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Federated learning (FL), as a distributed machine learning paradigm, is particularly suitable for Internet of Things (IoT) scenarios
where numerous edge devices collaboratively train a global model without sharing raw data, thereby reducing the risk of privacy
leakage. However, IoT environments are typically characterized by device heterogeneity, unstable network connections, and limited
computational and communication resources. These factors pose significant challenges to both training efficiency and privacy
protection. For instance, resource-constrained IoT devices may slow down overall training progress, leading to inefficient resource
utilization. Moreover, the gradient information uploaded by IoT devices can still be exploited by malicious attackers, resulting
in potential privacy breaches. To address these issues, this thesis proposes a secure asynchronous federated learning algorithm
tailored for IoT device-heterogeneous environments. The algorithm leverages model pruning to allocate sub-models with varying
complexities according to the computational and communication capabilities of IoT clients, thereby improving resource utilization
and accelerating training on low-end devices. Furthermore, it incorporates a staleness-aware asynchronous aggregation mechanism,
dynamically adjusting aggregation weights to mitigate the negative effects of stale updates from delayed devices on the global model.
To further enhance privacy protection, a differential privacy mechanism is integrated into the local training process by injecting
carefully calibrated noise into gradient information, effectively preventing sensitive data leakage. Experimental results demonstrate
that the proposed algorithm achieves superior comprehensive performance in model accuracy, convergence speed, and privacy
protection strength, outperforming baseline asynchronous federated learning algorithms in device-heterogeneous environments.

Index Terms—Asynchronous federated learning, Internet of Things, Differential privacy, Device heterogeneity, Privacy security.

I. INTRODUCTION

N recent years, machine learning has become a key

enabling technology across various domains due to its
strong capabilities in data analysis and prediction. It plays
a critical role in practical applications such as intelligent
transportation, medical diagnostics, and the industrial Inter-
net of Things (IIoT), and is evolving into a comprehensive
discipline capable of addressing a wide range of complex
problems. In IoT ecosystems, vast numbers of heterogeneous
edge devices continuously generate massive volumes of data,
creating opportunities for intelligent data-driven services such
as smart manufacturing, autonomous driving, and predictive
maintenance. This development provides efficient solutions to
real-world demands [1]. As foundational infrastructures such
as big data, cloud computing, and edge computing continue
to mature, the barriers to model training and deployment
have been significantly reduced, enhancing both the feasibility
and efficiency of machine learning applications. However,
despite this promising outlook, several challenges hinder the
broader adoption of machine learning in IoT environments. In
particular, data sharing remains a sensitive issue across many
industries, and disparities in computational and communica-
tion resources across loT devices further complicate large-
scale collaborative deployment [2]. Two prominent challenges
in this context are ensuring data privacy and accommodating
the heterogeneity of IoT device capabilities.

Federated Learning (FL), introduced by Google in 2016 [3],
is a distributed learning paradigm that allows IoT clients to
collaboratively train a global model by uploading only local
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model updates, without exchanging raw data. This approach
is particularly attractive in IoT and edge computing scenarios
as it enhances communication efficiency and mitigates pri-
vacy risks. Nevertheless, conventional synchronous aggrega-
tion strategies face notable limitations in heterogeneous IoT
settings, such as training delays caused by straggler devices,
inefficient model updates, and unnecessary resource consump-
tion [4]. To overcome these limitations, Asynchronous Feder-
ated Learning (AFL) has emerged as a promising alternative.
In AFL, the server aggregates local updates immediately upon
receipt, without waiting for all IoT devices to finish training.
This greatly improves training efficiency and flexibility, espe-
cially in environments characterized by device heterogeneity
and unstable communication links.

In the domain of data privacy, the growing value of data
has heightened public concern over the risks of privacy leakage
during data sharing processes. Newly enacted regulations, such
as the General Data Protection Regulation (GDPR) in the
European Union, have established stricter standards for data
collection and usage, thereby increasing the difficulty of data
acquisition [5]. Similarly, China officially implemented the
Personal Information Protection Law on November 1, 2021,
which further restricts the arbitrary collection and usage of
personal data in commercial and academic contexts. Moreover,
due to competitive concerns and privacy risks, organizations
across industries are generally reluctant to share local [oT data.
This cautious attitude is driven by multiple factors. In sensitive
fields such as healthcare, finance, and IIoT, strict compli-
ance requirements—exemplified by privacy regulations like
GDPR—impose high barriers for data utilization. Enterprises
are also concerned that disclosing core IoT data may under-
mine their competitive edge, which has led to the widespread
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emergence of so-called “data silos.” This phenomenon signif-
icantly impedes cross-institutional collaboration, as integrat-
ing data from multiple sources is not only costly but also
operationally complex. Traditional machine learning, which
relies on centralized data storage and processing, becomes
increasingly incompatible with current demands for stringent
privacy protection. In contrast, federated learning, which stores
data locally on IoT devices and only transmits model updates
to a central server, offers significant advantages in privacy-
sensitive [oT scenarios. This decentralized nature enables FL
to meet privacy requirements at a relatively low cost.

Device heterogeneity poses another fundamental challenge.
With the rapid deployment of 5G networks and continuous
advancements in IoT hardware, the number and diversity of
edge devices have grown substantially. This has resulted in
significant disparities in computational and communication ca-
pacities among IoT devices. For instance, there is often a large
performance gap between high-end edge servers and resource-
constrained sensors or embedded devices. Even among similar
types of devices, communication delays and bandwidth avail-
ability can vary considerably due to differences in network
conditions or geographic locations. In conventional FL frame-
works, the server typically waits for all clients to complete
local training before aggregating their updates. Slower IoT
devices thus become bottlenecks, severely reducing training
efficiency and overall resource utilization. Furthermore, some
devices may fail to complete training or uploading due to
intermittent connectivity or power limitations. The non-IID
nature of local IoT data distributions across clients also adds
to the training complexity, potentially introducing model bias
and degrading both accuracy and generalization performance.

