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Abstract 
This article presents a Systematic Literature Review (SLR) of studies applying Deep 
Learning (DL) models to forecast Electricity Consumption (EC) using univariate time 
series. After screening 2,800 articles through well-defined inclusion and exclusion 
criteria, 62 studies were selected for analysis. These studies were systematically 
organized to highlight DL architectures, performance metrics, preprocessing practices, 
and key methodological choices. The review uniquely focuses on univariate contexts—
an underexplored but relevant scenario for energy forecasting, especially where data 
availability is limited. The paper identifies dominant trends, methodological gaps, and 
emerging challenges, offering a critical foundation for future research in the field.  

Keywords 
Systematic Literature Review, Deep Learning, Univariate Time Series, Electricity 
Consumption Prediction, Energy Forecasting 

1. Introduction  

Electricity is fundamental to modern societies and economies. Its importance 
continues to grow as electricity-based technologies, such as electric vehicles, electric 
public transportation, industrial automation and robotics, become increasingly 
popular. According to the International Energy Agency (IEA), global electricity 
demand increased by 4.3% in 2024 and will continue to grow at a rate of close to 4% 
per year until 2027. Furthermore, power generation is the largest source of carbon 
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dioxide (CO2) emissions worldwide, with electricity and heat generation accounting 
for approximately 40% of global energy-related CO₂ emissions [1]. Consequently, 
modern energy systems require a continuous supply to guarantee safe and affordable 
access to electricity while reducing global CO2 emissions, which is one of the main 
challenges for governments and researchers. In the field of energy planning, accurate 
load forecasts are essential for infrastructure development and long-term investment 
decisions and, from an environmental perspective, play a crucial role in reducing 
carbon footprints and promoting sustainability. Thus, an accurate prediction of 
electricity consumption (EC) with minimal error is imperative. To this end, 
researchers and experts strive to develop the most efficient and advanced methods for 
load forecasting [2].   
One of the approaches used for load forecasting is data-driven models. The recent 
advancements in smart grid technology and the Internet of Things (IoT) have 
significantly increased the volume of data related to EC. This newfound accessibility 
has sparked researchers' interest in utilizing various data-driven models to forecast 
energy usage [3]. These models leverage historical and real-time data, i.e. Time 
Series (TS), to predict future energy demand. In recent years, Deep Learning (DL) 
models have emerged among these techniques due to their improved capabilities in 
handling these large datasets [4], as well as processing to learn various levels of 
abstraction, facilitating feature extraction from TS, being now commonly deployed 
for its analysis [5]. 
A TS is a sequence of data points x(t), where t represents time, and x reflects a 
variable that changes over time, such as temperature or electricity consumption [6]. 
TS are used to model and forecast EC patterns [7], enabling accurate predictions with 
Deep Neural Networks (DNNs) such as Long Short-Term Memory (LSTM) and 
Bidirectional Long Short-Term Memory (BLSTM). 
DL offers clear advantages for TS analysis over traditional methods, which often 
struggle with complex, non-linear patterns in large datasets like electricity 
consumption TS. DL models can automatically extract features using techniques such 
as convolution and attention, reducing the need for manual engineering and enabling 
accurate predictions from large volumes of data. This capability makes them 
particularly promising for addressing the growing complexity associated with big 
data management, a challenge that has become especially relevant in recent years [4]. 
Furthermore, DL models, when compared to traditional (“shallow”) neural networks, 
can retain and store more information in their neurons, allowing generalization to 
patterns not explicitly present in the training data [4]. However, a drawback of DL 
methods is that they are often challenging to train and involve a substantial number 
of hyperparameters [4]. In [8] the authors consider computational complexity as a 
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drawback of DL as well.  
Recent advances in the field of DL have made DNNs a powerful tool for TS 
forecasting. The evolution of DNN architectures stands out, with models such as 
LSTM  [9], Gated Recurrent Units (GRU) [10] and Transformer [10]  which are 
especially suitable for temporal prediction tasks, as they can capture both short- and 
long-term dependencies in energy usage data, handling complex and non-linear 
relationships more effectively than traditional methods [11],[12]. The models 
developed for such tasks are described in many contexts, such as in residential 
environments [13],[14], in special environments such as schools and factories 
[15],[16], in buildings [17], [18], [19], [20], among others. 
Although multivariate time series models are increasingly explored in energy 
forecasting, many real-world applications—especially in developing regions, small-
scale buildings, or emerging IoT-based monitoring systems—still rely heavily on 
univariate energy consumption data. These contexts often lack access to 
comprehensive datasets that include weather, occupancy, or external variables, either 
due to limited infrastructure or privacy restrictions. Therefore, evaluating the 
effectiveness of deep learning architectures under univariate settings remains a 
critical and underexplored challenge. Focusing on univariate time series not only 
enhances the applicability of the findings to data-scarce environments but also 
enables the assessment of model performance in more constrained, yet operationally 
common, scenarios in the energy domain. 
This systematic literature review provides a novel and comprehensive synthesis of 
recent advancements in applying DL techniques to univariate energy consumption 
(EC) time series forecasting. While multivariate models dominate the literature, this 
review focuses exclusively on univariate approaches, which remain highly relevant 
in data-scarce or cost-constrained environments. By mapping the prevalence, 
performance, and limitations of 62 studies published between 2019 and 2025, this 
review identifies critical methodological trends, such as the dominance of LSTM-
based architectures, the underutilization of statistical validation, and the limited 
adoption of automated hyperparameter optimization techniques. The analysis 
contributes to the field by highlighting current research gaps—particularly the lack 
of comparative benchmarks between univariate and multivariate forecasting 
models—and by offering a clear roadmap for future experimental studies and applied 
implementations in real-world energy systems. 
The remainder of this article is structured as follows: Section 2 details the 
methodology, including the research questions, search string, inclusion and exclusion 
criteria, and a quantitative summary of the selected studies. Section 3 presents a 
descriptive analysis and graphical representations. Section 4 discusses the main 
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findings, addresses the research questions, outlines future challenges, and concludes 
the review. 

