IoV and Fog Computing, leveraging
the computing and storage resources of edge nodes such as
vehicles, Road Side Units (RSUs), and base stations [1]. In
VFC, task offloading refers to transferring computation tasks
from a vehicle to other vehicles or RSUs through wireless
communication networks for processing. This compensates for
the limitations of onboard computational resources and im-
proves task execution efficiency and quality. Onboard devices
often have restricted computing, storage, and battery power,
making it hard to handle complex tasks. In contrast, remote
computational nodes generally possess stronger computing
and storage resources, enabling faster and more efficient
task processing to improve execution speed and quality. By
offloading tasks to better-resourced vehicles or RSUs, their idle
computing power is utilized, boosting system performance.

Vehicles typically rely on battery power, and complex
tasks can rapidly drain battery reserves, resulting in inter-
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ruptions to critical functionalities, such as autonomous driv-
ing. Task offloading reduces the computional and storage
burden on onboard devices, thereby lowering energy con-
sumption and extending battery life. This allows vehicles to
support computing-intensive tasks for longer without frequent
charging. By optimizing energy consumption through task
offloading, continuous operational uptime is prolonged, en-
suring service stability. Simultaneously, this approach reduces
maintenance and replacement frequency of devices, further
lowering operational costs. Additionally, with the global focus
on sustainable development, optimizing energy consumption
during task offloading improves energy efficiency. This con-
tributes to reducing carbon emissions, environmental pollution,
and negative ecological impacts, aligning with environmental
protection requirements. Therefore, reducing energy consump-
tion is critically imperative.

Numerous studies have been conducted on the energy
consumption issue in VFC. Liang et al. in [2] proposed a
two-stage hybrid heuristic energy consumption optimization
algorithm, employing the stable matching algorithm for fog ve-
hicle selection and introducing a heuristic algorithm based on
decision tree technology to minimize energy consumption and
network delay. Zhang et al. designed an optimization algorithm
based on a fair scheduling index, applying convex optimization
and heuristic algorithms to address task offloading in fog
computing networks, effectively lowering offloading energy
consumption and enhancing network efficiency, but without
prioritizing and allocating resources based on task urgency
[3]. Kim et al. used a joint optimization model based on
task popularity and convex optimization methods to tackle the
energy consumption issue of user equipment and fog servers
in fog computing networks [4]. Lin et al. employed convex
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optimization, successive convex approximation—the primal
interior-point method, and coalition game methods to resolve
energy consumption issues in NOMA-assisted multi-fog-node
VEC networks [5]. Yadav et al. proposed a new latency-
sensitive and energy-efficient task offloading scheme based
on clustering and particle swarm optimization, achieving joint
minimization of latency and energy consumption [6]. Hussain
et al. proposed a multi-objective optimization framework for
VEC: it models the delay and energy consumption of the
vehicle—fog—cloud hierarchy using probability and queuing
theory, formulates the task-offloading decision as an MINLP,
and solves it with a Modified Differential Evolution [7].
Targeting the facility-location problem in VFC, Hussain et
al. proposed a multi-objective optimization model that simul-
taneously minimizes service delay and energy consumption,
and designs a hybrid evolutionary algorithm called SONG
(blending NSGA-II with SMPSO) to provide an efficient, low-
latency, and low-energy deployment plan for VFC planning
[8]. These studies have made significant contributions to
reducing energy consumption. However, as vehicle-generated
tasks may have varying latency requirements, it is necessary to
consider these requirements and optimize them using particle
swarm optimization.

The Particle Swarm Optimization (PSO) algorithm is a
swarm intelligence-based optimization algorithm inspired by
collective biological behaviors in nature, such as bird flock
foraging and fish school swimming. It simulates the move-
ment and information-sharing of particles in multi-dimensional
space to optimize target functions and is widely used in
function optimization, neural network training, combinatorial
optimization, etc. The Hungarian algorithm is a combinatorial
optimization algorithm for solving assignment problems, pri-
marily used to find the minimum weight matching in bipartite
graphs and widely applied in task and resource allocation. The
PSO algorithm has many advantages in solving optimization
problems, such as strong global search ability, fast convergence
speed, and high adaptability. Therefore, this paper considers
using the Hungarian algorithm and the PSO algorithm to solve
the problem of reducing energy consumption.

