
JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 1

Intrusion Prevention System Against Spoofed Data Frames at the
Electronic Control Unit Level

Zhengyuan Liu1, Weidong Yang2,3, Shuguang Wang4,5, Hongwei Fan1

1College of Information Science and Engineering, Henan University of Technology,
Zhengzhou,Henan,450000, China

2School of Artificial intelligence and Big Data, Henan University of Technology,Zhengzhou,Henan, 450000, China
3Hangzhou Institute of Technology, Xidian Universy, Hangzhou, Zhejiang,310000, China

4School of Computer Science and Technology, Xidian Universy, Xi’an, Shanxi,710126, China
5Shandong Institute of Standardization, Jinan, Shandong,250014, China

The Controller Area Network (CAN) serves as the backbone of modern vehicle networks, connecting multiple Electronic Control
Units (ECUs) and providing an efficient data transmission environment for the entire vehicle control system. With the advancement
of automotive intelligence, the methods for intruding upon in-vehicle CAN networks are becoming increasingly diverse, posing
significant threats to driving safety. However, existing Intrusion Detection Systems (IDSs) often require considerable time to detect
anomalies, potentially allowing malicious data frames to escape under current security mechanisms. Therefore, there is an urgent
need for an efficient anomaly detection and defense mechanism to enhance the security of CAN networks. This paper proposes an
ECU-level Intrusion Prevention System (IPS) based on statistical methods that does not require modifications to the existing ECU
architecture. By analyzing matrix area features generated from CAN data frame payloads, the system can determine normal ranges
for these feature parameters in an unsupervised manner. When detected data frame characteristics exceed predefined thresholds, the
system identifies them as anomalies, thereby achieving effective detection and defense against potential attacks. Experimental results
demonstrate that, under real attack scenarios and tampering attack scenarios, the system achieves detection rates of 99.76% and
96.5%, respectively, while maintaining a false positive rate of 0%. Additionally, the system is deployed on a low-cost STM32F407MINI
development board simulating ECU functionality, with a detection process lasting only 64 µs.

Index Terms—Controller Area Network, Electronic Control Unit, Intrusion Prevention System, Unsupervised, Payloads.

I. INTRODUCTION

THE Controller Area Network (CAN), serving as the
backbone network of in-vehicle networks, connects mul-

tiple Electronic Control Units (ECUs) to facilitate functions
such as vehicle body control, steering control, and engine
management. Consequently, an attack on the CAN network
poses a significant threat to driving safety. As early as 2010,
researchers had demonstrated the capability to infiltrate CAN
networks via the On-Board Diagnostics (OBD-II) interface.
By employing reverse engineering techniques, they were able
to inject false messages into the network and successfully
take control of the vehicle’s body[1].In the following years,
researchers developed various methods for remotely infiltrating
in-vehicle CAN networks. These methods included attacks via
Wi-Fi, Bluetooth, in-vehicle infotainment systems, GPS, and
Over-The-Air (OTA) technologies[2–6].

Due to the broadcast nature of data transmission in CAN
networks and the lack of authentication mechanisms in CAN
data frames, ECUs connected to the CAN network are vulnera-
ble to attacks involving forged messages within the network.To
address this issue, some researchers have proposed transmit-
ting authentication frames to verify the legitimacy of the send-
ing ECU [6, 7]. However, this approach undoubtedly imposes
additional overhead on CAN network communications.Other
researchers have suggested broadening the number of bits
in a CAN frame to incorporate authentication mechanisms

Manuscript received March 24, 2025; revised July 7, 2025. Corresponding
author: Shuguang Wang (email: 2869377@qq.com).

[8, 9]. However, designed that the CAN protocol specifies a
fixed frame format, this method is impractical for real-world
implementation.

Addressing vehicle security concerns, the automotive indus-
try has implemented multiple layers of security measures in
vehicles. These include protecting critical messages, ensuring
the integrity of ECUs, utilizing gateways to isolate data
transmission between different domains, deploying firewalls
and external network security interfaces, as well as adopting
Intrusion Detection Systems (IDS) and Intrusion Prevention
Systems (IPS) [10]. IDS and IPS differ from other security
mechanisms. For instance, gateway isolation can complicate
communication between different domains, and authentication
mechanisms may impose additional burdens on the bus. De-
ployed within the CAN network, IDS and IPS continuously
monitor and inspect data frames transmitted over the bus with-
out affecting normal communication. This approach minimizes
interference with existing systems and does not necessitate
modifications to the existing CAN protocol.[11].

