
JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 39

Network Trajectory Protection

Qianting Chen1,2, Lulu Wang3, Ke Chao3, Weicheng Wang4, Rui Mao1
1Shenzhen University, Shenzhen, China
2University of Macau, Macau, China

3Beijing Normal University, Beijing, China
4The Chinese University of Hong Kong, Hong Kong, China

In modern computer networks, the transmission of messages forms a sequence through multiple intermediate nodes,
which can be represented as network trajectories. These trajectories provide essential information for routing optimization
and security auditing. However, the former requires learning the clear trajectory, while the latter needs to hide the details
of the trajectory. There is a contradiction between the need for accurate trajectory analysis and the need to conceal sensitive
details. To balance these objectives, trajectory simplification becomes essential: reducing the number of recorded nodes while
preserving the overall structure. Yet, existing simplification algorithms primarily target trajectories with nodes described by
2-dimensional vectors and are inadequate for multi-dimensional settings. To address this, we propose the Network Trajectory
Protection (NTP) problem: given a multi-dimensional trajectory and a simplification budget, the goal is to select a subset of
nodes that best approximates the original trajectory under a Euclidean distance-based loss metric. We prove that the NTP
problem is NP-hard and design an efficient greedy approximation algorithm. We conduct extensive experiments on network
trajectory datasets, demonstrating the superior effectiveness and efficiency of our algorithms compared to baselines.

Index Terms—Network Trajectory, Protection, Trajectory Simplification

I. Introduction

T rajectory is commonly used in many scenarios. In
modern computer networks, when a message is

sent, it travels through a sequence of intermediate nodes
such as routers, switches, and gateways before arriv-
ing at the final destination. This transmission forms a
trajectory that consists of multiple intermediate nodes.
For example, consider a message that originates from a
data center in Los Angeles and is destined for a user
in Sydney, as shown in Figure 1. The message may
travel through the nodes in New York, Paris, Beijing,
and ultimately reach Sydney. The intermediate nodes
traversed can be recorded as a trajectory [New York,
Paris, Beijing]. In smart city infrastructures [1]–[3], data
flow from multi-source, heterogeneous sensors—such
as traffic cameras and environmental monitoring sta-
tions—form trajectories. More broadly, in the Internet
of Things (IoT) [4], [5], trajectories naturally emerge in
diverse applications: smart transportation systems record
the paths of connected vehicles and public transit flows;
industrial IoT platforms monitor the trajectory of goods
and components across manufacturing pipelines and
supply chains; and agricultural IoT networks capture the
trajectories of drones and autonomous farming machines
for precision agriculture.

The trajectories are not only vital for routing opti-
mization, congestion management, etc, but also serve as
an essential layer of observability for security auditing.
However, there is a contradiction in serving these two
parts of the goals. The former requires learning the clear
trajectory, while the latter needs to hide the details of

Manuscript received June 25, 2025; revised August 14, 2025. Corre-
sponding author: Lulu Wang (email: luluwang@mail.bnu.edu.cn).

the trajectory. In this case, there is an issue raised: how
to handle the network trajectory?
To mitigate this issue, it is often desirable to simplify

the trajectories while preserving their essential struc-
ture. Here, the network trajectory simplification refers
to reducing the number of nodes in the trajectory such
that the resulting simplified trajectory remains a close
approximation of the original trajectory. The simplified
representation enables routing optimization, congestion
management, etc, while also offering a degree of obfus-
cation that can help mitigate privacy and security risks
associated with full exposure. For example, consider the
network trajectory in Figure 1, a simplified version might
retain only the two end nodes: [New York, Beijing]. The
simplification implicitly assumes that the omitted nodes
do not deviate significantly from the preserved trajectory
in terms of semantic distance.
Existing studies in trajectory simplification predomi-

nantly focused on the nodes described by 2-dimensional
vectors, such as GPS trajectories of vehicles or indi-
viduals moving in geographic space. A large body of
work [6]–[9] proposes heuristic or rule-based algorithms
for simplifying such 2-dimensional trajectories. These
algorithms mainly act in two ways: (1) the bottom-up
manner (iteratively removing the least significant node)
and (2) the top-down manner (recursively dividing the
trajectory into segments), often based on hand-crafted
rules tailored to specific loss metrics.
However, existing algorithms face serious limita-

tions when applied to trajectories in higher-dimensional
spaces, such as network information flows. Network tra-
jectories naturally reside in a multi-dimensional attribute
space that includes not only spatial coordinates (e.g.,
data center location, hop latency) but also temporal, log-

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 40

Sydney

Beijing
ParisNew York

L.A.

Fig. 1: Message Transmission

ical, and application-level features (e.g., protocol type,
transmission timestamp, routing cost, encryption status).
The multi-dimensional trajectory cannot be projected
meaningfully onto 2-dimensional planes. As a result, ex-
isting algorithms are neither accurate nor generalizable
to these multi-dimensional network scenarios.

To address this, we formulate a new problem: Network
Trajectory Protection (NTP). The goal is to simplify net-
work trajectories under a Euclidean distance-based loss
metric, while maintaining sequential consistency and
minimizing information distortion. We define the loss be-
tween the original and simplified trajectory using a node-
wise distance function, and evaluate the worst-case dis-
tortion introduced by simplification. Our loss model gen-
eralizes the classic “min-loss” formulation to arbitrary
multi-dimensional spaces with sequential constraints.