The contributions of this study can be summarized as
follows:

o This paper proposes a stepwise collaborative optimiza-
tion framework. This framework decomposes the NP-
hard Mixed-Integer Nonlinear Programming (MINLP)
problem into UV-FV matching optimization (sub-problem
P1) and transmission power allocation (sub-problem P2),
which are then efficiently solved using the Hungarian
algorithm and the Particle Swarm Optimization algo-
rithm, respectively. By performing stepwise optimization
to reduce computational complexity, it lowers the sys-
tem’s energy consumption while ensuring task latency
constraints.

o This paper presents a normalized weighted model com-
bining channel gain and FVs’ computational capability
to define the UVs’ preference for FVs, achieving global-
optimal task-fog node matching by considering commu-
nication quality and computational power.

o Rigorous theoretical analysis and extensive simulations
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Fig. 1. The Architecture of VFC.

confirm the marked superiority of the proposed joint
framework over conventional methods. It guarantees
globally optimal resource allocation and, across diverse
task loads and network scales, consistently delivers
lower total system energy consumption and shorter task-
processing delays.
The remainder of this paper is organized as follows. Section
IT introduces the system model and formulates the energy
minimization problem. Section III presents the optimization
algorithms used in this paper. Section IV provides simulation
results and compares them with other methods. Section V
concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. Task Offloading Model

VFC is a network architecture formed by integrating fog
computing technology into the oV, aiming to provide vehicles
with low-latency, high-bandwidth, and real-time computing
services by deploying computing resources at the network
edge [9]. It meets the needs of delay-sensitive and compu-
tationally intensive applications in vehicular networks. Fig. 1
presents a VFC architecture, which consists of four layers: the
terminal layer, fog node layer, core network layer and cloud
service layer. In this architecture, user vehicles serve as the
terminal layer, while fog vehicles and road side units act as
the fog node layer. There are various communication modes
in VFC, such as Vehicle-to-Vehicle (V2V) communication and
Vehicle-to-Infrastructure (V2I) communication.
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Due to the distance between UVs and data centers, VFC
emerges as a promising task offloading paradigm that effec-
tively utilizes the idle computational resources of vehicles. Ve-
hicles equipped with dedicated short-range communication de-
vices, high-speed computers, and Long-Term Evolution (LTE)
communication equipment are referred to as Fog vehicles
(FVs) [10]. These FVs can be managed directly by RSUs and
provide task offloading services to UVs when they are idle.

In the task offloading scenario, when UVs generate com-
putational tasks, they can choose to process the tasks locally
or offload them to FVs or cloud servers via the uplink. By
leveraging Cellular Vehicle-to-Everything (CV2X) technology,
UVs and FVs can establish V2V connections when they are
in close proximity. UVs request fog computing services and
obtain available radio resources to offload tasks to FVs. Before
offloading tasks, UVs need to select FVs within their coverage
area to establish a connection. We assume that limited radio
resources, referred to as Physical Resource Blocks (PRBs), can
be shared by multiple UVs. UVs can utilize PRBs to offload
their tasks. PRBs are the smallest units of resource allocation
in the network, representing a 0.5 ms time slot and a 180 kHz
bandwidth [11].

B. Communication Model

Consider a task offloading model comprising the set K’
= {l,...,K} representing K FVs, the set N’ = {I,...,N}
representing N PRBs, and the set S’ = {I,..., S} representing
S UVs. A binary variable X* indicates whether FV k is
connected to UV s, with 1 representing a connection and 0
representing no connection. We assume that within a time slot,
each UV can only select one FV for task offloading, and each
FV can only serve one UV, meaning they are in a one-to-one
correspondence.

The various tasks offloaded by UVs may have different
Quality of Service (QoS) requirements, which depend on
factors such as latency, the size of the requested data, and
computational density. These requirements are outlined in
Table I [12]. Specifically, tasks are divided into three specific
service classes based on delay requirements [13].