Currently, there has been extensive research on IDS for
CAN networks. 1)Methods based on the physical characteris-
tics of CAN bus communications create unique fingerprints for
each ECU to detect anomalous frame transmissions [12, 13].
However, due to environmental factors such as temperature
and electromagnetic interference, it is challenging to maintain
high detection rates with this approach. 2)Anomaly detection
methods based on the sequence of CAN data frames [14, 15]
identify anomalies by detecting disruptions to the original
frame sequence order or periodicity caused by malicious

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 2

TCUMain Gateway

High-Performance Computing Devices

Domain Control Gateway

Powertrain BODY Chassis Control

CameraUltrasonic Sensors GPS Radar

ECU_F ECU_E ECU_D ECU_BECU_C

ECU_ACAN BUS

Sensors Network

Cloud Services

Satellite Data

OBD-II

IVI

Fig. 1. Schematic Diagram of In-Vehicle Network Attacks.An attacker can infiltrate the in-vehicle network through the On-Board Diagnostics (OBD) interface,
remote communication channels and In-Vehicle Infotainment(IVI) system. In severe cases, this can lead to the control of the vehicle, posing a serious threat
to driving safety.

frames. Nevertheless, when attackers reduce the frequency of
frame injection, the effectiveness of this method diminishes
significantly. 3)Anomaly detection methods based on the in-
trinsic features of data frames [16, 17], which often employ
deep learning techniques to extract features through image
and matrix transformations, classify normal and anomalous
frames. However, deep learning-based methods are difficult to
deploy in resource-constrained onboard systems. These IDSs
are trained using known attack models, making their efficiency
in detecting unknown attacks unverifiable. To address this
issue, unsupervised training-based IDS and online learning-
based IDS have been proposed [18, 19]. Unsupervised IDS
aims to identify common features of normal communication
data to handle unknown attacks; online learning IDS seeks to
modify existing model parameters when new types of attacks
emerge, thereby adapting to new threats. However, the IDS
proposed in [18] achieves a detection rate of only 91.7%. And,
the IDS introduced in [19] requires significant time for online
data sampling and model training.

Despite this, IDS can only detect attacks but lacks defensive
measures, whereas an IPS can prevent network attacks even
when other security mechanisms fail. Olufowobi et al. in [20]
proposed an IPS that detects attacks before data transmission
is completed, but it does not analyze the requirements be-
tween detection time and the time needed to stop the attack.
Matsumoto et al. in [21] introduced an IPS utilizing nodes
communicating on the CAN bus to monitor for abnormal
behavior, with the idea of sending error frames to mask the
transmission of anomalous data frames upon detecting an
attack. However, these methods require modifications to ECUs,
which undoubtedly increases the burden on the vehicle’s
system. Longari et al. in [22] proposed a method using CAN
fault confinement mechanisms to detect the connection status
between nodes and the bus, but it can only prevent attacks
from disconnected nodes. Cheng et al. in [23] proposed a

method providing shifted legitimate identifiers to each node,
aiming to expose the IDs of false data frames. Nevertheless,
this approach cannot defend against attacks that have already
been injected into the bus. Paulo et al. in [24] proposed an
IPS based on unsupervised learning targeting anomalous data
frames with legitimate identifiers, intending to discard such
frames before they can harm the vehicle system. However,
unsupervised detection methods need to ensure a false positive
rate of 0, which was not achieved in their work. Additionally,
to meet detection time requirements, they only inspect the first
5-6 bytes of the payload. If attackers are aware of this, targeted
attacks can still evade the IPS.

To address the aforementioned issues, this paper proposes
an anomaly detection method based on offline-trained param-
eters to defend against forged data frames carrying legitimate
identifiers injected by hackers after compromising the TCU,
OBD-II or IVI. The core idea of this method is to isolate local
similar regions within matrices generated from the actual data
fields of CAN data frames with identical identifiers, treating
these regions as features. By performing matrix operations to
extract characteristic parameters of these regions as feature
values, and employing statistical methods to determine the
threshold range of feature values under attack-free scenarios,
this method achieves anomaly detection. This enables the
enhancement of system robustness in an unsupervised manner.
Unsupervised anomaly detection based on statistical methods
can significantly improve detection efficiency, reduce detection
time, and maintain generalization capabilities against unknown
attacks. Since our approach does not involve any machine
learning or deep learning models, it can be easily deployed
within ECUs, providing ECU-level security protection.

The contributions of this paper are as follows:
• A statistical unsupervised anomaly detection method is

proposed, which achieves frame-by-frame detection of
data frames communicated within the CAN network,

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 3

SOF

1

Identifier(ID)

11

RTR

1

IDE

1

RO

1

DLC

4

Data Field

0-64

CRC

15

DEL

1

ACK

1

DEL

1

EOF

7

Fig. 2. Standard CAN Data Frame Format.A standard data frame with a DLC (Data Length Code) of 8 occupies a total of 108 bits. If considering the bit
stuffing mechanism, it can be up to 125 bits.

maintaining high detection rates while ensuring a false
positive rate of 0.

• A novel IPS is introduced, which is deployed on a
low-cost STM32F407ZGT6 development board used to
simulate the functionality of an ECU, with a detection
time of only 64 µs for a single data frame and anomalous
data frames can be proactively identified and discarded
by the system.