2. Research Methodology  

ML and DL techniques are increasingly explored for forecasting EC using time 
series, aiming to optimize usage and reduce costs sustainably [7]. This article presents 
a Systematic Literature Review (SLR) to assess the current research landscape, 
identify knowledge gaps, and propose directions for future studies. 
Following Kitchenham’s guidelines [21], a SLR should be conducted based on a 
predefined search strategy. Based on the proposals of the Kitchenham [21] and 
Alazemi et al. [22] and with the necessary adaptations to conduct this SLR, the 
applied methodology includes the following steps: (i) specifying the Research 
Questions (RQs) and search string; (ii) inclusion/exclusion criteria; (iii) literature 
search results; (iv) descriptive analysis; (v) review findings and (vi) future challenges. 

2.1. Specifying the research questions and search string 

The aim of this systematic review was to investigate DL architecture models for 
predicting EC. The following research questions were formulated: 

RQ1 - What are the most used DL architecture to predict energy consumption (EC) 
using univariate time series data? 

RQ2 - What performance metrics are used to evaluate deep learning models in EC 
prediction tasks, and how do they influence the interpretation of results? 

RQ3 - What data preprocessing and feature engineering techniques are commonly 
applied in DL models for univariate time series energy prediction? 

RQ4 – Are statistical tests performed to support conclusions? 

RQ5 - What are the main challenges and limitations reported in studies using deep 
learning for univariate time series energy consumption prediction? 

The initial search string used was: ("EC Prediction") AND ("deep learning" or 
"LSTM" OR "BLSTM" OR "CNN-LSTM" OR "GRU" OR "Reservoir" OR 
"Transfer Learning" OR "autoencoder"). The acronym "EC" (Electricity 
Consumption) was initially used in the search strategy. However, as it retrieved 
studies unrelated to the energy domain. To improve precision and relevance, the full 
term “Electricity Consumption” was incorporated into the search. 
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2.2. Inclusion/exclusion criteria 

Studies were included if they (i) focused on the application of DL techniques to 
electricity consumption (EC) forecasting; (ii) used univariate time series data; (iii) 
were based on EC as the primary data source; (iv) were published in peer-reviewed 
journals; and (v) were published between 2019 and 2025. 
Studies were excluded if they (i) used multivariate time series with external variables 
(e.g., weather, occupancy, or building features); (ii) focused on demand forecasting 
instead of electricity consumption; (iii) targeted specific appliances or energy sources 
(e.g., solar, wind); (iv) addressed related topics without applying DL to EC 
forecasting (e.g., energy management, IoT security); (v) were review articles, 
conference papers, or academic theses. 