Given the limited availability of PRBs, different UVs may
reuse the same PRB for transmission, potentially causing
interference. To mitigate this, each PRB is assigned to only
one UV.

The transmission rate for a UV-FV connection can be mea-
sured using the Shannon-Hartley theorem, which calculates the
achievable data rate for UV s connected to FV k [14]. The
data rate R, j is calculated as follows:

g

Gy P
Ryy = Blogy 1+ —2" ). (1)

Here, P is the transmission power of UV s on PRB n, G;‘qk
is the link gain between UV s and FV k on PRB n, o2 is the
noise power, B is the bandwidth corresponding to the PRB.
Optimizing the power allocation for UVs can enhance the
data rate. In the VFC scenario, the latency for task offloading,
which includes both communication and computation delays,
must meet the latency constraints. For simplicity, we consider

single-hop transmission for the tasks. Consequently, the com-
munication delay 759" can be expressed as:

L
Toom — )

where U, is the data size of the task sent by UV s.

From an energy-saving perspective, we account for both
the communication energy consumption from UV to FV
and the computational energy consumption at the FV. The
communication energy consumption from UV s to FV k is
calculated as follows:

com

o =TI XIPT 3)

C. Fog Computing Model

In VFC, FVs are responsible for receiving and processing
tasks sent by UVs. However, due to inherent differences
in computational capabilities, FVs may vary in processing
speed. Therefore, optimizing the joint transmission power and
computational resource allocation is essential when selecting
suitable FVs for task offloading. As mentioned earlier, we
assume that an FV can only process one task at a time. To
measure the processing speed of an FV, we can define the
computational delay as follows:

comp __ \I]s'ys
Tok = A .

Here, ~ represents the computational density of the task of-
floaded by UV s, and fj is the CPU clock speed of FV k. The
CPU clock speed is bounded, so we have fiin < fr < fmaxs
Vk e K.

When tasks are processed by FVs, we assume that the
primary energy consumption is due to the CPU, and we
ignore other types of energy consumption at the FV. The CPU
energy consumption for processing tasks offloaded by UVs is
typically proportional to the CPU clock speed of FV k [15],
and can be modeled as follows:

4)

B = XEfRYC 5)

Here, ¢ is an effective energy coefficient related to the chip
architecture. The more computational resources allocated by
the FV, the lower the computational delay, but the higher the
energy consumption. Therefore, it is meaningful to minimize
energy consumption by reasonably allocating resources based
on the communication and computation requirements of tasks.

Typically, the data size of computational results is very
small and can be neglected. Therefore, the total latency for
task offloading between UV s and FV k£ can be expressed as
follows:

total __ _com comp
Ts,k *Ts,k +Ts,k‘ : (6)

Similarly, the energy consumption for task offloading be-
tween UV s and FV k£ can be calculated as follows:

total __ gpcom comp
Es,k — sk +Es,k : (7)
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TABLE I
TASK CLASSES OF VEHICULAR APPLICATIONS
Service class Example Computing requirement | Latency requirement
Class 1 Multimedia and passenger entertainment activities High 1-1.5 s
Class 2 Image-assisted navigation, parking navigation, and optional security applications Medium 2-25s
Class 3 Autonomous driving and road safety applications Low 3s

D. Problem Formulation

The objective of this work is to minimize the energy
consumption in the VFC network by allocating appropriate
computational resources and transmission power to UVs. Effi-
cient resource allocation can also achieve lower latency while
meeting specific constraints, as outlined below:

> E

sots seS keK

st. Cl1:0< Pl'< Phax, VseS,
C2:XFe{0,1}, VseS VkeK,
C3:Y XF<1, VkeK, ®)
seS
C4: Y XF<1, Vses,
keK
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Here, C1 represents the power constraint of UVs on PRB,
where Pp.x is the maximum transmission power of UVs.
C2 ensures the binary limitation of computational resource
allocation. C3 and C4 ensure that each UV can only select
one FV for offloading, and each FV can only process one
task. C5 imposes a latency constraint on UVs, where 7,5 1S
the maximum tolerable latency of UV s.