• The method proposed in this paper effectively addresses
the issue of model obsolescence due to ECU updates.
Engineers need only adjust the statistical test parameters
during the ECU update process.

II. BACKGROUND

A. CAN frame

As shown in the Fig 2, CAN data frames come in two
different formats: Standard Frame Format and Extended Frame
Format. The difference between them lies in the number of
bits reserved for the message identifier (ID). The ID in the
standard frame format is 11 bits, while in the extended frame
format, it can be up to 29 bits. The Start-of-Frame (SOF)
segment indicates the beginning of the data frame and is used
for bus synchronization; the Arbitration field (ID) indicates the
priority of the frame, with smaller ID values having higher
priority; the Control field defines the type of frame and the
length of the data. The first bit in the Control field is the
Identifier Extension bit (IDE), which indicates whether the
frame uses a standard ID (set to 0) or an extended ID (set
to 1). The second bit is the Reserved bit (RO), which is
always set to 0. The next four bits are the Data Length
Code (DLC), indicating the size of the transmitted data. The
Data field contains the actual transmitted data, up to 64
bytes. The Cyclic Redundancy Check (CRC) field consists
of 15 error-checking bits and a delimiter bit, using cyclic
redundancy check methods to detect and correct transmission
errors. The Acknowledgment (ACK) field indicates that an
error-free message has been sent. Each ECU that receives
the message correctly will overwrite the recessive bit in the
original message with a dominant bit to indicate successful
reception. If an ECU detects an error, the bit remains recessive,
and the message is discarded. The End-of-Frame (EOF) field
marks the end of the frame, typically consisting of seven
recessive bits.

B. CAN communication mechanism

Nodes connected to the CAN bus send data while also
receiving messages from the CAN bus. When a node intends to
send a CAN message, it transmits the Start-of-Frame (SOF)
within the CAN bus clock cycle, signaling that the node is

about to send a data frame. When other nodes detect an
ongoing data frame transmission before they start sending
their own messages, they wait until the current data frame
transmission is complete before proceeding. If multiple nodes
transmit SOF simultaneously, arbitration begins from the ID
bits. If a node sends a recessive bit (1) and receives a dominant
bit (0) at the same time, it ceases transmission and waits. Thus,
the larger the ID, the lower the priority. This is the process of
CAN bus arbitration.

S
O
F

10 9 8 7 6 5 4 3 2 1 0
R
T
R

Cortrol
field

Node 1

Node 2

CAN BUS

Loses
arbitration

Fig. 3. CAN bus arbitration mechanism. When Node1 detects a dominant bit
’0’ on the CAN bus while transmitting the 8th bit, it immediately stops sending
and switches to listening mode upon the completion of that bit transmission.

For the reception of CAN bus messages, the process is
handled by the CAN controller within the ECU, also known
as the hardware filter, without requiring intervention from the
MCU. This reduces the processing load on the MCU. The
process of data frame reception by an ECU is as follows:
The ECU continuously monitors the transmission of data
frames on the CAN bus. Upon detecting a Start-of-Frame
(SOF), it immediately begins receiving the frame. The received
identifier is then compared with the mask identifier field set in
its own filters. If a conflict is detected, the frame is discarded,
and the memory is released. The ECU then waits for the
transmission process to end before continuing to monitor the
CAN bus. If there is no conflict in the identifier field, the
ECU continues to receive the data frame until the reception is
complete and stores it in the reception mailbox.

The ECU’s filters operate in two modes: Mask Bit Mode
and Identifier List Mode.

• Mask Bit Mode: As depicted in Fig 4, this mode utilizes
a predefined Identifier and a Mask to filter incoming data
frames. The Mask specifies which bits of the identifier
must match exactly. When a bit in the Mask is set to
1, the corresponding bit in the received frame’s identifier
must match the predefined ID, as indicated by the purple-

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 4

Bit

ID

Mask

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ST
ID
10

ST
ID
9

ST
ID
8

ST
ID
7

ST
ID
6

ST
ID
5

ST
ID
4

ST
ID
3

ST
ID
2

ST
ID
1

ST
ID
0

RT
R

ID
E

RS
V

RS
V

RS
V

0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0

1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1

0 0 0 0 1 1 1 0 0 0 1 0

Fig. 4. ECU Shielder Working Principle Diagram.The bottom row in the
figure shows the format of receivable identifiers. The blank areas can be either
’0’ or ’1’.

shaded bits. Conversely, if a bit in the Mask is set to 0,
the corresponding bit in the received frame’s identifier
can be either 0 or 1. This means that any value in the
unmasked (blank) region will be accepted regardless of
whether it matches the predefined ID.

• Identifier List Mode: In this mode, the filter contains a
list of predefined Identifiers. The filter accepts only those
incoming data frames whose identifiers match one of the
predefined IDs in the list. If the identifier of an incoming
frame does not match any of the predefined IDs, the
frame is discarded. This mode provides a more stringent
filtering mechanism compared to the Mask Bit Mode,
as it requires an exact match with one of the specified
identifiers.