While asynchronous federated learning (AFL) shows sig-
nificant promise in improving training efficiency and adapting
to heterogeneous IoT environments, it introduces new secu-
rity vulnerabilities. Specifically, gradient updates uploaded by
clients may inadvertently leak information about their local
IoT data. Malicious participants can potentially infer sensitive
information about other clients by analyzing these updates.
Recent advances in attack techniques—including membership
inference, attribute inference, model inversion, and gradient
leakage attacks—have posed serious threats to the privacy
guarantees of FL systems [6]. Additionally, poisoning and
backdoor attacks present further risks to the integrity of
the global model. Current defense mechanisms against these
privacy and security threats are often computationally inten-
sive and thus difficult to implement effectively on resource-
constrained and latency-sensitive IoT devices [7].

This work focuses on addressing the dual challenges of
device heterogeneity and data privacy in IoT-based federated
learning environments. We propose a novel heterogeneous
federated learning algorithm that integrates dynamic model
pruning, a time-aware asynchronous aggregation mechanism,
and localized differential privacy protection, specifically de-
signed to meet the constraints and requirements of IoT devices.
The main contributions of this work are as follows:

1) Resource-Aware Model Pruning for Heterogeneous

Devices: To address device heterogeneity in federated
learning, we propose a dynamic model pruning method

that adapts the global model to the computation and
communication capabilities of each client. Specifically,
sub-models are generated by adjusting the depth (i.e.,
number of hidden layers) according to individual re-
source constraints, enabling efficient and fair local train-
ing across diverse devices.

2) Time-Aware Asynchronous Aggregation with Gradi-
ent Alignment: To mitigate the negative impact of stale
updates in asynchronous federated learning, we design
a two-fold aggregation strategy. First, we introduce
a gradient-alignment mechanism to ensure consistency
among updates from heterogeneous sub-models. Second,
we apply a time-decay weighting scheme to dynami-
cally reduce the influence of delayed gradients, thereby
improving the robustness and convergence rate of the
global model.

3) Localized Differential Privacy via Gaussian Pertur-
bation: We enhance privacy protection during model up-
date transmission by injecting calibrated Gaussian noise
into local gradients. This localized privacy-preserving
mechanism ensures differential privacy without signif-
icantly compromising model utility. The privacy mod-
ule is seamlessly integrated into our federated learning
framework.

4) Unified Framework and Comprehensive Evalua-
tion: We integrate the above modules into a unified
asynchronous federated learning framework tailored to
heterogeneous environments. Extensive experiments on
benchmark datasets demonstrate the effectiveness of
our approach in terms of model accuracy, convergence
speed, and privacy protection under various levels of
heterogeneity and noise.

Based on these challenges, this work proposes an asyn-
chronous and privacy-preserving federated learning frame-
work, PrivaAsyncFed, which will be detailed in the following
sections. The rest of this paper is organized as follows.
Section II introduces the preliminaries and problem definition.
Section III explicates the SwapFed framework. Section IV
presents experiment results. Section V reviews the related
work. Section VI concludes the paper and outlines potential
directions for future research.

II. PRELIMINARIES AND PROBLEM DEFINITION

In this section, we present the foundational challenges and
corresponding techniques in asynchronous federated learning
under heterogeneous conditions, focusing on device hetero-
geneity, model pruning, and privacy preservation.

A. Federated Learning

Federated Learning (FL) is a decentralized machine learning
paradigm where training is performed locally on distributed
devices, and only model updates are shared with a central
server. Unlike conventional distributed learning, FL. empha-
sizes data privacy, as raw data never leaves the local devices.
FL is particularly suitable for privacy-sensitive scenarios and
heterogeneous edge environments.
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1) Synchronous Federated Learning

Synchronous Federated Learning (SyncFL) follows a round-
based protocol where the central server coordinates global
model updates after receiving training results from all par-
ticipating clients. The process consists of the following steps:

« Initialization: The server initializes the global model W,
and distributes it to K selected clients, along with training
configurations such as learning rate, batch size, and local
epochs.

o Local Training: Each client k& € {1,..., K} trains the
received model W on its local dataset and obtains an
updated model W.

o Model Aggregation: The server waits for all clients
to upload their local models, and performs weighted
aggregation based on the number of local samples ny:

K
WE =Y T (M
=1

K
where n =) ;" | ng.

SyncFL provides stable convergence, especially under IID
data distributions. However, it suffers from the “straggler prob-
lem”: slow clients delay the entire training process, leading to
idle resource consumption and low efficiency. This limitation
becomes critical in heterogeneous environments where client
capabilities vary significantly.

2) Asynchronous Federated Learning

Asynchronous Federated Learning (AsyncFL) eliminates
the synchronization barrier by allowing clients to train and
upload models independently. The server immediately updates
the global model upon receiving any client update, without
waiting for others. The training process is as follows:

« Initialization: Similar to SyncFL, the server initializes
and broadcasts the global model W to all clients.

e Local Training and Update: Clients perform local
training independently and asynchronously upload their
updated models. The uploaded model from client k& at
time step ¢ + k — 1 is denoted as W} "1,

o Model Aggregation: The server performs pairwise ag-
gregation using the latest global model and the received
local update:

1 - -
Wet =5 (W=t + Wit )

AsyncFL enables more frequent global model updates,
making the training process significantly faster and more
adaptive. Since fast clients are no longer blocked by slow
ones, system efficiency is improved and computing resources
are better utilized. This property is particularly beneficial in
heterogeneous systems.

Compared to SyncFL, AsyncFL exhibits faster convergence
due to its high update frequency. After each local training
round, a client can immediately contribute to the global
model, allowing the system to quickly adapt to new data.
This immediacy also enhances performance in non-IID and
resource-diverse environments.