Problem P is a MINLP problem and solving it is NP-hard
due to the presence of binary variables X*. However, we can
decompose problem P into two sub-problems, namely UV-FV
matching optimization (for computational resource allocation)
and UV transmission power allocation (for communication re-
source allocation). This decomposition allows us to solve each
sub-problem individually and simplifies the entire optimization
process.

In the first phase, computational resources are allocated by
matching UVs with suitable FVs. This matching sub-problem,
denoted as P1, can be formulated as follows:

P1: mln Z Z E;O;:P,

X8 S her &)
st. C2,03,04,C5.

Solving this sub-problem, which involves MINLP and non-
convexity, is challenging. Therefore, we employ the Hungarian
algorithm to find a satisfactory matching solution.

In the second phase, UVs need to allocate their transmission
power on PRBs to minimize energy consumption in the
network. This leads to the transmission power allocation sub-
problem, denoted as P2, which can be formulated as follows:

P2: : com
min ) N ESY
s seESkeK (10)
st. C1,C5.

In sub-problem P2, the solution involves the transmission
power allocation for all UVs. To address this problem, we
utilize the PSO algorithm, which effectively reduces energy
consumption.

Generally, problem P is a non-convex MINLP and solving
it is NP-hard. Heuristic algorithms or reinforcement learning
methods are typically used to solve such optimization prob-
lems. As mentioned earlier, problem P can be viewed as the
joint optimization of sub-problems P1 and P2.

III. ALGORITHMS

In the task offloading scenario, UVs compete for computa-
tional and communication resources through UV-FV matching
and transmission power allocation. This necessitates the opti-
mization of joint resource allocation, which involves multiple
interdependent decisions. When a UV occupies a PRB, the
UV-FV matching problem, denoted as sub-problem P1, needs
to be resolved before optimizing the UV’s transmission power.
Subsequently, we focus on optimizing the transmission power
allocation for UVs to minimize energy consumption while
maintaining task latency constraints.

A. Computational Resource Allocation

Computational resource allocation involves assigning suit-
able FVs to UVs. It is assumed that computational resources
are abundant, with the number of FVs exceeding the number
of UVs to ensure accommodation for all UVs. To ensure
fairness, each FV can only process one task during a single
allocation, and UVs’ tasks can only be offloaded to a single
FV. Consequently, sub-problem P1 naturally becomes a one-
to-one matching problem.

The averag:e link galn between UV s and FV £ is calculated
as Gyp = . It is assumed that the preference of
UV s for FV k 1s Jomtly determined by the average link gain
and the CPU clock speed of FV k. The preferences for UV s
and FV k are defined as follows:

nEN

0F = wiGL5 + wa f- (11)

Here, wy and wy are bias factors that can be freely set based on
the computational and communication requirements of tasks.
The preference distribution of UVs can be represented by the
following matrix:

o 62 ok
oy 92 ... gk

A= 2 H (12)
oL 9.2 ' G'k
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To address this matching sub-problem, we employ the
Hungarian algorithm.

The Hungarian algorithm is a classical algorithm for solving
assignment problems and performs exceptionally well in bi-
partite graph matching and minimum cost allocation problems.
The optimal assignment using the Hungarian algorithm can
meet the demands of various application scenarios, such as
time-optimality and cost-optimality [16]. For example, in a
company, there are n jobs and n employees. Each job can
be done by different employees, but each employee can only
be assigned one job, and each job can only be assigned to
one employee. The efficiency (such as time or cost) of each
employee completing each job varies. We need to find an
assignment scheme to optimize the total efficiency (such as
minimizing the total time or cost). To solve this problem, the
Hungarian algorithm requires a cost matrix. The cost matrix
C'is an n X n matrix that c;; represents the cost of assigning
task ¢ to worker j, as shown below:

€11 C12 Cin
C21  C22 Con

c=1 . ) (13)
Cnl Cn2 Cnn

The steps of the Hungarian algorithm are as follows:

Step 1: For each row in the matrix, find the smallest element
and subtract it from every element in that row.

Step 2: Similarly, for each column, find the smallest element
and subtract it from every element in that column.