2.3. Results of the systematic search 

Figure 1 shows the overview of the bibliographic research. Based on the research 
questions, the search string was defined to locate the studies to be analyzed in the 
Google Scholar, Science Direct, and Springer databases. With the aim of considering 
current trends on the subject, as well as its future horizons, only articles published 
between 2019 and 2025 were included. 2000 files were found in Google Scholar, 631 
in the Science Direct database, and 169 in Springer, totalling 2800 files, to which the 
first filter was applied. The titles of the articles were analyzed to determine if they 
addressed EC TS forecasting using DL. Articles that did not meet these criteria were 
removed from the pool of articles, resulting in the exclusion of 1973 articles, and then 
827 articles were analyzed using the second filter. The second filter was based on the 
inclusion and exclusion criteria (see item 2.2), requiring reading of the abstracts and 
conclusions and, sometimes, the full text. At this stage, 540 articles were excluded. 
Finally, 287 articles were read in full to assess, once again, whether all inclusion and 
exclusion criteria were met. As a result of this stage, 225 articles were excluded, with 
the main reasons for exclusion being the use of external data such as weather 
information, the objective of the work being the prediction of demand rather than 
consumption, and some studies focusing on predicting consumption for a specific 
piece of equipment or context. 
The final SLR included 62 studies. The following information was extracted: title, 
publication date, deep learning architecture, use of IoT, preprocessing, metaheuristics, 
comparison with machine learning, performance metrics, and statistical tests. 
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Figure 1. Overview of the bibliographic research 

3. Descriptive analysis  

Figures 2 (a, b, c and d) shows the first part of the descriptive analysis of the 
articles assessed in the review. As Figure 2a shows, the investigation of DL methods 
for univariate TS has increased over the years. In 2022 and 2024, the number of 
published articles (12 and 15, respectively) approximately doubled compared to earlier 
years (6 articles in 2019, 6 in 2020, and 5 in 2021). According to Figure 2b, 67.74% 
of the studies employed two or more DL architectures, while 32.26% used only one 
architecture, often for comparison with conventional machine learning (ML) models 
or to assess the impact of different Optimization Metaheuristics (OMHs) during 
training. Figure 2c indicates that only 19.67% of the articles used IoT-generated 
datasets, while 80.33% relied on conventional datasets. Notably, publicly available 
IoT datasets were not classified as datasets "obtained from IoT systems" in this review. 
Figure 2d shows that 32.26% of the articles used a single time series, while 67.74% 
analyzed multiple univariate TS. 
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Figure 2. Descriptive analysis of the articles assessed: (a) Number of articles per 
year since 2019; (b) Comparison between multiple DL architectures; (c) Usage of 
IoT data; (d) Prediction of multiple univariate TS data 

 
Figures 3 (a, b, c and d) continue the descriptive analysis with other significant trends. 
As depicted in Figure 3a, 29.03% of the studies integrated OMHs with DL 
architectures. However, only 3.23% used Time Series Cross-Validation (TSCV) 
(Figure 3b). Figure 3c reveals that 62.90% of the reviewed articles conducted 
comparative analysis between DL and traditional ML models. Finally, Figure 3d 
highlights a critical gap: only 9.68% of the articles applied statistical tests to support 
their conclusions. This lack of statistical validation may undermine the robustness of 
performance comparisons and conclusions drawn in many studies. 
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Figure 3. Descriptive analysis of the articles assessed (continued): (a) Usage of OMH; 
(b) Usage of TSCV; (c) Comparison between DL and conventional ML; (d) Usage of 
statistical tests 
 
Figure 4 shows the number of occurrences of the most relevant DL architectures in 
the present review. Table 1 shows the architectures with their main references, as 
well as the articles reviewed that used them. Other DL architectures were also used 
such as gated-FCN [23]. Nested LSTM and Stacked LSTM were considered as 
LSTM variants. 
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Figure 4. Occurrences of the most relevant DL architectures found in the review 
Table 1. Occurrence of the most relevant DL architectures in the present review 
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DL Architecture Number of 
Occurrences 