C. Introduction to Detection Methods

This paper will adopt the Interquartile Range (IQR) test
as the method for detecting anomalies in CAN data frames.
The IQR detection method is a statistical approach used to
identify outliers in the data. Assume there is an ordered dataset
D = q1, q2, q3, ..., qn, where Q1 is the 25th percentile of D,
Q2 is the median of D, and Q3 is the 75th percentile of D.
The IQR detection method determines the range of outliers by
calculating the quartiles (Q1, Q2, Q3) and IQR. The IQR is
defined as the difference between Q3 and Q1, i.e.,

IQR = Q3−Q1 (1)

The inner fences are defined as:

M = [Q1−K ∗ IQR,Q3 +K ∗ IQR] (2)

Where k is the multiplier factor, typically set to 1.5. The
lower boundary is defined as Q1 − K ∗ IQR,and the upper
boundary is defined as Q3+K ∗ IQR.If there is a data point
y being tested, and if y falls within the range M (i.e., between
the lower and upper boundaries), it is considered normal data.
Otherwise, y will be classified as an outlier.

D. Introduction to Attack Scenarios

The CAN bus defense mechanism proposed in this paper is
deployed within the ECU to defend against Spoofing attacks
that evade other security mechanisms. It is assumed that the
attacker has knowledge of the identifiers in the compromised
CAN network and can forge CAN data frames using known

identifiers, enabling these forged frames to be received and
executed by the ECU. A spoofing attack involves an attacker
injecting data frames with known identifiers into the CAN
network. These data frames have identifiers that match the
acceptance filter masks of certain ECUs, enabling them to be
received by those ECUs. To achieve their malicious goals, the
data fields of these injected frames often consist of random
bits.

ECU ECU

ECU

CAN
BUS

SOF ID ··· Data ··· EOF

0101001010011000111
10001010001·······1100
110000000010

0x0800x0800x080

SOF ID ··· Data ··· EOF

01010001011001110111
0001010001·······110011
0000000010

Fig. 5. Spoofing Attack Schematic. The attacker monitors the data frames
transmitted on the bus and modifies a small portion of the bits, repackaging
them into legitimate data frames that can be accepted by the ECU.

Lee et al. in [14] described an experiment where they
injected CAN data frames with known identifiers and random
bit data fields into a vehicle driving on a secure road. This
resulted in noticeable vehicle jitter, demonstrating the potential
impact of such attacks on vehicle safety and performance.As
shown in Fig 5, if an attacker gains access to the CAN network
and can capture data frames from the bus, they can reverse-
engineer these frames to understand their data distribution.
By injecting forged messages into the bus with selectively
modified critical bits, the attacker can carry out targeted
attacks. These types of attacks are often much harder to detect.

III. METHODS

A. Anomaly Detection Method Based on Simple Matrix
Grouping Features

Longari et al. in [25] mentioned that the CAN data frame’s
identifier, RTR, and data are converted into a 9x9 matrix in an
attempt to identify features for classifying anomalous behavior.
Paulo et al. propose a method that can detect anomalous
behavior using only the first few bytes of the payload [24].
The purpose of the detection method proposed in this paper is
to identify the characteristics of data frames carrying payloads
for the same identifier. Therefore, only the payload is selected
and converted into an 8x8 matrix by arranging it horizontally.
This method treats the corresponding rows and columns of the
matrix as a sensing region; for example, the region represented
by parameters b 2 and b 6 in Fig 6 is referred to as the
receptive field.

In the envisioned approach, when the bit values within this
region change, the corresponding feature values b 2 and b 6
will also change. Since the data transmitted by CAN data
frames is not static and can vary, using a single receptive
field may not be sufficient to detect the exact position of the
bits altered by a forged message.Therefore, by overlaying two

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 5

receptive fields, a new region called the overlapped receptive
field is formed, denoted as Z 26. When the bit values within
the overlapped region change, Z 26 will also change. This
way, a single feature value can represent the changes in 28
bits across two rows and two columns of the original matrix,
significantly reducing the number of features needed.

0 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1
1 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
1 0 0 1 1 1 0 1
0 1 1 1 1 0 1 0
1 0 1 0 0 1 1 0
0 1 1 0 1 0 0 1

CAN Fie ld

CAN MESSAGE

b_2

b_6

0 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1
1 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
1 0 0 1 1 1 0 1
0 1 1 1 1 0 1 0
1 0 1 0 0 1 1 0
0 1 1 0 1 0 0 1

Z_26

Fig. 6. Matrix Region Characterization Parameters Schematic. Parameter b is
utilized to detect changes in data within a 1x1 cell. In contrast, Parameter Z,
which aggregates the values of two Parameter b instances, serves to perceive
feature variations and can thus monitor changes in data across a 2 x 2 cell
range. Here, ’n x n’ denotes a matrix area comprised of n rows and n columns.