B. Differential Privacy

Differential Privacy (DP) is a rigorous mathematical frame-
work for data privacy that ensures the inclusion or exclusion of
any single individual’s data has a minimal impact on the output
of a computation. Originally introduced by Dwork et al. [8],
DP provides formal guarantees against inference attacks from
adversaries observing the output.

1) Formal Definitions

The following definitions provide the theoretical foundation
for designing our asynchronous and privacy-preserving algo-
rithm.

Definition 2.1 (e-Differential Privacy [9]): A randomized
algorithm A : D — R satisfies e-differential privacy if for any
two adjacent datasets D and D’, and for all subsets S C R,
the following holds:

Pr[A(D) € 8] < e Pr[A(D') € S] 3)

While e-DP offers strong privacy guarantees, it can
be overly strict in practical applications involving high-
dimensional data or complex models. To address this, a relaxed
variant is used:

Definition 2.2 ((e,d)-Differential Privacy [10]): A ran-
domized algorithm A satisfies (¢, d)-differential privacy if for
any adjacent datasets D and D’ and any subset S C R,

Pr[A(D) € S] < ¢ Pr[A(D') € S + 6 4)

Here, e controls the privacy budget: lower € implies stronger
privacy but reduced utility. § represents the probability of
privacy failure. When 6 = 0, (¢, d)-DP reduces to pure e-DP.

2) Global Sensitivity and Noise Mechanisms

Definition 2.3 (Global Sensitivity): For a function f : D —
R, its Lo-sensitivity is defined as:

Af = max |f(D) = f(D')]l2 5)

where D and D’ differ in at most one record. Sensitivity
quantifies the maximum change in function output due to a
single data point and directly determines the magnitude of
noise required.

Two common mechanisms to achieve differential privacy
are the Laplace and Gaussian mechanisms:

a) Laplace Mechanism.: Given function f, the Laplace

mechanism adds noise drawn from a Laplace distribution:

A
AD) = 1(0) +1ap (L) ©
The Laplace distribution is defined by:
_ 1 ]
Lap(e | ) = g exp ( A) @

It is commonly used to satisfy pure e-DP and is simple to
implement.
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b) Gaussian Mechanism.: To achieve (e,d)-DP, the
Gaussian mechanism adds noise drawn from a Gaussian
distribution:

A(D) = [(D) + N (0,0?) ®)
The standard deviation o must satisfy:

s AL \/21611(1.25/6) ©)

Compared to Laplace, Gaussian noise enables a better trade-
off between privacy and utility, especially in high-dimensional
or iterative learning scenarios.

3) Deployment Architectures

DP can be implemented via two architectural paradigms:
centralized and local differential privacy.

a) Centralized Differential Privacy (CDP).: In CDP,
users transmit raw data or model parameters to a trusted
central server, which performs DP noise addition. This central-
ized mechanism simplifies noise calibration and can provide
stronger utility guarantees. However, it assumes full trust
in the server—if compromised, user data privacy is at risk.
Additionally, CDP can impose significant computational and
communication overhead on the server.

b) Local Differential Privacy (LDP).: In contrast, LDP
does not rely on a trusted aggregator. Each user perturbs their
own data or model updates locally before transmission:

Local Update = f(D},) + Noise

LDP offers stronger protection against server-side adversaries
and is well-suited for edge devices with privacy concerns.
However, as each client independently adds noise, the aggre-
gated model may suffer from reduced accuracy.

C. Resource-Aware Model Pruning for Device Heterogene-
ity

In traditional federated learning, all participating clients typ-
ically use a uniform global model. However, this assumption
overlooks the substantial variations in computational and com-
munication capacities across devices in real-world settings.
Enforcing a shared full-size model can lead to several chal-
lenges: faster clients may dominate the aggregation process in
asynchronous federated learning, resulting in underutilization
of slower clients’ data; meanwhile, resource-constrained de-
vices may fail to complete training tasks, potentially forcing
the server to lower the global model complexity, thereby
limiting performance.

To address these issues, we adopt a resource-aware model
pruning strategy inspired by HeteroFL [11] and structured
pruning techniques [12]. The server maintains a complete
global model and dynamically generates sub-models of dif-
ferent sizes by reducing the number of channels in hidden
layers based on each client’s capability. For example, consider
a convolutional layer with weight tensor W € R% **s_ Given
a scaling factor r € (0,1], a client with pruning level p uses
a sub-model parameter set Wlp C Wg, where dg = r”_ld_q
and kP = rP~1'k,. The parameter count becomes |W/| =
r2(P=1)| W/, representing a pruning ratio R = r2(P~1,

During aggregation, a layer-wise fusion scheme is applied.
Parameters shared across all models are aggregated over all
clients, while parameters specific to higher-complexity mod-
els are averaged only among clients capable of supporting
them. Let the number of clients at each pruning level be
{mq1,ma,...,m,}. The aggregated global model W is con-
structed as follows:

m

o1
WP = — Z; w?r, (shared)
=
1 &
AWF = =N (WF\W/*Y), fork=p—1,...,1
Nng “
=1
p—1
We = WU U AWF,
k=1

This hierarchical aggregation strategy enhances the model’s
adaptability to heterogeneous environments while maintaining
global convergence. By tailoring model complexity to local
device constraints, it significantly improves resource efficiency
and enables broader participation across devices.

D. Problem Definition

In asynchronous federated learning (AFL), clients perform
local training independently and send their updates to the
server without waiting for others. This decoupling between
clients’ training and server aggregation introduces a critical
challenge: model staleness.

Let W/, denote the global model at training round ¢. A
client k£ receives the global model at iteration 7 and trains
locally to produce an updated model Wj, which is then sent
back to the server at round ¢ for aggregation. The staleness of
the local model is defined as the difference s = ¢ — 7, which
measures how outdated the local model is compared to the
current global state.