Formally, given a trajectory T of n nodes and a positive
integer k, we aim to find a simplified trajectory S that
preserves order and minimizes the maximum node-wise
distance. We denote the trajectory loss by ϵ(S|T). The
problem is to find S ⊂ T such that minS⊂T,|S|=k ϵ(S|T).
We show this problem is NP-hard, which is obtained

via a reduction from the classical Set Cover problem.
To address the computational intractability, we propose
a greedy algorithm that incrementally builds the sim-
plified trajectory by always inserting the node with the
largest local loss. At each step, the algorithm identifies
the node in the original trajectory whose distance to its
enclosing nodes in the simplified trajectory is maximal
and adds it to the simplification trajectory. This process
continues until the number of nodes in the simplified
trajectory reaches k. We implement our algorithm and
conduct extensive experiments on multi-dimensional tra-
jectory datasets. Our evaluation demonstrates that the
proposed algorithm performs well.

This paper makes the following contributions:
• We propose a new problem, called Network Trajec-
tory Protection (NTP). The goal is to simplify the
multi-dimensional network trajectory while preserv-
ing the essential structure.

• We formally define a Euclidean distance-based loss
metric and prove that minimizing trajectory loss

𝑅1

𝑅2 𝑅3

𝑅7

𝑅6

𝑅5

𝑅4

𝑅8

Fig. 2: Network Trajectory

under a budget constraint is NP-hard.
• We design an efficient greedy approximation algo-
rithm to solve the NTP problem.

• We empirically validate the proposed algorithm
on network trajectory datasets and demonstrate its
practical advantages over baseline algorithms.

The remainder of the paper is organized as follows.
Section II presents the problem definition. Section III
presents our proposed algorithm. Section IV demon-
strates our experiment. Section V presents the related
work on trajectory simplification. Finally, Section VI con-
cludes this paper.

II. Problem Definition
In this section, we present the problem statement. We

first introduce the network trajectory with relevant nota-
tions. The trajectory loss is discussed. Then, we show the
formal problem definition and prove that it is NP-hard.

A. Network Trajectory
A network trajectory, denoted by T = [t1, t2, . . . , tn],

is a sequence of network nodes ordered by time. Each
ti, where i ∈ [1, n], represents a d-dimensional feature
vector of the node. Here, the dimension d can be any
positive integer (e.g., 5), representing attributes such as
geographical location, protocol features, port behavior,
timestamp signatures, etc. The subscript i represents the
position of the node in the trajectory according to the
order. For example, as shown in Figure 2, the message
transits from one terminal to another. The network nodes
passed through are in the order R1 → R4 → R5 → R8.
In this case, the trajectory can be recorded as T = [t1 =
R1, t2 = R4, t3 = R5, t4 = R8].
A simplified trajectory S = [s1, s2, . . . , sr] is a sub-

sequence of T , i.e., S ⊂ T and the order of nodes in
S follows the original order in T . Let | · | denote the
cardinality of a trajectory, i.e., the number of nodes in
the trajectory. The simplified one S of a trajectory T has
a smaller cardinality than T , i.e., |S| < |T |. For instance,
S = [s1 = R1, s2 = R8] is a simplified trajectory of
T = [t1 = R1, t2 = R4, t3 = R5, t4 = R8] with |S| < |T |
since |S| = 2 and |T | = 4.

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 41

TABLE I: Concepts and Notations

Notation Meaning
T A d-dimensional trajectory in the format of [t1, t2, ..., tn].
d The number of dimensions of nodes.
n The number of nodes in the trajectory.
ti A node with the index i in the trajectory T .
S A simplified trajectory of T in the form of [tm1

, tm2
, . . . , tmr

], where 1 ≤ m1 ≤ m2 · · · ≤ mr ≤ n.
k The allowed number of nodes in the simplified trajectory S.
| · | The number of nodes in the trajectory.

D(·, ·) The Euclidean distance between two nodes.
L(ti) The local loss of node ti.
ϵ(S|T) The trajectory loss of S w.r.t. T .

Given a trajectory T and its simplified one S, we
denote the trajectory loss of S compared to T by ϵ(S|T).
There are many different error functions proposed to
measure the loss. It is worth noting that our algorithm
framework is general. It can accommodate different dis-
tance metrics, such as cosine distance and Manhattan
distance, depending on the application. However, to fa-
cilitate the presentation and ensure fair comparison with
existing studies, we adopt Euclidean Distance [6], [7], [9],
[10] as the error function in this paper. The idea is as fol-
lows. For each node ti in the trajectory T , we can find two
nodes sj = tr and sj+1 = tr′ in the simplified trajectory
S such that r ≤ i < r′. Intuitively, the trajectory segment
[tr, tr+1, . . . , tr′−1] of T includes the node ti, i.e., ti ∈
[tr, tr+1, . . . , tr′−1]. We define the local loss L(ti) of ti by
the Euclidean distance between nodes ti and sj = tr, i.e.,

L(ti) = D(ti, tr)

In this case, the loss ϵ(S|T) is defined to be the
maximum local loss across all nodes in T , i.e.,

ϵ(S|T) = max
ti∈T

L(ti)

Definition 1 (Trajectory Loss). Given a trajectory T =
[t1, t2, . . . , tn] and its simplified version S = [s1 =
tm1 , s2 = tm2 , . . . , sk = tmr], where m1 < m2 < · · · < mr,
the trajectory error ϵ(S|T) between T and S is defined
as maxti∈T maxti∈T D(ti, tmj

), where tmj
, tmj+1

∈ T and
tmj
≤ ti < tmj+1

.
Example 1. Consider a trajectory T = [t1, t2, t3, t4] with
t1 = R1, t2 = R4, t3 = R5, and t4 = R8, as
shown in Figure 2. Suppose that the simplified version
is S = [t1, t4]. The local losses for the nodes in T are:
L(t1) = D(t1, t1), L(t2) = D(t2, t1), L(t3) = D(t3, t1) and
L(t4) = D(t4, t4). Since D(t1, t1) = D(t4, t4) = 0, the
trajectory loss of S compared to T is max{L(t2), L(t3)}.