To monitor the entire data matrix, at least four overlapped
receptive fields are necessary, requiring a minimum of four
Z parameters. However, multiple Z parameters can lead to
overlapping areas, as illustrated in Fig 7. When bits in the red
region change, two Z parameters will also change. We refer to
this overlapping area as a strong receptive field. For anomaly
detection, we focus on regions that seldom change or remain
constant, as these have more stable bit values. If a forged
message alters bits in these stable regions, the corresponding Z
parameters will detect the changes, thus identifying anomalies.

0 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1
1 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
1 0 0 1 1 1 0 1
0 1 1 1 1 0 1 0
1 0 1 0 0 1 1 0
0 1 1 0 1 0 0 1

0 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1
1 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
1 0 0 1 1 1 0 1
0 1 1 1 1 0 1 0
1 0 1 0 0 1 1 0
0 1 1 0 1 0 0 1

0 1 1 0 1 0 1 1
1 0 1 0 1 1 0 1
1 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
1 0 0 1 1 1 0 1
0 1 1 1 1 0 1 0
1 0 1 0 0 1 1 0
0 1 1 0 1 0 0 1

Z_26 Z_25 Z_26 Z_25

Fig. 7. Strong Sensory Field.The figure illustrates the result of two eigenvalues
being overlaid. When bits within the overlaid region change, the eigenvalues
can sensitively detect the occurrence of these changes.

To meet the requirements of embedded-level computing
resources and the real-time nature of in-vehicle systems, we
attempt to use mathematical methods to identify characteristic
values that can represent changes in matrix regions. The
decision was made to derive these characteristic values using
simple arithmetic operations. Based on this principle, the
following design was implemented to obtain the features:

step1:Arrange the data field of the CAN data frame (up to
64 bits) horizontally into an 8×8 matrix. If the number of bits
is less than 64, pad the remaining positions with ’0’.

step2:Compute the sum of each row and each column of the
matrix, resulting in 16 parameters. Then, divide the parameter
of each row by the corresponding parameter of each column
to obtain the receptive field parameter b.

step3:To ensure that the characteristic parameter of the
overlapped receptive field changes subtly, we sequentially
divide the 8 b values obtained in step 2. The resulting quotient
serves as the final characteristic value Z. Calculation Process
of Perceptual Characteristic Values:
Define an 8×8 matrix filled with 0s and 1s, denoted as A.

A =


a1,1 a1,2 ... a1,8
a2,1 a2,2 ... a2,8
...
a8,1 a8,2 ... a8,8

 (3)

Define a matrix C where all elements are equal to 1, expressed
as follows: C =

[
1, 1, 1, 1, 1, 1, 1, 1

]T
Let P and Q represent the sums of each row and each column
of matrix A, respectively:

P = A ∗ C,Q = AT ∗ C (4)

Now, take the reciprocal of all elements in Q to form a new
matrix Q’. Let B represent the quotient of the row sums and
column sums of matrix A, i.e.:

B = [b1 b2 ... bn]T = P ⊙Q (5)

Now, let the new matrix generated by taking the reciprocal of
all elements in B be denoted as B’. The matrix composed of
z-parameters is denoted as Z, i.e.:

Z = B ∗ (BT)′ (6)

The main diagonal of matrix Z consists entirely of ’1’. Since
the parameters in the upper triangular region represent the
same overlapped receptive fields as their symmetric counter-
parts in the lower triangular region, we can simply take the
parameters from the upper triangular region (excluding the
main diagonal) as features. This results in a total of 28 feature
values.

B. Design of Detection Model

1) Feature Selection Algorithm
In III-A, 28 features for anomaly detection were introduced.

To optimize the detection model, it was decided to select
four of these features as the focus for anomaly detection.
According to previous analysis, regions in the data matrix with
lower change frequency and smaller variation ranges should
be targeted for anomaly detection. Following this principle,
one can statistically analyze the distribution intervals of the
features and select those with smaller interquartile ranges as
the actual features for anomaly detection.
The simplest approach is undoubtedly to select the four
features with the smallest interquartile ranges as classification

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 6

features. However, this still presents a challenge: the false pos-
itive rate must be controlled at 0%. If not, it means that some
normal CAN data frames will always be flagged as attacks
by the anomaly detection program, preventing these frames
from being executed by the ECU and thereby disrupting the
vehicle’s normal driving process. If the four features with the
smallest interquartile ranges are chosen, there may be outliers
that do not fall within the inner fences. Although expanding
the multiplier factor k can widen the inner fences, this might
result in very small IQR values, making the selection of
an appropriate k value particularly challenging.To address
this issue, it is proposed to utilize an expanded k and the
interquartile range. When selecting features, two conditions
should be followed:

Algorithm 1 Feature Selection Algorithm
Input: CAN Zlist[Z1, Z2, ..., Zn] ▷

A two-dimensional list is used to store the characteristic
values of N data entries with the same identifier.

Output: Bound ▷ store the inner fence threshold values.
Fin Z ▷ store the indices of the selected features.