A larger staleness s implies that the local model was
trained on an older version of the global model, potentially
resulting in a conflicting update direction. This outdated update
may degrade the global model’s convergence or even cause
divergence in training. Therefore, a key problem in AFL is
how to adjust the aggregation of client models based on their
staleness.

Problem Statement: Given a set of local models {W}}
submitted at time ¢, each associated with a staleness value
s, = t—Ty, the goal is to design a staleness-aware aggregation
mechanism that dynamically adjusts the aggregation weight of
each model to minimize the adverse effects of stale updates
on global model convergence and performance.

This paper addresses this challenge by introducing a
staleness-controlled aggregation function, in which the aggre-
gation weight is inversely related to the degree of staleness,
and is adaptively scaled to balance stability and learning
efficiency.

III. PRIVAASYNCFED: A SECURE ASYNCHRONOUS
FEDERATED LEARNING ALGORITHM

In this section, we explicate the proposed solution Pri-
vaAsyncFed designed for device-heterogeneous environments.



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 31

It addresses the issue of stale model updates caused by
slow clients through staleness-aware weighted aggregation.
Additionally, it enhances model efficiency and privacy via
structured model pruning and local differential privacy.

A. Model Pruning for Device Heterogeneity

In asynchronous federated learning under device-
heterogeneous settings, the server maintains a full global
model W, while the size of the local model trained on
each client is constrained by its computational capabilities.
To adapt the model complexity to diverse client resources,
we adopt a structured model pruning strategy based on a
predefined channel scaling table, allowing hidden layers to be
pruned accordingly.

The hidden layers of the global model W consist of
several convolutional layers. We perform structured pruning
by reducing the number of input and output channels in each
layer. Formally, the weight tensor of a convolutional layer is
denoted as Wy € R *ka  where dy and kg, represent the
number of input and output channels, respectively. Given a
channel scaling table S = {1,0.75,0.5,0.25} and a pruning
level p € {1,2, 3,4}, we define the pruned number of channels
for each hidden layer as:

dg = [S[p] - dg], kg =SIp] - kq) (10)
where |-| denotes the floor operation to ensure integer
channel counts. The total number of parameters in the pruned

model is reduced to:

(WPl = S[p)* - [Wel (11)

Clients either report their hardware capabilities during ini-
tialization or the server estimates their training speed from
initial tasks. The pruning level p is determined based on
clients’ measured computation time or declared hardware
specifications. Based on this information, the server assigns an
appropriate pruning level p to each client. When dispatching
training tasks, the server generates a customized sub-model by
applying the pruning ratio corresponding to level p. We define
the pruning operation as:

Wy, = pruning(Weg, S[p])

This mechanism ensures that each client trains a sub-model
that matches its available resources, improving the overall
efficiency and scalability of the system.

This figure 1 illustrates the core framework of Pri-
vaAsyncFed. At the top, the global model generates locally
adapted models of varying sizes (Client 1-3) through structured
pruning. Clients train their personalized models on local
datasets and return updates to the server, which aggregates
them asynchronously based on timestamps (Clock 1-3). Ar-
rows depict the bidirectional flow of model distribution and
aggregation.

Global model

Distribute local models
of different sizes

Aggregate models based
on different timestamps

Client 2

\ Client 1

Fig. 1: Overview of the PrivaAsyncFed framework showing
the relationship between the global model, pruned sub-models,
and heterogeneous clients.

Local training

B. Asynchronous Aggregation for Heterogeneous Models

In heterogeneous model settings, clients may train sub-
models whose dimensions do not match the global model due
to their limited computational capabilities. Specifically, slower
devices are often assigned sub-models with reduced hidden
layers, resulting in fewer parameters. Consequently, some
parameters in the global model are missing in the client model,
leading to dimensional inconsistency during aggregation.

To address this issue, we propose a selective aggregation
strategy that aggregates only the shared parameters between
the global and client models. Let W/, denote the global model
at round ¢, and W,ﬁ denote the client k’s local model. Let P be
the set of parameters shared between W, and W}. For each
parameter p € P, its values in the global and local models
are denoted as WG and Wk , respectively. To balance the
contribution of both models, we introduce a local aggregation
weight «, and update the global parameter as:

t+1
WGJ) =(1

a)Wg, +aWy (12)

This formulation reflects the relative importance of the
global and local models in the update process. A larger «
increases the influence of the local model in the aggregation.

For parameters ¢ ¢ P—i.e., those absent in the client
model—the global model retains their current values without
modification:

t+1 __
Wea',

=W, (13)
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Client 1
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Client 2
(Medium Compute)

Client 3
{Low Compute)

Model
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| Distribute Pruned Model 1 |
Jistribute Fruned Model 1 o
| Distribute Pruned Model 2

Center Server ‘ | Clock

| Distribute Pruned Model 3

Local Training
Lo renne

! Local Training

| Local Training
| Local Training |
e
| Model Upload }
. Upload Model 1 + Timestamp |

| Upload Model 2 + Timestamp |

| Upload Model 3 + Timestamp |

:Server ggreg "

| Read Timestamp

| Aggregate Models
| (Async by Timestamp)

Client 3 | Clock |
(Low Compute)

Client 2
(Medium Compute)

Client 1

‘ Center Server ‘ S L e

Fig. 2: Temporal diagram illustrating the asynchronous update
process with staleness-aware weighting in PrivaAsyncFed.

Combining both cases, the update rule for the global model
becomes:

T _ {(1 — )W, +aW},, ifpeP
pag g

14
W rggp Y

This strategy enables effective integration of heterogeneous
models while preserving the unique parameters of the global
model.

Furthermore, in our asynchronous setting, the server updates
the global model immediately upon receiving an update from
any client, without waiting for all clients. After aggregation,
a new training task is dispatched to the responding client.