Articles in the present review 
 

Deep MLP 4  [25], [58], [14], [64] 
LSTM [65]  
 

44 [47], [57], [33], [66], [24], [25], [34], 
[35], [18], [36], [58], [26], [67], [60], 
[68], [14], [45], [29], [53], [52] [15], [16], 
[27], [28], [48], [69], [59], [70], [71], 
[72], [7], [61], [44][73], [49], [74], [40], 
[75], [64], [63], [62], [51], [76], [77]  

BLSTM [78]  12 [47], [25], [27], [48], [7], [73], [49], [30], 
[50] 
[40], [32], [51] 

GRU [10]  
 

14 [33], [25], [34], [35], [19], [36], [68], 
[14], [15], [17], [44], [49], [63],[43]  

Transformer [79]  3 [15], [63], [76] 
CNN [80]   9 [13], [52], [16], [28], [48], [17], [73], 

[40], [42] 
GAN [81]  1 [20] 
 TCN [82] 4 [34], [36], [15], [69] 
Hybrid Architecture 37 [33], [24], [25], [34],[35], [18], [19], [36], 

[83], [26], [37], [38], [68],[39], [14], [45], 
[29], [16], [27], [28], [48], [17], [59],  
[17], [23], [72], [44], [46], [30], [31], 
[40], [32], [63], [41], [42], [43], [76] 
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(i) LSTM architecture, in addition to being the most widely used, was also 
employed in hybrid architectures, often combined with CNN, GRU, 
BLSTM, Prophet. Most studies adjusted LSTM hyperparameters manually 
through trial-and-error, although a few implemented optimization 
metaheuristics such as Genetic Algorithms, PSO, or CVOA. Several studies 
also explored LSTM variants, including BLSTM, Enhanced LSTM 
(ILSTM), Stacked LSTM, and hybrid models incorporating Kalman filters 
or wavelet transforms.  

(ii) Hybrid deep learning architectures have been used to improve energy 
consumption prediction by combining spatial feature extractors (e.g., CNN, 
signal decomposition) with temporal sequence models (e.g., LSTM, GRU, 
BLSTM). Several studies have employed decomposition techniques, such as 
VMD, EEMD, or wavelet transforms, to reduce noise and clarify patterns 
prior to training [18],[24],[25],[26],[27],[28],[29],[30],[31],[32]. These 
hybrid models often target long-term, multi-stage prediction tasks, 
outperforming traditional standalone models 
[33][34],[35],[36],[37],[38],[39],[29],[40],[41],[42]. In several cases, 
hyperparameter tuning has been optimized using metaheuristics such as 
PSO, GA, and IDBO [18],[24],[26],[38],[28],[30],[32],[43].These models 
have been applied to residential, industrial, and smart grid datasets, 
confirming their versatility and effectiveness [14],[17],[16],[35],[27],[23], 
[44],[45],[46],[31],[42]. 

(iii) Bidirectional LSTM (BLSTM) have been frequently applied in multi-step or 
hourly forecasting tasks, particularly in residential, public building, and 
smart grid contexts [47], [25], [48], [49], [50], [40]In many cases, BLSTM 
has been integrated into hybrid architectures, commonly paired with CNN 
or decomposition techniques such as wavelet transform or VMD, enhancing 
feature extraction and sequence learning [25],[27],[30],[32],[51]. Overall, 
BLSTM-based models have consistently demonstrated competitive or 
superior performance compared to unidirectional LSTM, particularly in 
scenarios that require the recognition of symmetric or bidirectional patterns 
in energy data. 

(iv) GRU has been applied as a standalone model or in hybrid architectures, often 
combined with CNN, LSTM or feedforward layers to balance computational 
efficiency with sequence modelling capability, as in [19]. Designed as a 
simplified alternative to LSTM, GRU reduces model complexity by using 
fewer gates, making it suitable for scenarios with limited computational 
resources or smaller datasets. Despite its superior computational efficiency 
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(fewer parameters), GRU did not outperform LSTM in most cases, 
especially on tasks that unlock long-term memory or more accurate 
predictions [15],[33]. Also, in [33] and [49] LSTM outperformed GRU on 
datasets with more complex temporal structures. In other cases, GRU has 
been effectively integrated into hybrid frameworks (e.g., CNN-GRU in [17] 
GRU+FF in [19]) to improve performance in specific scenarios.  