1: Initialize P ← 0 ▷ Sliding factor
2: Initialize IQR← [] ▷ An empty list
3: Initialize Fin Z ← [] ▷ An empty list
4: Initialize Bound← [] ▷ An empty list
5: IQR←Calculate-IQR(Zlist)▷ Calculate the IQR for each

Z-value in Zlist.
6: Zlist.sort(IQR)▷ Sort the list in ascending order based on

the IQR
7: while 1 do
8: Initialize Curlist← [] ▷ An empty list
9: for int i < 4 do ▷ The sliding window size is 4.

10: Fin Z[i]←Zlist[P+i][0]▷ The first row of the list
contains the feature indices.

11: while j < Zlist.Length()-1 do
12: Bound[i] ← Calculate-Inner-Field(Zlist[p+i])
13: if The current inner fence region does not meet

the requirement of a 0% false negative rate. then
14: Update the inner fence region parameters
15: if Inner fence parameter overflow then
16: p+1
17: Break
18: Continue
19: else
20: Break
21: return Bound,Fin Z

• Condition1: The inner fences of the selected features
should be as small as possible;

• Condition2: The detection model created using the se-
lected feature set must ensure a false positive rate of 0%.

Algorithm 1 describes the feature selection process. First, it
calculates the characteristic values of CAN data frames with
the same identifier and stores them in a two-dimensional list
Zlist, which serves as the input for the algorithm. Then, it sets
up a sliding window of size 4 for feature selection. Initially, the
first four features from the sorted (in ascending order) Zlist
are selected as input, and the algorithm checks if the false

negative rate is 0%. If this condition is not met, the sliding
window is shifted to the right, and the process is repeated until
a set of features that satisfies the condition is found.

In line 14 of Algorithm 1, the process for updating the
inner fence parameters is depicted in Fig 8. The initialization
sets Q1 to the 25th percentile, Q3 to the 75th percentile, and
k=1.5. Under these initial conditions, if the computed inner
fence fails to meet the requirement of a 0% false negative
rate, the algorithm first adjusts the value of k. Specifically, k
is incremented by 0.5 in each iteration to progressively widen
the inner fence region. If the condition remains unmet after 10
iterations, the algorithm then shifts Q1 and Q3 outward by 5%
of their respective ranges and revalidates the results. Should
the condition still not be satisfied even when Q1 and Q3 reach
the 10th and 90th percentiles, respectively, this suggests that
the selected features include a considerable number of outliers.
Consequently, the features within the current window are
deemed unsuitable for effective anomaly detection. However,
if the parameters corresponding to the inner fence satisfy the
condition, they are output as valid results.

Algorithm 2 Optimized Feature Selection Algorithm
Input: CAN Zlist[Z1, Z2, ..., Zn] ▷

A two-dimensional list is used to store the characteristic
values of N data entries with the same identifier.

Output: Bound ▷ store the inner fence threshold values.
Fin Z ▷ store the indices of the selected features.

1: Initialize P ← 0 ▷ Sliding factor
2: Initialize IQR← [] ▷ An empty list
3: Initialize Fin Z ← [] ▷ An empty list
4: Initialize Bound← [] ▷ An empty list
5: IQR←Calculate-IQR(Zlist)▷ Calculate the IQR for each

Z-value in Zlist.
6: counter ← 0
7: Zlist.sort(IQR)▷ Sort the list in ascending order based on

the IQR
8: while counter < 5 do
9: while 1 do

10: Bound[i] ← Calculate-Inner-Field(Zlist[p+i])
11: if The current inner fence region does not meet the

requirement of a 0% false negative rate. then
12: Update the inner fence region parameters
13: if Inner fence parameter overflow then
14: p+1
15: Break
16: Continue
17: else
18: Fin Z[i]←Zlist[P+i][0]▷ The first row of the

list contains the feature indices.
19: counter←counter+1
20: Break
21: return Bound,Fin Z

The guiding principle for feature selection is to ensure
that the inner fence region is as small as possible. However,
Algorithm 1 has a limitation: the results it produces may rep-
resent only a local optimum rather than a global optimum. To
illustrate this, consider an example where Z1, Z2, Z3, Z4, Z5

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 7

Begin

K+0.5

K<7

The loop has not
been exited.

N

The inner fence region is
expanded outward by 5%.

Y

N

End

Y

Fig. 8. Inner fence Parameter Update Flowchart.By dynamically adjusting
the parameter k and the boundaries of the inner region, it ensures that the
selected features meet the requirements of the intrusion defense mechanism.

are the five features with the smallest inner fence regions. If
Z2 contains outliers and its IQR is sufficiently small, the set
that includes Z2 may fail to satisfy the selection conditions.
In such a scenario, the optimal feature set would instead
consist of Z1, Z3, Z4, Z5. To resolve this issue, we propose
an optimization to Algorithm 1.