To mitigate the negative impact of stale updates, we intro-
duce a staleness-aware weighting mechanism. When a client
receives the global model, it also receives a timestamp 7
indicating the current global round. Upon returning the local
update, the client also sends back 7. The staleness is computed
as t — 7, where t is the current server round. The local
aggregation weight « is then computed as:

a=p-St—1) (15)

where S(t—7) is a staleness decay function satisfying S(0) =
1 and decreasing with increasing staleness.
We define S(t — 7) as:

1, t—7<b

Sanlt —7) = { (16)

1 .
m s otherwise

Here, b is a threshold beyond which the staleness starts
penalizing the aggregation weight, and a controls the decay
rate. When staleness is small (t — 7 < b), local updates are
deemed fresh and merged with constant importance 8 € (0, 1).
As staleness grows beyond b, the contribution of outdated
models decays progressively, thereby reducing their adverse
impact on the global model.

Figure 2 depicts the temporal workflow of PrivaAsyncFed’s
asynchronous aggregation process. The central server dis-
tributes pruned local models to three clients with varying
computational capabilities. After local training, clients upload
their updated models along with timestamps 75 at different
speeds. Upon receiving an update from client £, the server first
computes the staleness as t — 7, where ¢ represents the current
global round. The aggregation weight a, = - Sgu(t — %)
is then calculated according to the staleness decay function
defined in Equation (16). As demonstrated in the figure, high-
compute clients (e.g., Client 1) complete training faster, result-
ing in minimal staleness (¢t — 7 ~ 0) and maximal contribution
to the global update (v, = 3). In contrast, low-compute clients
(e.g., Client 3) produce updates with significant staleness,
whose influence is progressively reduced through the decay
function S, (). This staleness-aware mechanism effectively
balances model freshness and training efficiency in heteroge-
neous environments.

C. Client-Side Differential Privacy Protection

To address privacy concerns in federated learning, especially
under the local differential privacy assumption where the
server is considered untrusted, we adopt a local implementa-
tion of the differential privacy (DP) mechanism. The following
outlines the DP procedure executed by each client.

Assume the global model received from the server is W,
the client’s local dataset is D, the learning rate is u, and the
gradient clipping threshold is C. The loss function is denoted
as L(D,W¢). The differentially private training process on
the client includes the following steps:

a) Step 1: Compute and Clip Per-Example Gradients.:
The client computes the per-sample gradient g; for each D; €
D, and applies L2 clipping as:

a7

L 9i
gi = [g:ll2

max(1, T)
b) Step 2: Average the Gradients.: The average gradient
over the dataset is calculated as:
|D| |D]

1 1
g=7=> g=-—> VL(D;,Wg)
D1 2~ ] &

c) Step 3: Apply Gradient Descent.: The client performs
local model update:

(18)

Wi =Wg — ug (19)

d) Step 4: Add Noise for Privacy.: To ensure differential
privacy, noise is added to the model parameters:

W, = Wy, + noise(Af /e) (20)

Here, noise(A f/€) denotes a noise function dependent on the
sensitivity Af and the privacy budget e.

e) Gradient Clipping Justification.: Gradient clipping
ensures the L2 norm of each g; does not exceed C, which
is critical for bounding the noise scale. Without clipping,
gradients may be unbounded, resulting in excessive noise that
harms model convergence. Clipping not only helps meet DP
guarantees but also improves training stability.
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Algorithm 1 Secure Asynchronous Federated Learning under
Device Heterogeneity (PrivaAsyncFed)

Require: Total global rounds 7', number of clients K, local
epochs H, local dataset Dy, learning rate pu, clipping
bound C, privacy budget ¢, decay coefficient 3, pruning
ratio schedule S[]

Ensure: Final global model wl, T T
Server Initialization: Fig. 3: IID Data Partitioning for MNIST (left) and CIFAR-10
1: Initialize global model wY (right)
2: Broadcast initial model and assign ID to each client & €
{1,...,K}
3: Assign client-specific pruning ratio S[k] to client k D', respectively. Then:
Server Execution (for each round ¢t =1 to 7): Af = mas [Wi=Will2 = max 1(g—9")l2 = prmax lg—g'll2
4: Wait to receive update (A, 7x) from any client k 21
5. Compute aggregation weight: ay, = 3 - S[t — 7] Given that only one sample differs between D and D’, the
6: Model Aggregation: difference in gradients simplifies to:
7: for each parameter group p in wg do , 1 ,
8 wg, — (1—ap) -wg; +ay - (w,tc)_pl + Ay) lg—d'l2= ﬁ”gk = Gill2 (22)
9: end for

Using the L2 norm bound from clipping:
lgrllz + llgrll2 _ 2C

10: Model Pruning:
11: wf, + prune(wf;, S[k]) {Prune based on client ’s ratio}

lg—d'll2 < < (23)
o I
12: Send (wg;, ) to client k Thus, the sensitivity is:
Client % Executiog (up0;1 receiving (wy,,t)): Af=p- |2[§i (24)
13: Set local model: wj, <+ wq
14: Set local time stamp: 7 < ¢ g) Noise Calibration via Gaussian Mechanism.: To
15: Compute sensitivity: Af < p - |2D7(’;| achieve (¢, ¢)-differential privacy, the noise is sampled from a
16: for h=0to H — 1 do Gaussian distribution:
17 Sample mini-batch B} ~ D, Af-+/21n(1.25/3
18:  Compute gradient: gf < V f(wi; BY) noise(Af/e) ~ N(O»Uz) ,  where o > c (1.25/0)
19:  Gradient Clipping: (25)
20 g« gl/max (1, Hg;’é ll2 The privacy budget e controls the noise level: a smaller e
21:  Model Update: implies stronger privacy but higher noise, potentially degrad-
2. ""ZH . wlicl —u- gZ ing model utility. In our experiments, we analyze the trade-off
23-  Add Gaussian Noise: between privacy and performance by varying e.
24: WZH — WZH + %;CL’ where %;; ~ N(0, (Af/€)?) h) Algorthm Qvervzew.: The detal!ed pseudo.code of .the
55 end for proposed algorithm is presented in Algorithm 1, which consists

26: Compute model update: Ay, — wf — WP, of two 'main components: the client-side procedure and the
27: Upload (Ay, 7) to server server-side procedure.