Step 3: A minimum number of lines in the cost matrix are
drawn to cover all 0.

Step 4: If exactly n lines are required, an optimal assignment
has been found, and the algorithm terminates. If the number
of lines is less than n, the solution is not yet optimal; proceed
to Step 5.

Step 5: Identify the smallest element not covered by any
line. Subtract this value from all uncovered elements and add
it to all elements covered by two lines. Then, return to Step
3.

The core idea of the Hungarian algorithm is to find an
optimal assignment that minimizes the total cost based on
the cost matrix. Since the Hungarian algorithm calculates the
minimum cost for matching based on the cost matrix, we take
matrix M as the cost matrix.

M:(‘g'>, (14)
U-6' U-62 U — ok

v U—.G% U—.Gg U—.9’2c 15)
U—6 U-—6 U — gk

We find the maximum value U in matrix A. Replace each
element ) in matrix A with U — ¢, and denote the resulting
matrix as A’. The Hungarian algorithm mainly solves square
matrix problems. Since matrix A’ is an s x k matrix, we
add virtual rows to convert it into a square matrix, and set
all its values to 0. Using matrix M as the cost matrix, the

Algorithm 1 Hungarian Algorithm

Input: Matrix A
Output: Matching matrix X

1. U<+ max(A); A+ U-A
li
22 M + 00k
3: repeat
4 [OWpin < min(M,dim = 2); M < M — rowmin
5: colpin < min(M,dim =1); M + M — colpyin
6: cov < MinLineCover(M)
7 if |cov| = k then
8 break
9: end if
10: 0+ min(Muncovered)
11: M < M — 6 on uncovered rows
12: M < M + 6 on twice-covered lines

13: until convergence
14: X <« HungarianMatching(M|1 : s,:])
15: return X

minimum cost obtained corresponds to the maximum benefit
of the original matrix A. Algorithm 1 shows the pseudocode
of the Hungarian algorithm.

B. Interference Coordination

To reduce interference, we assign each PRB to only one
UV. For each PRB, we first identify all UVs occupying that
PRB. Then, for each active UV, we calculate a priority based
on channel quality and historical allocation. UVs with better
channel quality and fewer historical allocations are given
higher priority. On each PRB, the UV with the highest priority
continues to occupy the PRB, while other UVs are required
to release it. This ensures that each PRB is occupied by
only one UV at a time, thereby avoiding interference. Finally,
the historical allocation records are updated to consider the
historical usage of UVs in subsequent resource allocations.
Through this interference coordination mechanism, efficient
utilization of PRBs is ensured, and the total system energy
consumption is reduced while meeting task latency constraints.

C. Transmission Power Allocation

PSO is a swarm-based stochastic algorithm proposed orig-
inally by Kennedy and Eberhart, which exploits the concepts
of the social behavior of animals like bird flocking and fish
schooling [17].

The steps of the PSO algorithm are as follows:

Step 1: Parameter setting

Set the number of particles N, the maximum number of
iterations 7, the inertia weight w, the individual learning factor
c1, the social learning factor co, the velocity bound v,;,4., and
the position range [Zmin, Tmaz)-

Step 2: Particle Swarm Initialization

o Randomly generate the initial position z; of each particle

¢ within the solution space.

o Randomly generate the initial velocity v; of each particle

i within the range [—Vmaz; Vmaz)-
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« Evaluate the fitness of each particle based on the objective
function f(z;).

o Individual Best Initialization: p; = x;.

o Global Best Initialization Set: gbest as the position with
the optimal fitness among all p;.

Step 3: Iterative optimization process, repeat the following
steps until the termination condition is met.

o For each particle i:

1) Generate random numbers: 1,72 € [0, 1].

2) Update velocity: v;(t) = w-v;(t—1)+¢1 -1 (p; —
x;(t —1)) + co - ro - (gbest; — x;(t — 1)).

3) Limit velocity: If v; exceeds vpq., clamp it to
[*'Umaxy Umaac]-

4) Update position: x;(t) = z;(t — 1) + v;(t).

5) Boundary handling: If the position goes beyond the
solution space, adjust it using truncation, reflection,
or resetting methods.