In contrast to Algorithm 1, Algorithm 2 eliminates the use
of a sliding window and instead employs a sliding factor. The
algorithm sequentially evaluates the features in the Zlist, which
is sorted in ascending order. If a particular feature fails to meet
Condition 2 even within its extreme inner fence region, the
sliding factor p is increased by 1, and the evaluation proceeds
to the next feature. By applying Algorithm 2, the process
ensures the selection of features that simultaneously satisfy
both Condition 1 and Condition 2.

C. ECU Anomaly Detection Process Design

The detection method proposed in this paper can be ap-
plied to an STM32F407 development board that simulates
ECU functionality. For a specific class of CAN data frames
identified by their identifier, Algorithm 2 can provide the
indices of the detection features and their corresponding inner
fence boundary values. These parameters will be stored in the
inspection program as validation parameters. When the ECU
detects a data frame and stores it in the receive mailbox, the
inspection program will initiate during the ECU processor’s
idle time.

Given the limited computational resources of the ECU, in
addition to deploying the necessary inspection parameters in
the detection program, the design should aim to minimize
memory usage as much as possible. Algorithm 3 describes
the process of converting the data field of the current data
frame into a matrix. Initially, a zero matrix is defined, and
the grid initialization is completed through a loop traversal.
Since the data received by the ECU will be represented in
hexadecimal format, the process involves iterating over the
data array. During each iteration, bytes are further broken
down into bits. If a bit is found to be 1, the corresponding

Algorithm 3 Detection Program Design
Input: RxLength, RxData, Fin Z, Bound
Output: True Or False
1: Initialize grid ▷ 8*8 matrix with all elements set to zero
2: Initialize Feature← [] ▷ An empty list
3: Initialize B,Q,P ← [] ▷ Three empty lists
4: for i do in Traver the RxData array ▷ Matrix Creation

Process
5: byte←RxData[i]
6: for j do < byte.Length()
7: bit ← byte&(1 << j)
8: if bit ! = 0 then
9: grid[i][7-j] ← ’1’

10: else
11: grid[i][7-j]←’0’
12: for x in 8 do
13: for y in 8 do
14: P[x]←P[x]+grid[x][y]
15: Q[x]←Q[x]+grid[y][x]
16: B[x]←P[x]/Q[x]
17: for z in Bound.Length() do
18: Feature[z]←B[Fin Z[z][0]]/B[Fin Z[z][1]]
19: if Feature[z]/∈Bound[z] then ▷ The feature value falls

within the anomaly domain.
20: return False
21: return True

position in the grid is set to 1; otherwise, it remains unchanged.
This approach not only completes the creation of the matrix
but also ensures that the matrix is properly filled when the
data length is less than 8 bytes.

Subsequently, according to the feature value calculation
process mentioned in III-A, the feature values are computed.
To simplify the program, no additional feature matrix is
generated during this computation. Instead, the feature values
are directly calculated using the parameters b obtained from
the feature indices derived in Algorithm 2.

D. Attack Model

It is assumed that an attacker can infiltrate the internal
CAN network and intercept data frames communicated on the
bus. The attacker modifies the data fields of these frames and
injects forged messages into the CAN bus, thereby executing
a spoofing attack. Additionally, the attacker employs strategic
methods to evade other security mechanisms. For instance, the
attacker may inject forged frames at the same communication
frequency as the original data frames or hijack an ECU to send
forged frames, thereby concealing their malicious activities.

This paper used anomalous data from the OTIDS[14] and
Car-hacking[26] real-world datasets to simulate the CAN data
frames forged by attackers.Table I demonstrates the experi-
mental results of extracting forged messages from the fuzzing
attack and spoofing attack data tables in the OTIDS dataset.
During this process, 45 distinct CAN IDs were analyzed,
and forged messages corresponding to 8 unique IDs were
successfully extracted. The distribution of these messages for

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 8

detection purposes was further analyzed. The results indicate
that the number of attack messages is distributed with high
uniformity.

TABLE I
OTIDS DATASET DESCRIPTION

ID Normal Message Attack Message

0x164 51079 6859
0x220 14517 6817
0x4b0 28093 6794
0x153 51245 6877
0x1f1 33058 7051
0x5a0 10384 7247
0x5a2 10381 6856
0x4b1 33058 6819

Table II illustrates the data distribution of fuzzing attacks
and spoofing attacks in the Car-hacking dataset. Through
preliminary analysis of the messages, it was found that the
Spoofing attacks in the OTIDS dataset were carried out by in-
jecting CAN messages with random data, whereas the fuzzing
attacks in the Car-hacking dataset involved random injection,
and the spoofing attacks were performed by periodically
injecting messages with fixed data. Further analysis of the
fuzzing attack data revealed 33 legitimate identifiers involved
in fuzzing attacks. Among these, data frames with identifiers
‘0x43f’ and ‘0x316’ were found to be present in both fuzzing
and spoofing attacks.