B. Problem NTP
Based on the definition of trajectory loss, the problem

of Network Trajectory Protection, denoted by NTP for
short, can be formalized. Our goal is to remove some
nodes from the trajectory so that the detailed routing
information can be hidden, while ensuring the simplified

trajectory still represents the original trajectory with as
small a trajectory loss as possible. Formally, the problem
is defined as follows.
Problem 1 (Network Trajectory Protection (NTP)). Given
a trajectory T and an integer k, the NTP problem is to
find a simplified trajectory S of T such that |S| ≤ k and
the trajectory loss ϵ(S|T) is minimized.
We prove the NP-hardness of NTP by designing a

decision version and deriving a reduction from the Set
Cover problem [11], [12].
Theorem 1. The Network Trajectory Protection (NTP)
problem is NP-hard.

Proof. Consider the decision variant of the NTP problem:
given a trajectory T , a trajectory loss threshold ε, and an
integer k, does there exist a simplified trajectory S with
|S| ≤ k such that ϵ(S|T) ≤ ε?
This problem asks whether a trajectory can be approx-

imated using at most k nodes such that the trajectory
loss is below ε. Since it is a decision version of the
NTP problem, if it is NP-hard, the NTP problem is also
NP-hard. In the following, we prove that this decision
problem is NP-hard via a reduction from the classical
Set Cover problem [11], [12].
In the Set Cover problem, we are given a universe
U = {u1, u2, ..., un} and a collection of subsets P =
{P1, P2, ..., Pm}, and we wish to determine whether there
exists k subsets whose union covers U . We can encode
each element ui as a trajectory point ti ∈ T . Each subset
Pj corresponds to two nodes ti, tj ∈ T , where the trajec-
tory loss between the trajectory [ti, tj] and the trajectory
[ti, ti+1, . . . , tj−1, tj] is no greater than ε. We say these
two nodes ti and tj covers the nodes ti, ti+1, . . . , tj−1, tj .
In this case, selecting k subsets to cover U is equivalent
to selecting k pairs of nodes in T to cover the entire
trajectory within the specified error bound.
Thus, solving the decision version of NTP would solve

the Set Cover problem. The NTP problem is NP-hard.

III. Algorithm
Given the NP-hardness of the Network Trajectory Pro-

tection (NTP) problem, finding an optimal simplification

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 42

of a trajectory is computationally infeasible for large-
scale network trajectories. Therefore, we seek efficient ap-
proximation algorithms that can strike a balance between
runtime efficiency and solution quality. A natural and
powerful strategy for this purpose is greedy selection.

A. Greedy Algorithm
We propose an inclusion-based greedy algorithm to con-

struct the simplified trajectory S. The main idea is to
iteratively include nodes from the trajectory T into S in
a way that greedily reduces the maximum loss, until a
budget of k nodes is reached. Since the NTP problem is
NP-hard (as shown in Section II-B), this greedy manner
provides a practical approximation by focusing on worst-
case loss reduction in each iteration.

Initially, the simplification trajectory S contains only
the two end nodes of the trajectory T , i.e., S = [t1, tn]. In
each iteration, one node is selected from the trajectory T
and added to S. If there are k nodes in S, i.e., |S| ≥ k,
the process stops. Otherwise, another iteration starts.

During the process, the core part is selecting a node
from the trajectory T to add it to S. We utilize a greedy
idea: among all nodes in the trajectory T , those nodes that
deviate most from the current simplified trajectory should be
prioritized for inclusion. This is because these nodes repre-
sent the parts where the current simplification performs
the worst. By adding them to the simplified trajectory S
iteratively, we continuously reduce the worst-case distor-
tion in a cost-effective manner.

Specifically, in each iteration, for each node ti ∈ T that
are not yet included in the simplified trajectory S, we
find the pair of adjacent nodes smj

, smj+1
∈ S such that

mj ≤ i < mj+1. This means that ti lies between these
two nodes. We then calculate (1) the Euclidean distance
D(ti, tmj) between ti and tmj and (2) the Euclidean
distance D(ti, tmj+1) between ti and tmj+1 . The local loss
L(ti) of ti is the minimum Euclidean distance of the
two, i.e., L(ti) = min{D(ti, tmj

), D(ti, tmj+1
)}. This loss

reflects how poorly ti is represented by the simplified
trajectory. After computing all local losses, the node
with the highest local loss is selected and added to the
simplified trajectory S. This step ensures that the largest
deviation is greedily reduced at each iteration.
Example 2. Consider Figure 3 with a trajectory T =
[t1, t2, t3, t4]. Suppose that the current simplified version
is S = [t1, t4]. There are two nodes in T but not in
S: t2 and t3. We calculate the local losses of these
two nodes L(t2) = min{D(t2, t1), D(t2, t4)} and L(t3) =
min{D(t3, t1), D(t3, t4)}, respectively. If L(t2) > L(t3),
node t2 is selected and added to the simplified trajectory
S.