« For each particle i, compute the fitness of the new position
i(t) as f(z;(t)).

o If the new fitness is better than the fitness of p;, then
update p;: p; = x;(1).

o Select the position with the optimal fitness from all p; as
the new gbest.

o If the maximum number of iterations 7" is reached or the
improvement of gbest is less than a threshold, stop the
iteration.

Step 4: Output the results.

In PSO, each potential solution to a given problem is
regarded as a particle with a certain velocity, flying through
the problem space like a flock of birds [18]. Each particle then
combines aspects of its own historical best position and current
position records with aspects of the records of one or more
agents in the group, along with some random perturbations, to
determine its next move in the search space. When all particles
have been moved, the next iteration begins. As a whole, the
swarm may gradually approach the optimal of the objective
function. Algorithm 2 presents the pseudocode of the PSO
algorithm.

Using the PSO algorithm to optimize power allocation
ensures that the power allocation for each UV is within the
allowed range, and the optimal solution is found through
iterations. Initially, the inverse of channel quality is calculated
and used for initial power allocation, allowing PRBs with good
channel quality to be allocated less power and more power to
be allocated in cases of poor channel quality to compensate for
the adverse channel conditions, thereby optimizing the power
allocation strategy. Then, the total energy consumption is set
as the objective function for PSO. During transmission power
allocation, PSO randomly generates new solutions for each UV
on each available PRB. Therefore, PSO generates transmission
power for each UV and minimizes energy consumption by
optimizing transmission power.

The joint Hungarian algorithm and PSO algorithm are
used to solve the energy minimization problem. Algorithm 3
presents the pseudocode for this joint algorithm.

Algorithm 2 PSO Algorithm
Input: objective f(x); swarm size N iterations 7T'; inertia
weight w; factors ci,co; velocity bound vpy.x; position
range [Iminaxmax]
Output: global best gpey and its fitness f(goest)
1: /* Initialization */
2: for:=1.. N do

3: Z; ~ U(Zmin, Tmax)

4: U ~ U(*Umaxa Umax)

5: Di < x5

6: end for

7: Goest < argmin,, f(p;)

8: /* Main loop */

9: fort=1.. 7T do

10: fori=1.. N do

11: 7"177’2"VU(0,1)

12: v; < wu; + 11 (pi — ;) + car2(Goest — i)
13: v; < clamp(v;, —Vmax, Vmax)
14: XT; < T +U;

15: x; < clamp(z;, Tmin, Tmax)
16: if f(z;) < f(p;) then

17: i < X5

18: end if

19: end for
20: Gbest € arg minpi f(pl)
21: if stopping rule satisfied then
22: break

23: end if

24: end for

25: return gpes, f(Gbest)

TABLE I
PARAMETER SETTINGS

Parameter Value
PRB bandwidth B 180 kHz
Total PRBs NV 60
Background noise o2 -80 dBm
CPU speed clock of FVs f [2.2-3.6] GHz
Computation density [50-150] cycle/bit
Data size of a task ¥ [8,16] Mb
Latency bound [1-3] s
Link gain G [0.001-0.002]
Transmission power threshold P, qq 37 dBm

IV. PERFORMANCE EVALUATION

In the transmission model, link gain is assumed to be a
random value determined by the communication environment
and remains constant during the experiment. Parameter set-
tings are shown in Table II. The deployment probabilities for
service classes 1, 2, and 3 service requirements are set to
Dscy = Pscy = Pscs = %, and latency requirements are defined
by specific service request types.