In this algorithm, wy, ;, denotes the parameters shared be-
tween the global model and the client’s personalized model.
Communication between the clients and the server is asyn-

TABLE I: Experimental Environment Configuration

chronous.
Environment Configuration During initialization, each client is assigned the same model
Operating System Windows 10 22H2 64-bit 'St'?}t? '(wO., to), even before any updates are received. After
Processor AMD Ryzen 7 5800H @ 3.20GHz initialization, the server proceeds asynchronously and accepts
Memory 16 GB T updates from clients in the order they arrive.
GPU Memory 6 GB
Storage 512 GB
Programming Language  Python 3.12.3 IV. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the proposed method. Firstly, we describe the experimental
settings, including the employed datasets, competing methods,

f) Sensitivity Analysis.: The sensitivity A f is defined as hardware environments, and experimental parameters. Subse-
the maximum L2 distance between outputs on two adjacent quently, we present detailed experimental results that confirm
datasets D and D’, differing in at most one data point Dj. the advantages of our method compared to the baseline ap-
Let W}, and W/, be the updated parameters based on D and proaches.
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A. Experimental Setup

To validate the effectiveness of the proposed PrivaAsyncFed
algorithm in device-heterogeneous federated learning scenar-
i0s, we conduct a comprehensive set of experiments. This sec-
tion details the datasets, experimental environment, simulation
settings, evaluation metrics, and baseline configurations.

1) Datasets

We evaluate our method on two widely used classification
datasets with different data characteristics and complexity:

o« MNIST [13]: A benchmark dataset for handwritten digit
recognition, consisting of 60,000 training and 10,000
testing grayscale images of size 28 x 28. Each image
represents a digit from O to 9, totaling 10 classes.

o CIFAR-10 [14]: A standard dataset for natural image
classification, comprising 50,000 training and 10,000
testing RGB images of size 32 x 32. The dataset contains
10 categories such as airplane, automobile, cat, and dog.

2) Experimental Environment

All experiments are conducted on a single physical machine
simulating a federated learning environment. Table I presents
the system specifications.

3) Simulation of Device Heterogeneity

To simulate device heterogeneity, we emulate a network of
10 heterogeneous clients. Each client is assigned a different
response latency to reflect diverse computational capabilities.
Specifically, we define four device types with varying training
speeds: fast, medium-fast, medium-slow, and slow. The client
distribution is as follows: three fast, three medium-fast, two
medium-slow, and two slow clients.

Correspondingly, four model variants with reduced hidden
layer sizes are used to match device capabilities. The reduction
ratios are {1.0,0.75,0.5,0.25} for fast, medium-fast, medium-
slow, and slow clients, respectively.

4) IID Data Partitioning

To isolate the influence of device heterogeneity, data het-
erogeneity is not considered in this study. Each dataset is
partitioned in an IID manner by evenly distributing class labels
among all clients. This setup ensures comparable experimental
conditions and helps focus on evaluating the impact of asyn-
chronous training and privacy noise. Figure 3 shows the IID
distribution of data across 10 clients for MNIST (left) and
CIFAR-10 (right), with different colors representing distinct
class labels. We adopt an IID partition to isolate the effects
of device heterogeneity; evaluation under non-1ID data will be
explored in future work.

5) Evaluation Metric

Model performance is measured using classification accu-
racy, defined as the proportion of correctly predicted samples
out of the total predictions.

6) Model Architecture and Training Settings

We employ a modified version of LeNet [13] adapted
for three-channel RGB input. Additionally, the architecture
supports pruning of hidden layers to accommodate device
heterogeneity.

The learning rate for both datasets is set to 0.01. For
MNIST, the local training step is 1, while for CIFAR-10, it
is set to 5 due to convergence issues with smaller steps. The

server performs 400 asynchronous aggregations. The gradient
clipping threshold is fixed at 2. Table II summarizes the
hyperparameters used.

7) Comparison and Privacy Budget Settings

We adopt a controlled variable approach for comparative
analysis. The differential privacy budget € is treated as the
primary variable, ranging from 1 to 10. Additionally, a non-
private baseline is included. All other experimental parameters
remain fixed across runs, as detailed in Table II.

B. Experimental Results

1) Training under Different Privacy Budgets

Figures 4a and 4b illustrate the training accuracy of the
PrivaAsyncFed algorithm on MNIST and CIFAR-10 datasets
under different privacy budgets. The x-axis represents the
number of global aggregation rounds, and the y-axis indicates
the test accuracy. We consider privacy budgets ¢ = 1,5,10
and a non-private case (denoted as € = 00).

The results show that our algorithm achieves stable conver-
gence under all privacy settings. However, a smaller € (i.e.,
stronger privacy) introduces more noise, leading to reduced
accuracy. For example, on MNIST, when ¢ = 1, the model
converges more slowly and plateaus at around 92.5%, whereas
for € = 5, the final accuracy exceeds 95%. As e increases, the
performance gradually approaches the non-private case.

2) Average Accuracy Analysis

Figures 4c and 4d show the average accuracy of the final
global model under different privacy budgets. The x-axis
represents the privacy budget €, and the y-axis denotes the
average accuracy after convergence.

As e increases from 1 to 10, the average model accuracy
improves accordingly. This demonstrates that stronger privacy
(smaller ¢) leads to greater noise and thus lower accuracy.
When € > 7, the accuracy gap narrows, suggesting that
even small noise may still slightly affect the global model’s
aggregation process.