B. Summary and Analysis
We summarize our algorithm with the pseudocode

shown in Algorithm 1. The input to the algorithm con-
sists of a network trajectory T = [t1, t2, . . . , tn] and a
positive integer k, where 2 ≤ k < n. This integer k

𝑅1 𝑅3𝑅2 𝑅4

𝑅1 𝑅4

Trajectory 𝑇

Trajectory 𝑆

Fig. 3: Greedy Algorithm

Algorithm 1: Inclusion-Based Greedy Algorithm
Require: Trajectory T = [t1, t2, . . . , tn], parameter k
Ensure: Simplified trajectory S with |S| ≤ k
1: Initialize S ← [t1, tn]
2: while |S| < k do
3: t∗ ← None, Lmax ← −∞
4: for all j = 1 to |S| − 1 do
5: for all ti ∈ T such that mj < i < mj+1 do
6: L(ti) = min{D(ti, tmj

), D(ti, tmj+1
)}

7: if L(ti) > Lmax then
8: Lmax ← L(ti)
9: t∗ ← ti
10: j∗ ← j + 1
11: end if
12: end for
13: end for
14: Insert t∗ into S at position j∗

15: end while
16: return S

specifies the desired number of nodes in the simplified
trajectory S. Initially, the simplified trajectory S is set to
contain the two end nodes t1 and tn, i.e., S = [t1, tn] (line
1). In each iteration, let the current simplified trajectory
be S = [tm1

, tm2
, . . . , tmr

], where each mj is an index
such that 1 = m1 < m2 < · · · < mr = n. For each
adjacent pair tmj

and tmj+1
in S (line 4), let us consider

the sub-sequence [tmj , tmj+1, tmj+2, . . . tmj+1] ⊂ T (line
5). For each node ti in this sub-sequence, we compute
its local loss L(ti) = min{D(ti, tmj

), D(ti, tmj+1
)} (line

6), and thus, identify the node t∗ in this sub-sequence
that has the maximum local loss (lines 7-10). After
going through all adjacent pairs tmj

and tmj+1
in S,

we can find the node t∗ in T with the maximal local
loss. We insert t∗ into the simplified trajectory S at the
appropriate location (line 14). The process iterates until
the simplified trajectory S contains k nodes, i.e., |S| = k
(line 2), and the simplified trajectory is returned.
Example 3. We now illustrate the algorithm with
a concrete example. Consider a trajectory T =
[t1, t2, t3, t4, t5, t6], where each node is a 2-dimensional
vector as shown in Figure 4. Our goal is to simplify this

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 43

𝑡1 = (1, 3)

𝑡2 = (1, 2) 𝑡3 = (2, 2)

𝑡4 = (2, 1) 𝑡5 = (3, 1)

𝑡6 = (4, 2)

Fig. 4: Trajectory Nodes

trajectory by reducing its number of nodes to k = 4.
Initially, the simplified trajectory is set to S = [t1.t6]. In
the first iteration, there is only one pair of adjacent nodes
t1 and t6 in S. We find the nodes ti such that 1 < i < 6
and compute their local loss L(ti), respectively.

L(t2) = min{D(t2, t1), D(t2, t6)} = 1.00

L(t3) = min{D(t3, t1), D(t3, t6)} = 1.41

L(t4) = min{D(t4, t1), D(t4, t6)} = 2.23

L(t5) = min{D(t5, t1), D(t5, t6)} = 1.41

Since the maximum local loss occurs at node t4, we insert
t4 into S, and thus, S = [t1, t4, t6].
In the second iteration, there are two pairs of adjacent

nodes in S. Consider the first pair t1 and t4. We find the
nodes ti such that 1 < i < 4 and compute their local
loss, respectively.

L(t2) = min{D(t2, t1), D(t2, t4)} = 1.00

L(t3) = min{D(t3, t1), D(t3, t4)} = 1.00

Consider the second pair t4 and t6. We find the nodes
ti such that 4 < i < 6 and compute their local loss L(ti),
respectively.

L(t5) = min{D(t5, t4), D(t5, t6)} = 1.00

Since the nodes have the same local loss, we break the
tie by randomly selecting one. If node t2 is selected,
we insert t2 into S, and thus, S = [t1, t2, t4, t6]. Since
|S| ≥ 4 = k, the simplified trajectory S = [t1, t2, t4, t6] is
returned.

Now, we provide the theoretical analysis of our algo-
rithm. Theorem 2 shows the time complexity.
Theorem 2. Given a trajectory T = [t1, t2, . . . , tn] and
a positive integer k which is the desired size of the
simplified trajectory, our algorithm runs in O(kn) time.

Proof. Let us examine the operations performed during
the course of the algorithm.

The simplified trajectory S is initialized with two end
nodes, i.e., S = [t1, tn]. It takes constant time.

In each iteration, the algorithm considers each pair
of adjacent nodes tmj and tmj+1 in S. For each pair,
it examines all nodes in T that lie between them (i.e.,
ti ∈ T such that mj < i < mj+1). Thus, each node in T
is examined at most once per iteration. Since there are
n nodes in T , each iteration involves at most O(n) work
to compute the local losses and select the node with the
maximum deviation.
Since exactly one node is added to S per iteration,

after k − 2 iterations, there are k nodes in S (including
the two end nodes). Therefore, the algorithm terminates
after k − 2 iterations. In this case, the total runtime is
O((k − 2)n) = O(kn).