(v) CNN has been used primarily in hybrid architectures, most paired with 
LSTM, GRU, or BLSTM, typically serving as a feature extractor. Some 
models incorporate optimization strategies, attention mechanisms, or 
pooling techniques to improve CNN performance. Despite their success, 
CNN effectiveness has sometimes been limited by their inability to capture 
long-range temporal dependencies without additional recurrent or 
transformer-based layers, as the authors present in in [13],[16],[28],[41] and 
[52]. 

Although the main objective of this review is to analyze the application of DNNs in 
univariate energy consumption forecasting, our analysis included comparative studies 
with conventional Machine Learning (ML) models, such as Support Vector 
Regression (SVR), Random Forest (RF), ARIMA or XGBoost (XGB). These 
classical methods were not part of the inclusion criteria, but were recorded during 
data extraction, as identified in Table 2 and quantified in Figure 5. 

 
 

 

 

 

 

 

 

 
Figure 5. Occurrences of the most relevant conventional ML architectures and 
statistical models found in the review that were used to compare with DL 
models 
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Table 2. List of articles with the occurrences of the most relevant conventional ML 
architectures and statistical models found in the review that were used to compare 

with DL models 

The most relevant OMHs and their occurrence are shown in Table 3 and other OMHs 
such as FFOA [59], Coronavirus Optimization Algorithm (CVOA) [53], 
Gravitational Search Algorithm (GSA) [54], Flower Pollination Algorithm 
(FPA)[55],  and Cat Swarm Optimization (CSO) [56] were also used in the articles 
reviewed. 

Table 3. Occurrence of the most relevant OMHs in the articles reviewed 

 

 

 

ML Model Number of 
Occurrences 

Articles in the present review 

ANN 8 [13], [24], [25], [20], [26], [70], 
[71], [30] 

Decision 
Tree/Classification and 
Regression Trees 
(DT/CART) [84] 

4 [25], [59],[51] 

Random Forest [85] 8 [25], [18], [58], [59],  [61], [73], 
[50], [51] 

GBT [86][87] XGB [88] 4 [71], 50], [73], [46] 
ARIMA [89]  14 [24], [26], [37], [68], [16], [27], 

[28], [48], [23] [75], [32], [41], [62], 
[77] 

Holt-Winters [90]  1 [27] 
Support Vector 
Regression [91] [92] 

15 [13], [26], [39], [24], [25], [18], 
[58], [20], [14], [29], [27], [70], 
[71],[72], [73], [51]  

 

OMH Number of 
Occurrences 

Articles in the present 
review 

Genetic  Algorithm (GA) [93] 3 [47], [26], [60] 
Particle Swarm Optimization 
(PSO) [94] 

4 [18], [58], [26], [38] 

Grey Wolf Optimization 
(GWO)[95]  

1 [38] 

Differential Evolution (DE)  
[96] 

1 [60] 

Bayesian Optimization (BO) 
[97] 

2 [36], [44] 
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Figure 6 shows the number of occurrences of the most relevant metrics found in the 
present review.  

 

 

 

 

 

 

 

 
Figure 6. Occurrences of the most relevant performance metrics found in the review 

4. Review finding, discussion, and future challenges 

In this section, we present the directions found for the initial questions, as 
outlined in section 2.1, and we highlight some important points identified in the 
analysis of the 62 works in this review.  

4.1. Answers to the Research Questions 

RQ1 - What are the most used DL architecture to predict energy consumption (EC) 
using univariate time series data? The most used DL architectures among the 
analyzed works are LSTM, Hybrid Architectures, GRU, CNN, BLSTM, CNN, MLP, 
TCN, Transformer and GAN (considering from the highest to the lowest number of 
occurrences - see Figure 4). Patterns observed in the use of the most cited 
architectures were described in section 3. 