3) Comparison with Baseline Method

We select DP-FedAsync as the main baseline because it
represents a classical asynchronous FL algorithm enhanced
with differential privacy, which aligns closely with our pro-
posed framework. We compare PrivaAsyncFed with a base-
line method, DP-FedAsync, which is a differentially private
variant of FedAsync [15]. In DP-FedAsync, Gaussian noise
is injected during local training to protect privacy. For fair
comparison, both algorithms use identical configurations and
datasets.

Figures 5a—5d depict the test accuracy comparisons between
PrivaAsyncFed and DP-FedAsync under e = 1 and € = 5 on
both datasets.The performance gain of PrivaAsyncFed primar-
ily stems from its staleness-aware aggregation and resource-
adaptive pruning, which jointly improve convergence stability
and model efficiency.

Across all settings, PrivaAsyncFed consistently outperforms
DP-FedAsync in terms of model accuracy. The results validate
the effectiveness of our algorithm in achieving a better balance
between privacy protection and model utility. Compared to the
baseline, our method demonstrates superior accuracy, faster



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 35

TABLE II: Hyperparameters and Model Configuration

Dataset  Model Hidden Sizes Local Steps Batch Size Optimizer LR Agg. Rounds
MNIST LeNet [64,128,256,512] 1 64 SGD 0.01 400
CIFAR-10 LeNet [64,128,256,512] 5 64 SGD 0.01 400
1.00 075
0.95
0.90 0.70
0.85 0.65
0.80 0.60 o~
o 055
> 065 5. 050
g 060 8 045
3 055 3
2 050 2 040
% 045 - 035
¥ 040 F 030
o 025
0:25 0.20
0.20 —— epsilon 1 015 —— epsilon 1
0.15 epsilon 5 epsilon 5
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Fig. 4: Experimental setup and basic performance evaluation under varying privacy budgets (e).

convergence, enhanced privacy protection, and higher training
efficiency.

Moreover, due to model pruning and asynchronous commu-
nication, PrivaAsyncFed potentially reduces overall communi-
cation volume and energy cost, which will be quantitatively
studied in future work.

V. RELATED WORK

In this section, we systematically review the existing liter-
ature on

A. Federated Learning

Within the federated learning (FL) framework, FedAvg [3]
is a classical and widely adopted algorithm known for its
effectiveness. It relaxes the constraint on the number of local
training steps at each client by allowing multiple local updates
before model synchronization. After performing several rounds
of local training, clients upload their updated models to the
central server, which aggregates them through a weighted
averaging strategy to update the global model. By enabling
multiple local iterations, FedAvg significantly reduces com-
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munication overhead and improves overall training efficiency.

FedProx [12] extends FedAvg by addressing challenges
arising from non-independent and identically distributed (non-
IID) data and system heterogeneity. Its core idea is to introduce
a proximal term into the local objective function, encouraging
local updates to stay closer to the global model. This regular-
ization enhances model consistency across clients, particularly
beneficial in asynchronous federated learning settings. The
proximal term in FedProx helps mitigate local model drift
caused by asynchronous updates, thereby improving robust-
ness and convergence speed in heterogeneous environments,
offering more reliable support for real-world FL deployments.

While synchronous FL performs well under homogeneous
settings with uniform computational and communication ca-
pabilities, it suffers from performance bottlenecks in hetero-
geneous environments, where slower clients can delay the
overall training process. To address this, HeteroFL [11] in-
troduces a novel approach that supports heterogeneous model
architectures, breaking the conventional assumption that all

clients must train models with the same structure. In HeteroFL,
the server maintains a full global model, while each client
selects a sub-model according to its resource constraints.
These sub-models typically consist of the early layers of the
global model or pruned versions with fewer channels. After
local training, clients upload only the corresponding parts
of their sub-models, and the server aggregates and updates
the relevant substructures layer by layer. This design not
only reduces the computational and communication burden on
resource-constrained clients but also ensures effective utiliza-
tion of their local data. Simultaneously, high-capacity clients
can train more parameters, thus continuously improving the
global model’s performance. HeteroFL successfully balances
efficiency and accuracy in heterogeneous environments.

In another example, Choi et al. [16] address the dual
challenges of high communication costs and performance
degradation caused by non-IID data in FL. They propose a
communication-efficient FL. framework based on knowledge
distillation and data augmentation. Their method introduces a
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model-splitting mechanism, where deep neural networks are
divided into a shared public component and a private local
component. Specifically, all clients share a shallow public
model with a unified structure, which extracts generalizable
features and participates in federated aggregation via knowl-
edge distillation. Meanwhile, each client retains a private
model component that is trained and updated exclusively on
its local data to capture personalized patterns.

Asynchronous federated learning (AFL) is also effective
in addressing the issue of slow devices bottlenecking overall
training progress. By eliminating the idle waiting time after
fast clients complete their local updates, AFL improves both
device utilization and training efficiency. In AFL, the server
adopts an asynchronous update mechanism, allowing global
model updates to proceed immediately upon receiving updates
from a subset of clients, rather than waiting for all partici-
pants to finish. This mechanism significantly accelerates the
training process. However, it also introduces the challenge of
inconsistent model updates due to varying staleness of client
contributions.

To address this issue, Xie et al. [15] proposed incorporat-
ing a staleness-aware weighting strategy during aggregation.
By assigning time-decay factors to outdated gradients, their
approach reduces the adverse impact of stale updates on the
global model, effectively mitigating model drift and enhancing
the stability and reliability of AFL in practice. Similarly, Wu et
al. [17] proposed an AFL scheme that classifies client updates
into three categories: fresh, tolerable, and stale. Fresh updates
are aggregated immediately, tolerable ones are deferred to
the next round, while stale updates are discarded entirely.
Nguyen et al. [18] introduced FedBuff, an AFL algorithm that
incorporates a buffering mechanism on the server side. The
server accumulates model updates within a predefined time
window and then performs a collective aggregation.