IV. Experiments
This section presents our empirical study on the net-

work trajectory protection. We present the setting of our
experiments in Section IV-A. Section IV-A demonstrates
the results, and a summary is shown in Section IV-C.

A. Experimental Setting
Evaluation Platform. The implementation of all algo-
rithms is carried out in Python. All the experiments are
conducted on a Mac machine equipped with an M3 chip
and 128.0GB RAM.
Datasets. Our experimental evaluations are conducted
on six trajectory datasets, namely Traj-4D, Traj-5D, Traj-
6D, Random-4D, Random-5D, and Random-6D. The
first three datasets are generated by applying the Ac-
tiveRanking algorithm [13] [14], [15] with 4, 5, and
6 attributes, respectively. This algorithm is commonly
used in many systems. During the process, multiple
attributes are considered, each attribute representing a
distinct dimension. As a result, each state during the
algorithm processing can be represented as a node (i.e.,
a concatenation of these attributes), and the entire se-
quence can be modeled as a trajectory. The last three
datasets are generated randomly. The information about
the trajectory datasets is detailed in Table II.
Baseline. Most existing trajectory simplification algo-
rithms are designed specifically for 2-dimensional set-
tings and cannot be directly applied to high-dimensional
trajectories. To enable comparison in multi-dimensional
scenarios, we implement a simple baseline based on
random selection. Specifically, the baseline iteratively
selects k nodes at random from the original trajectory
to construct the simplified version.
Parameter Settings and Measurements. Let n denote the
length of the original trajectory. We vary the simplifica-
tion budget k (i.e., the number of nodes allowed in the
simplified trajectory) according to a set of predefined
ratios: k = ratio × n, where ratio ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.
We evaluate each method in terms of two metrics: (1)
the trajectory loss, measured as the maximum node-wise
Euclidean distance between the original and simplified
trajectories; and (2) the execution time in seconds. For

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 44

TABLE II: Statistics of Trajectory Datasets

Dataset Dimensionality No. of Trajectories Reference
Traj-4D 4 2,599 [13]
Traj-5D 5 2,199 [13]
Traj-6D 6 2,449 [13]

Random-4D 4 3,000 -
Random-5D 5 3,000 -
Random-6D 6 3,000 -

each configuration, we randomly sample 100 trajectories
from the dataset and report the average results to ensure
statistical stability.

B. Experimental Results

We evaluate the effectiveness and efficiency of our
proposed greedy algorithm by comparing it against a
baseline method, referred to as Random.

Figures 5, 6, and 7 present the results on three datasets:
Traj-4D, Traj-5D, and Traj-6D, respectively. Across these
datasets, our greedy algorithm consistently achieves sig-
nificantly lower trajectory loss than the Random baseline.
In Figure 5, the greedy method maintains a trajectory
loss below 1.0 in most cases, while the loss from Random
can be up to 1.2 times higher. This performance gap
becomes even more pronounced in Figure 6, particu-
larly under lower simplification ratios, highlighting the
greedy algorithm’s advantage when fewer nodes are
retained. Similarly, Figure 7 shows that our method
remains robust as dimensionality increases, consistently
outperforming the baseline in all tested scenarios. In
addition, the trajectory loss achieved by our algorithm
decreases as the ratio increases. This trend is expected,
as an increasing ratio leads to a larger k. There are
more nodes to be retained, thereby enabling a closer
approximation to the original trajectory.

To further evaluate the robustness of our proposed al-
gorithm under different data distributions, we extended
our experiments to the randomly generated datasets:
Random-4D, Random-5D, and Random-6D. Figures 8, 9,
and 10 present the results on three datasets: Random-
4D, Random-5D, and Random-6D, respectively. Similar
to the observations on the trajectory-based datasets, our
greedy algorithm consistently outperforms the Random
baseline in terms of trajectory loss across all dimensions.
Notably, this advantage remains consistent regardless of
the dimensionality increase from 4D to 6D, validating
the algorithm’s scalability. This demonstrates that the
algorithm can effectively capture essential structural in-
formation even when dealing with multi-dimensional
data that lacks the inherent sequential patterns of real-
world trajectories.

In terms of runtime, the greedy algorithm remains
efficient across all settings. Although it is naturally
slower than the lightweight Random baseline due to its
optimization steps, the overall execution time remains

0.1 0.2 0.3 0.4 0.5
Ratio

0.8

0.9

1.0

1.1

1.2

Tr
aj

ec
to

ry
 L

os
s

Random Greedy

0.1 0.2 0.3 0.4 0.5
Ratio

10 5

10 4

10 3

10 2

10 1

Ru
nt

im
e

(s
ec

on
ds

)

Random Greedy

Fig. 5: Traj-4D

0.1 0.2 0.3 0.4 0.5
Ratio

0.9

1.0

1.1

1.2

1.3

Tr
aj

ec
to

ry
 L

os
s

Random Greedy

0.1 0.2 0.3 0.4 0.5
Ratio

10 5

10 4

10 3

10 2

10 1

Ru
nt

im
e

(s
ec

on
ds

)

Random Greedy

Fig. 6: Traj-5D

low. For instance, in Figure 5, the greedy algorithm con-
sistently completes within one second across all ratios.
These results demonstrate that our greedy method is
both effective and practical for multi-dimensional trajec-
tory simplification tasks.