RQ2 - What performance metrics are used to evaluate deep learning models in EC 
prediction tasks, and how do they influence the interpretation of results? The most 
adopted performance metrics in the reviewed studies are RMSE, MAE, MAPE, and 
R². As shown in Section 3 (see figure 6), RMSE is the predominant choice, often 
accompanied by MAE and MAPE in a complementary fashion. However, few studies 
justify their choice of metric based on the nature of the dataset or the prediction 
objective. RMSE and MAE are widely used due to their interpretability and ease of 
comparison across studies, yet they differ in sensitivity to outliers—RMSE penalizes 
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large deviations more heavily. Despite this, many articles do not explore this 
distinction, and metric selection appears to follow conventions rather than 
methodological reasoning. Moreover, the exclusive use of point-based error metrics, 
without statistical tests or confidence intervals, limits the robustness of comparisons 
between models. Only a small portion of the studies complement their evaluations 
with statistical significance tests or uncertainty analysis. This suggests a 
methodological gap and highlights the need for standardized benchmarking practices 
in DL-based EC forecasting. Future studies should be encouraged to combine 
multiple metrics and adopt statistical validation techniques to ensure more reliable 
model comparisons. 

RQ3 - What data preprocessing and feature engineering techniques are commonly 
applied in DL models for univariate time series energy prediction? Normalization, 
especially Min-Max scaling, is the most used technique, followed by frequent use of 
downsampling methods, such as those in [19],[47],[57],[33],[58]. Some studies 
applied data reshaping methods [20],[26],[52], such as windowing or sequence 
framing. Correlation techniques were less frequent, and the use of artificial data 
generation appears in some works such as [20] and [59]. These preprocessing 
strategies enhance model performance and ensure result reliability across different 
EC prediction scenarios. 

RQ4 - Are the research results supported by statistical tests? It was observed that 
there is little use of statistical tests in the reviewed works [33],[60],[16],[7],[61],[62] 
Despite requiring repeated runs, statistical tests in time series forecasting are 
generally not computationally expensive and are essential to confirm whether 
performance differences are significant or due to random variation. They also support 
model generalization, providing a more robust basis for comparing models. 

RQ5 - What are the main challenges and limitations reported in studies using deep 
learning for univariate time series energy consumption prediction?  
(i) Limited performance in long-term forecasting: Many DL models showed 

reduced accuracy when applied to long-term prediction tasks. This is often 
due to their inability to capture cross-period variations or seasonal 
dependencies, which are critical in extended forecasting windows [41]. 

(ii) (ii) Vanishing/Exploding Gradient Issues in Recurrent Networks: Despite 
the popularity of RNNs and LSTMs, several studies have reported 
difficulties in capturing long-range dependencies due to gradient instability. 
These negative impacts affect model training and prediction robustness [63]. 

(iii) High computational cost of advanced architectures: While architectures 
such as Transformers have shown excellent predictive capabilities, their 
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application is often constrained by the computational demands required for 
training and inference. This limitation hinders their use in embedded 
systems, IoT devices, and resource-constrained environments [41]. 

(iv) Lack of statistical validation: Only a small fraction of the reviewed studies 
(9.68%) applied statistical tests to support the significance of their results. 
This omission compromises the reliability of model comparisons and may 
lead to misleading conclusions based solely on performance metrics. 

(v) Manual hyperparameter tuning: In most studies, hyperparameter 
optimization was performed manually through trial and error, which may 
not lead to optimal settings and often lacks reproducibility. Few studies have 
employed metaheuristics or AutoML frameworks to automate this process. 

(vi) Limited use of real-world IoT data: Although smart metering and IoT 
devices are increasingly available, only 19.67% of the studies used real IoT-
collected datasets. This raises concerns about the generalizability of findings 
when models are trained on publicly available or simulated datasets that do 
not reflect practical noise or system behavior. 

(vii)  Narrow focus on univariate inputs: While this SLR deliberately targeted 
univariate approaches, several studies acknowledged that excluding external 
variables (e.g., weather, occupancy, pricing) may reduce the predictive 
accuracy in real-world applications. 

4.2. Critical observations emerging from the review 

The in-depth analysis of the 62 reviewed studies reveals broader patterns that 
complement the answers to the research questions and suggest directions for future 
research. 