Current research on AFL primarily focuses on alleviating
the negative effects of straggler clients caused by asynchronous
operations. Key research directions include client selection
strategies, weighted aggregation schemes, gradient compres-
sion techniques, semi-asynchronous learning paradigms, and
model partitioning approaches.

From both domestic and international perspectives, feder-
ated learning has received widespread attention and has be-
come a highly active research area. Many scholars are devoted
to improving the performance of FL algorithms under various
conditions, such as adapting to complex data distributions
and heterogeneous device environments. In terms of privacy
protection, researchers continue to explore more effective
encryption and privacy-preserving techniques to ensure data
security during model training. Meanwhile, the application of
federated learning in practical domains such as healthcare,
finance, and the Internet of Things (IoT) is also advancing
steadily. These efforts aim to bridge the gap between theo-
retical advances and real-world deployment, enabling FL to
effectively address data collaboration and privacy challenges
across diverse industries.

1) Privacy Protection in Federated Learning

Although federated learning (FL) enhances privacy by keep-
ing data local, evolving attack techniques have demonstrated

that sharing only model parameters still poses risks of in-
formation leakage. For instance, Ziegler et al. [19] applied
deep leakage from gradients (DLG) to attack a DenseNetl121
model trained under an FL setting. Using only gradient
updates from local clients—without any prior knowledge of
the original data—they successfully reconstructed high-fidelity
chest X-ray images closely resembling the original samples.
In asynchronous FL, clients may receive different versions
of the global model due to variations in update timing.
When a client consecutively updates its local model based
on sequential global models, an adversary may infer sensitive
data by analyzing changes across neighboring global model
versions. These cases illustrate that, even when training data
is retained locally, the uploaded model updates can still reveal
private information.

The FL framework typically involves two parties: a central
server and multiple clients. Adversaries may compromise
either the server or a subset of clients to launch privacy
attacks. In the first scenario, the server is assumed to be
untrusted and may exploit collected model updates to infer
private client data. In the second scenario, client-to-client trust
is absent—an adversary may control one or more malicious
clients, accessing their data, local models, and global updates
to infer or poison information. Four main categories of attacks
have been identified in FL: model poisoning, data poisoning,
membership inference, and reconstruction inference. In this
work, we focus on preventing inference of raw data from
client-uploaded model parameters.

Privacy-preserving mechanisms in FL are generally cat-
egorized into three types [20]: centralized, distributed, and
local privacy protection. In centralized privacy protection, data
providers trust the data collector and do not interact with each
other. Original data is uploaded to a central entity, which
then performs privacy-preserving operations before sharing
the data or results. Distributed privacy protection assumes no
trust between data providers or the collector. Protection is
enforced by a trusted third party that manages interactions
and secures private data. In local privacy protection, each data
provider independently applies privacy-preserving techniques
before sharing data. Yang et al. [21] proposed a differentially
private FL algorithm that allows clients to choose personalized
privacy levels and add noise to their gradients before uploading
them. FL systems must be designed to protect against privacy
leakage from local updates—even if parameters are intercepted
during transmission or the server itself is compromised [22].
This paper focuses on enhancing privacy in FL by applying
local differential privacy (LDP) techniques at the client side.

In federated learning, differential privacy is typically
achieved by injecting noise into model updates before they
are uploaded [23]. Rather than manipulating the raw data
directly, clients first constrain the magnitude of their computed
gradients, and then add calibrated random noise to the clipped
gradients before transmission. For example, Wu et al. [17]
proposed a differentially private FL algorithm that adopts
a segmented clipping strategy based on individual privacy
requirements. This mechanism helps obscure each client’s
specific contribution to the global model update, making it
difficult to infer original data characteristics from the gradi-
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ents. By doing so, FL systems can prevent raw data leakage
and also defend against gradient-based inference attacks, thus
significantly improving the robustness of privacy protection in
federated learning.

While prior studies have addressed asynchronous updates
or differential privacy individually, few works have combined
both in the context of heterogeneous IoT environments. Pri-
vaAsyncFed bridges this gap by integrating local differential
privacy with staleness-aware asynchronous aggregation.

VI. CONCLUSION

In this work, we proposed PrivaAsyncFed, a secure and
privacy-preserving asynchronous federated learning algorithm
tailored for heterogeneous IoT environments. Our approach
addresses two key challenges prevalent in IoT-based FL: (i)
device heterogeneity, arising from the diverse computational
power and communication capabilities of IoT devices; and
(ii) privacy risks due to potential exploitation of gradient
information.

To tackle these challenges, PrivaAsyncFed adopts a
staleness-aware weighted aggregation strategy, which miti-
gates the negative impact of delayed or outdated updates from
low-capacity devices. At the same time, differential privacy
mechanisms are incorporated into the local training phase
to protect sensitive IoT data without significantly sacrific-
ing model performance. Furthermore, the algorithm employs
model pruning to allocate sub-models dynamically, improving
resource utilization and reducing straggler effects.

We conducted extensive experiments on benchmark datasets
that emulate heterogeneous IoT environments under varying
levels of system heterogeneity and privacy budgets. The results
demonstrate that PrivaAsyncFed achieves faster convergence,
higher accuracy, and stronger privacy guarantees compared to
existing asynchronous FL baselines. These findings confirm
the potential of PrivaAsyncFed as a practical and robust
solution for federated learning in real-world IoT scenarios,
effectively balancing efficiency, robustness, and privacy pro-
tection. In future work, we plan to extend PrivaAsyncFed
to non-IID data distributions and evaluate its communication
efficiency in real-world IoT deployments.
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