C. Summary

The experimental results demonstrate the practical ef-
fectiveness of our proposed greedy algorithm for multi-
dimensional trajectory simplification. Across all tested
datasets, including both the datasets generated by the
ActiveRanking algorithm (Traj-4D, Traj-5D, Traj-6D) and
the randomly generated datasets (Random-4D, Random-
5D, Random-6D), our algorithm consistently achieves
lower trajectory loss compared to the Random baseline.
In some configurations, the greedy algorithm yields up
to a 30% improvement, highlighting its ability to retain
representative nodes that preserve the essential structure
of the original trajectory. Furthermore, the algorithm
exhibits strong scalability. As the dimensionality of the
nodes increases from 4 to 6, the runtime of the greedy
algorithm grows only moderately, remaining within a
practical range for real-world applications. This perfor-
mance makes it suitable for online or near-real-time sce-

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 45

0.1 0.2 0.3 0.4 0.5
Ratio

1.0

1.1

1.2

1.3

1.4

Tr
aj

ec
to

ry
 L

os
s

Random Greedy

0.1 0.2 0.3 0.4 0.5
Ratio

10 4

10 3

10 2

10 1

100

Ru
nt

im
e

(s
ec

on
ds

)

Random Greedy

Fig. 7: Traj-6D

0.1 0.2 0.3 0.4 0.5
Ratio

0.9

1.0

1.1

1.2

Tr
aj

ec
to

ry
 L

os
s

Random Greedy

0.1 0.2 0.3 0.4 0.5
Ratio

10 4

10 3

10 2

10 1

100

Ru
nt

im
e

(s
ec

on
ds

)

Random Greedy

Fig. 8: Random-4D

narios. These findings support the use of our algorithms
in the network trajectory protection application.

V. Related Work
In this section, we discuss several 2-dimensional tra-

jectory simplification algorithms. We classify them into
two types. The first type includes the rule-based algo-
rithms, while the second type considers the reinforce-
ment learning-based algorithms.

A. Rule-Based
A substantial body of prior work has attempted to

address the Min-Error trajectory simplification problem,
with several studies proposing heuristic or rule-based
methods tailored to specific error metrics [7]–[9], [16].
One of the earliest solutions by Bellman [17] employs
dynamic programming. It achieves optimal results but
suffers from a prohibitive computational cost of at least
O(n3) for a trajectory with n nodes. This high cost has
driven the research community to explore more scalable
alternatives.

Consequently, numerous follow-up studies [6]–[9],
[16], [18], [19] have proposed greedy approximation
algorithms designed to reduce computational overhead.
These algorithms typically fall into two categories: some
iteratively remove non-essential nodes from the original
trajectory, while others incrementally build a simplified
trajectory starting with the end nodes. It is important
to note that these greedy strategies are usually tightly
coupled to the specific error function for which they
were designed and may not perform well outside those
predefined contexts.

A broader overview and empirical evaluation of these
techniques can be found in the survey by Zheng et

0.1 0.2 0.3 0.4 0.5
Ratio

1.0

1.1

1.2

1.3

Tr
aj

ec
to

ry
 L

os
s

Random Greedy

0.1 0.2 0.3 0.4 0.5
Ratio

10 4

10 3

10 2

10 1

100

Ru
nt

im
e

(s
ec

on
ds

)

Random Greedy

Fig. 9: Random-5D

0.1 0.2 0.3 0.4 0.5
Ratio

1.1

1.2

1.3

1.4

Tr
aj

ec
to

ry
 L

os
s

Random Greedy

0.1 0.2 0.3 0.4 0.5
Ratio

10 4

10 3

10 2

10 1

100

Ru
nt

im
e

(s
ec

on
ds

)

Random Greedy

Fig. 10: Random-6D

al. [20], which systematically compares many represen-
tative algorithms.
In parallel, significant progress has also been made

on the Error-Bounded trajectory simplification problem,
where the objective is to reduce the number of nodes
while ensuring that the simplification error remains
within a given threshold. Prominent algorithms in this
line of work include [6], [21]–[27]. Most of these tech-
niques adopt a standard three-phase sliding window
framework: (1) initialize a window over two adjacent
nodes, (2) expand the window by including more nodes
until the error exceeds the threshold, and (3) output the
last valid node and reinitialize the window. While their
window expansion policies may differ, the overarching
structure remains largely consistent.
These algorithms are predominantly rule-based, rely-

ing on heuristics tailored to specific error formulations,
and are often restricted to two-dimensional spatial data.
As a result, their applicability is limited when dealing
with new or complex error metrics, especially in higher-
dimensional settings or emerging application domains
where standard error models are insufficient.

B. Reinforcement Learning-Based
A distinct line of research has explored framing tra-

jectory simplification as a reinforcement learning (RL)
problem. In the RL framework, an agent interacts with
an environment in order to maximize the cumulative
reward over time. The environment is formally charac-
terized by a set of components: states, actions, rewards,
state transitions, and a discount factor. The state captures
the current status of the agent, while the action space de-
fines the available decisions at each state. The transition
function determines how the environment evolves when
an action is taken. Each state-action pair is associated

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 46

with an immediate reward, and the reward accumulated
at step t is typically weighted by a discount factor
γt, where γ ∈ [0, 1] controls the importance of future
rewards. The overall goal is to find a policy—a mapping
from states to actions—that maximizes the sum of all
discounted rewards. Under a fixed policy, the RL process
can be formalized as a Markov Decision Process (MDP).