(i) Implementation lag and adoption gap: A clear delay was observed between 
the theoretical development of DL architectures in Computer Science and 
their application in EC forecasting. For instance, although LSTM was 
proposed in 1997, it is still predominant, while more recent architectures like 
TCN (2018) are less adopted. This gap suggests a slow integration of 
innovative models into real-world energy systems, possibly due to barriers 
in computational resources or domain adaptation. 

(ii) Underutilization of automated optimization: Despite the increasing 
complexity of DL models, only a minority of studies applied metaheuristics 
or AutoML tools for hyperparameter tuning. Manual trial-and-error remains 
the norm, which hampers reproducibility and performance scalability. 
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AutoML tools, though promising, were cited in just a few papers, indicating 
a missed opportunity for model efficiency and robustness. 

(iii) Limited realism in datasets: Only 19.67% of the works used datasets 
collected directly from IoT systems. This lack of real-world data reduces the 
ecological validity of many models, as they may not reflect the variability, 
noise, and constraints typical of operational energy systems. 

(iv) Lack of comparative analyses between univariate and multivariate TS: 
Although this review focused on univariate TS by design, the absence of 
studies comparing the predictive power and trade-offs between univariate 
and multivariate approaches represents a significant research gap. Such 
comparisons would clarify when the added complexity of multivariate 
models is justified. 

These observations indicate the need for a stronger methodological framework 
that integrates real-world validation, statistical robustness, and automated model 
optimization to enhance the relevance and applicability of DL-based forecasting 
models. 

4.3. Future challenges 

Despite the growing maturity of DL approaches in electricity consumption (EC) 
forecasting, several challenges remain open and require further research. Based on 
the findings of this review, four key directions for future investigation are identified. 
The table 4 summarizes key limitations identified in the reviewed studies, their 
justifications, and possible directions for future investigations: 
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Table 4. Future research challenges in electricity consumption forecasting using DL 

5. Conclusions 

This systematic literature review synthesized and analyzed 62 peer-reviewed 
articles that applied DL models to electricity consumption (EC) forecasting using 
univariate time series. The review provided a comprehensive overview of the most 
employed architectures—such as LSTM, GRU, CNN, BLSTM, and Transformer—
alongside the evaluation metrics, preprocessing strategies, and experimental practices 
adopted in recent years. 
The findings highlight a growing interest in leveraging DL for univariate EC 
forecasting, despite limitations in model generalization, the underuse of statistical 
testing, and inconsistent approaches to hyperparameter tuning. The choice of 
univariate time series, although more constrained, revealed to be a viable strategy in 
data-limited or cost-sensitive contexts. 
By mapping current practices and gaps, this review supports future research 
directions, including comparative studies between univariate and multivariate time 

Future Challenge Justification Research Directions 
Comparative 
Evaluation: 
Univariate vs. 
Multivariate TS 

Univariate models 
dominate due to 
simplicity and data 
availability, but 
multivariate models may 
enhance accuracy. 

Design controlled 
experiments comparing 
univariate and 
multivariate models; 
evaluate trade-offs in 
accuracy and 
complexity. 

Robustness and 
Generalization 
Across Datasets 

Performance on isolated 
datasets may not 
generalize; robust 
validation across diverse 
datasets is needed. 

Adopt cross-dataset 
evaluations, use 
statistical testing, and 
develop benchmarking 
protocols for 
reproducibility. 

Transfer Learning and 
Model Scalability 

Training from scratch is 
resource-intensive; 
transfer learning can 
improve efficiency and 
adaptability. 

Investigate pretrained 
models, assess 
transferability across 
domains; evaluate DL 
scalability for broad 
deployment. 

Ethical and Privacy 
Considerations 

IoT-based EC 
forecasting involves 
sensitive data, requiring 
ethical safeguards and 
privacy-preserving 
techniques. 

Implement federated 
learning and differential 
privacy; define 
governance frameworks 
and ensure algorithmic 
transparency. 
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series, enhanced benchmarking protocols, and the adoption of advanced techniques 
such as AutoML and transfer learning. The article contributes both a methodological 
reference for replication and a critical baseline for further advancement in this 
increasingly relevant field. 
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