We compare the algorithm used in this paper with the
randomized algorithm, the greedy algorithm, and existing
approaches. HHECO algorithm is proposed by [2], which
first employs the Gale-Shapley stable matching algorithm and
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Algorithm 3 Joint Hungarian-PSO Algorithm for Energy
Minimization

Input: S| K
Output: Matching matrix X, Total energy consumption Eigj,
Total latency Tioal
1: for each UV s and FV £k do

2: Als, k] < 0.6 - Givﬁ + 0.4 -1}
3: U<+ max(A); A «+U-A
i
4: M +— l: A :|
O(k—s)xk
5: end for

6: Use Hungarian algorithm to find optimal matching:
row_ind, col_ind < linear_sum_assignment(cost_matrix)

7: Construct optimal matching matrix: X < zeros(S, K)

8: for all (s, k) in zip(row_ind, col_ind) do

9: X[s, k] + 1

10: end for

11: Initialize power allocation: P_init <— zeros(S - N)

12: for each UV s and FV k do

13: if X[s, k] = 1 then

14: Calculate  reciprocal of channel quality:
inverse_channel_quality
15: Allocate power: P_init[s- N : (s+1)- N| < Ppax -

inverse_channel_quality/ > (inverse_channel_quality)

16: end if

17: end for

18: Execute  PSO  optimization: = P_optimal —
pso(pso_objective, Ib, ub, args = (X, params))

19: Calculate: Fioar, Tiotal

25 q
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Fig. 2. Energy consumption comparison of algorithms with different UV
numbers when the task data size is 8 Mb.

then introduces a decision tree-guided simulated annealing
algorithm.

When the task data size is 8§ Mb, the total energy con-
sumption of the proposed algorithm remains the lowest as the
number of UVs increases from 5 to 20. As shown in Fig. 2, as
the number of UVs increases, the slope of energy consumption
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—&— Joint Hungarian-PSO Algorithm
Randomized Algorithm
ap 4 —&- Greedy Algorithm A
-&- HHECO o

Energy Consumption())
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Number of UVs

Fig. 3. Energy consumption comparison of algorithms with different UV
numbers when the task data size is 16 Mb.
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Fig. 4. Total latency comparison of algorithms with different UV numbers
when the task data size is 8 Mb.

growth for the algorithm used in this paper is more gradual,
indicating stronger robustness in large-scale task scheduling.
For example, when the number of UVs is 5, the difference
in energy consumption between the proposed algorithm and
the HHECO algorithm is 25.52%. When the task data size
increases to 16 Mb, as shown in Fig. 3, the energy consump-
tion of all algorithms rises, but the advantage of the proposed
algorithm becomes more pronounced. In the scenario with 20
UVs, its energy consumption is approximately 9.36 J lower
than that of the HHECO algorithm, demonstrating its superior
ability to handle computation-intensive tasks. According to
Fig. 4, the total task latency of the proposed algorithm is the
lowest across all tested scenarios. Especially when N > 10,
its capability to meet strict latency constraints significantly
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Fig. 5. Total latency comparison of algorithms with different UV numbers
when the task data size is 16 Mb.

outperforms that of the comparative algorithms. As shown
in Fig. 5, for large tasks, the latency of the random and
greedy algorithms deteriorates sharply and may even exceed
the maximum tolerable latency. In contrast, the latency curve
of the proposed algorithm remains within a controllable range,
proving its practicality in handling large tasks.

A comprehensive analysis of Fig. 2 and 3 or Fig. 4 and 5
reveals that the proposed algorithm simultaneously minimizes
both energy consumption and time delay, thereby overcoming
the traditional optimization dilemma of trading energy for
delay or vice versa. This demonstrates the effectiveness of the
stepwise optimization framework, which first matches UVs
and FVs using the Hungarian algorithm and then regulates
transmission power through the PSO algorithm.

V. CONCLUSION

This paper proposes an optimized method based on the
Hungarian algorithm and PSO algorithm for task offloading in
VEC to minimize energy consumption. VFC, as a distributed
computing architecture, effectively alleviates the problem of
insufficient computing power in vehicle terminals. However,
the efficiency of task offloading and resource optimization
are still of great importance. This paper first employs the
Hungarian algorithm to solve the optimal allocation problem
between tasks and fog nodes, ensuring the global optimality
of task allocation. Then, it employs the PSO algorithm to
optimize transmission power and minimize energy consump-
tion. Experimental results indicate that the joint algorithm can
ensure the optimality of task allocation while significantly
improving the system’s real-time performance and resource
utilization. Future research will further extend this method
to more complex network environments and explore dynamic
scenario-based task offloading optimization strategies.
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