One of the earliest efforts to apply RL to trajectory sim-
plification was introduced in [28], which targets the Min-
Error trajectory simplification problem in 2-dimensional
space. The authors recast the simplification process as
an RL problem, where at each step the agent chooses to
either retain or discard the current trajectory node. The
reward signal is defined as the reduction in simplifica-
tion error caused by the action. The state representation
encodes a set of handcrafted features derived from the
local geometry and the partially simplified trajectory
observed so far. The transition model updates these
features based on the selected action.

Building on this idea, [29] proposed a multi-agent
deep reinforcement learning approach to address the
Error-Bounded version of the problem. In their design,
one agent is responsible for determining whether a
node should be kept, thereby initiating a new simplifica-
tion window, while a second agent identifies redundant
nodes within that window that can be safely excluded
without violating the predefined error constraint. Both
agents rely on explicitly engineered state representations,
action definitions, and reward functions that are tightly
coupled to the 2-dimensional spatial structure.

Later, [30] extended the RL-based paradigm to op-
erate over an entire trajectory dataset, rather than in-
dividual trajectories, aiming to produce collective sim-
plification policies that generalize across samples. Sepa-
rately, [31] introduced a novel sequence-to-sequence-to-
sequence (S3) neural framework for 2-dimensional tra-
jectory simplification. Their model incorporates a train-
able encoder-decoder-based “compressor” and a learn-
able “reconstructor” that estimates the reconstruction
error between the simplified and original trajectories,
enabling fully differentiable end-to-end optimization.

Despite these advances, a common limitation re-
mains: these approaches are inherently restricted to 2-
dimensional trajectories. The structure of their reward
models, state encodings, and even action definitions
heavily rely on 2-dimensional geometric priors (e.g.,
angles, distances in a plane), making them difficult or
infeasible to generalize to high-dimensional trajectory
data, such as those found in network systems, robotics,
or multivariate temporal domains.

VI. Conclusion

This work presents a new problem, Network Tra-
jectory Protection (NTP), motivated by the increasing
need to balance trajectory utility and privacy in multi-
dimensional network environments. While traditional
trajectory simplification algorithms are confined to 2-

dimensional settings, our formulation generalizes to ar-
bitrary dimensions. We formally prove that the NTP
problem is NP-hard, highlighting its theoretical complex-
ity. To address this challenge, we design a greedy algo-
rithm. The experimental results across various datasets
show the superiority of the proposed algorithm. Future
work may extend this direction to dynamic networks.

References
[1] S. Chakrabarty and D. W. Engels, “Secure smart cities framework

using iot and ai,” in 2020 IEEE Global Conference on Artificial
Intelligence and Internet of Things (GCAIoT), 2020.

[2] X. Zhao, J. Qiao, X. Huang, C. Wang, S. Song, and J. Wang,
“Apache tsfile: An iot-native time series file format,” Proceedings
of the VLDB Endowment, vol. 17, no. 12, pp. 4064–4076, 2024.

[3] T. Chang and O. Khan, “Rapdad: A low latency desynchroniza-
tion approach for 6tisch-based asset tracking networks,” IEEE
Transactions on Industrial Informatics, pp. 1–13, 2025.

[4] A. Rejeb, K. Rejeb, H. Treiblmaier, A. Appolloni, S. Alghamdi,
Y. Alhasawi, and M. Iranmanesh, “The internet of things (iot) in
healthcare: Taking stock and moving forward,” Internet of Things,
vol. 22, p. 100721, 2023.

[5] F. Al-Turjman, M. H. Nawaz, and U. D. Ulusar, “Intelligence in
the internet of medical things era: A systematic review of current
and future trends,” Computer Communications, vol. 150, pp. 644–
660, 2020.

[6] N. Meratnia and A. Rolf, “Spatiotemporal compression tech-
niques for moving point objects,” in International Conference on
Extending Database Technology. Springer, 2004, pp. 765–782.

[7] M. Potamias, K. Patroumpas, and T. Sellis, “Sampling trajectory
streams with spatiotemporal criteria,” in 18th International Confer-
ence on Scientific and Statistical Database Management, 2006.

[8] H. Li, L. Kulik, and K. Ramamohanarao, “Spatio-temporal tra-
jectory simplification for inferring travel paths,” in SIGSPATIAL,
2014, pp. 63–72.

[9] J. Muckell, J.-H. Hwang, V. Patil, C. T. Lawson, F. Ping, and
S. Ravi, “Squish: an online approach for gps trajectory compres-
sion,” in Proceedings of the 2nd international conference on computing
for geospatial research & applications, 2011, pp. 1–8.

[10] J. Muckell, P. W. Olsen, J.-H. Hwang, C. T. Lawson, and S. Ravi,
“Compression of trajectory data: a comprehensive evaluation and
new approach,” GeoInformatica, vol. 18, no. 3, pp. 435–460, 2014.

[11] V. Chvatal, “A greedy heuristic for the set-covering problem,”
Math. Oper. Res., vol. 4, no. 3, p. 233–235, Aug. 1979.

[12] M. R. Garey and D. S. Johnson, Computers and Intractability; A
Guide to the Theory of NP-Completeness. USA: W. H. Freeman &
Co., 1990.

[13] K. G. Jamieson and R. D. Nowak, “Active ranking using pairwise
comparisons,” in NIPS, 2011.

[14] W. Wang, R. C.-W. Wong, and M. Xie, “Interactive search for one
of the top-k,” in SIGMOD. New York, NY, USA: ACM, 2021.

[15] R. C.-W. W. Weicheng Wang and M. Xie, “Interactive search with
mixed attributes,” in ICDE, 2023.

[16] J. Muckell, P. W. Olsen, J.-H. Hwang, C. T. Lawson, and S. Ravi,
“Compression of trajectory data: a comprehensive evaluation and
new approach,” GeoInformatica, vol. 18, no. 3, pp. 435–460, 2014.

[17] R. Bellman, “On the approximation of curves by line segments
using dynamic programming,” Communications of the ACM, vol. 4,
no. 6, p. 284, 1961.

[18] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm
for segmenting time series,” in Proceedings 2001 IEEE international
conference on data mining. IEEE, 2001, pp. 289–296.

[19] C. Long, R. C.-W. Wong, and H. Jagadish, “Trajectory simplifi-
cation: On minimizing the direction-based error,” VLDB, vol. 8,
no. 1, pp. 49–60, 2014.

[20] D. Zhang, M. Ding, D. Yang, Y. Liu, J. Fan, and H. T. Shen,
“Trajectory simplification: an experimental study and quality
analysis,” VLDB, 2018.

[21] X. Lin, J. Jiang, S. Ma, Y. Zuo, and C. Hu, “One-pass trajectory
simplification using the synchronous euclidean distance,” The
VLDB Journal, vol. 28, no. 6, pp. 897–921, 2019.

[22] J. Liu, K. Zhao, P. Sommer, S. Shang, B. Kusy, and R. Jurdak,
“Bounded quadrant system: Error-bounded trajectory compres-
sion on the go,” in ICDE, 2015, pp. 987–998.

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 47

[23] J. Liu, K. Zhao, P. Sommer, S. Shang, B. Kusy, J.-G. Lee, and
R. Jurdak, “A novel framework for online amnesic trajectory com-
pression in resource-constrained environments,” TKDE, vol. 28,
no. 11, pp. 2827–2841, 2016.

[24] X. L. S. Ma and H. Z. T. W. J. Huai, “One-pass error bounded
trajectory simplification,” VLDB, vol. 10, no. 7, 2017.

[25] C. Long, R. C.-W. Wong, and H. Jagadish, “Direction-preserving
trajectory simplification,” VLDB, vol. 6, no. 10, pp. 949–960, 2013.

[26] B. Ke, J. Shao, Y. Zhang, D. Zhang, and Y. Yang, “An online
approach for direction-based trajectory compression with error
bound guarantee,” in Asia-Pacific Web Conference. Springer, 2016.

[27] W. Cao and Y. Li, “Dots: An online and near-optimal trajectory
simplification algorithm,” Journal of Systems and Software, 2017.

[28] Z. Wang, C. Long, and G. Cong, “Trajectory simplification with
reinforcement learning,” in 2021 IEEE 37th International Conference
on Data Engineering (ICDE). IEEE, 2021, pp. 684–695.

[29] Z. Wang, C. Long, G. Cong, and Q. Zhang, “Error-bounded
online trajectory simplification with multi-agent reinforcement
learning,” in Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, 2021, pp. 1758–1768.

[30] Z. Wang, C. Long, G. Cong, and C. S. Jensen, “Collectively
simplifying trajectories in a database: A query accuracy driven
approach,” in ICDE, 2024, pp. 4383–4395.

[31] Z. Fang, C. He, L. Chen, D. Hu, Q. Sun, L. Li, and Y. Gao, “A
lightweight framework for fast trajectory simplification,” in ICDE,
2023, pp. 2386–2399.

Qianting Chen is currently a Research Assis-
tant at Shenzhen University, China. She ob-
tained a B.S. degree in Computer Science from
Shenzhen University in 2017 and is currently
pursuing a M.S. degree in Artificial Intelligence
Application at the University of Macau. Her
current research interests include database sys-
tems, data mining, deep learning.

Lulu Wang received the M.Sc. degree in Sys-
tems Science from Beijing University of Posts
and Telecommunications in 2023. She is cur-
rently pursuing the Ph.D. degree in Computer
Science at Beijing Normal University. Her re-
search interests include database systems and
causal inference.

Ke Chao received the BS degree in Computer
Science and Technology from Beijing Normal
University in 2022. She is currently working
toward the Ph.D. degree in Computer Science
at Beijing Normal University. Her research in-
terests include crowdsourcing, causal inference
and game theory.

Weicheng Wang is currently a Post-Doctoral
Fellow at the Chinese University of Hong Kong.
He worked as a Post-Doctoral Fellow at the
Hong Kong University of Science and Tech-
nology in 2024. He received his Ph.D. degree
from the Hong Kong University of Science and
Technology in 2023 and his BEng degree from
the Beijing Normal University in 2018. His re-
search interests include database, data mining,
and machine learning.

Rui Mao is currently a Distinguished Professor
at Shenzhen University, China. He received his
Ph.D. in Computer Science from the University
of Texas at Austin in 2007, and his M.S. and
B.Eng. degrees from the University of Science
and Technology of China in 2000 and 1997,
respectively. His research interests span big data
analysis and management, content-based simi-
larity search for multimedia and biological data,
and data mining.