TABLE II
CARHACKING DATASET DESCRIPTION

Dataset Normal Message Attack Message

Fuzing 3347013 491847
Driver Gear Spoofling 3845890 597252
RPM Gauge Spoofling 3966805 654897

To evaluate the robustness of the proposed detection
method, we decided to modify the attack scenarios. Using
the method illustrated in Fig 9, we tampered with the Data
fields of the data frames in both datasets to simulate targeted
spoofing attack scenarios. During this process, the number
of bits modified was a random number between 3 and 10.
The modified attack scenarios were named OTIDS-X and Car-
hacking-X. Through this approach, we created three distinct
attack scenarios: Scenario A (no attack), Scenario B (random
bit injection), and Scenario C (targeted attack). In these
scenarios, OTIDS-X contains 8 legitimate identifiers, while
Car-hacking-X contains 33 legitimate identifiers.

IV. EXPERIMENTS AND ANALYSIS

The analysis of anomaly detection in this experiment is
based on Python 3.9.0 and PyTorch 12.0, conducted in an
environment with a 12th Gen Intel(R) Core(TM) i7-12700H
processor running at 2.30 GHz and equipped with 16GB of
RAM. The ECU simulation and validation process will be
carried out on the STM32F407 mini development board, which
features an ARM Cortex-M4 32-bit RISC core that supports
floating-point operations and DSP instruction sets, along with

Fig. 9. Process of Spoofing Data Frames. Multiple bits in the 64-bit data
field are randomly selected and flipped. This modification aims to make the
tampered data field remain somewhat similar to the original data field, thereby
evading simple anomaly detection mechanisms.

1MB of built-in Flash memory and 192KB of SRAM. In
this section, we first analyze the detection efficiency of the
proposed detection method; then, we introduce the process of
simulating ECU protection and provide an analysis of the time
consumption.

A. Anomaly Detection Analysis

The analysis here focuses on the CAN data frames with
identifier ‘0220’ from OTIDS and identifier ‘043f’ from Car-
hacking as examples. As shown in Fig 10, for the CAN data
frame with identifier ‘0220’, the data in bytes Data 1 and
Data 3 are relatively scattered under Scenario A, while the
distributions of other bytes converge. The byte distribution of
targeted attack data frames obtained in Scenario C is close
to that of non-attack messages, whereas the byte distribution
of random bit injection attacks is more dispersed. For the
CAN data frame with identifier ‘043f’, only Data 6 exhibits
a scattered distribution in the no-attack scenario (Scenario
A), while the distributions are more scattered in Scenarios
B and C. This demonstrates that the majority of bits in the
data frames transmitted by the ECU remain fixed, further
supporting the logical basis of the method proposed in III-A.

From the Fig 10(c), both Z 1 and Z 6 can be considered
as effective classification features, but Z 6 performs better
than Z 1. The reason is that under the no-attack scenario, the
distribution of Z 6 is more concentrated compared to Z 1. Fig
10(d) shows the random feature distributions of the CAN data
frame with identifier ‘043f’ across three different scenarios. As
can be seen from the figure, it is almost impossible to identify
effective classification features from these eight features. This
is because although the feature distributions are concentrated
under the no-attack scenario, there is an overlap of features in
the targeted attack scenario, leading to a lower detection rate.
Therefore, relying solely on a single feature cannot maintain
a high detection rate.

In this section, we will use the CAN data frame with
identifier ‘0x220’ as an example to analyze the efficiency of
the proposed detection method. Fig 11 presents the execution
results of Algorithm 2 under Scenario B. Under the condition
that the false positive rate is 0, an increase in the number of

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 9

Data_1 Data_2 Data_3 Data_4 Data_5 Data_6 Data_7 Data_8
Data

0

50

100

150

200

250

Va
lu
e

0220

Free

Attack

Attack-X

(a)

Data_1 Data_2 Data_3 Data_4 Data_5 Data_6 Data_7 Data_8
Data

0

50

100

150

200

250

Va
lu
e

043f

Free

Attack

Attack-X

(b)

Z_1 Z_2 Z_3 Z_4 Z_5 Z_6 Z_7 Z_8
Z

0

2

4

6

8

10

12

14

Va
lu
e

0220

Free

Attack

Attack-X

(c)

Z_1 Z_2 Z_3 Z_4 Z_5 Z_6 Z_7 Z_8
Z

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Va
lu
e

043f

Free

Attack

Attack-X

(d)

Fig. 10. Distribution of CAN Frame Data Fields and Features in Different Scenarios.Figures a and b show the distribution of data fields, presented in decimal
format. Figures c and d display the distribution of 8 randomly selected features.

Fig. 11. Execution Results of Data Frame with ID ’0x220’ in Algorithm 2

features leads to a significant improvement in the detection
rate.

Fig 12 presents the ROC curve when the selected features
are [d26, d5, d23, d27]. As shown in the Fig 12(a), the
false positive rate remains consistently at 0, and the AUC
of each individual feature is above 0.99, indicating that a
single feature can maintain a high detection rate even under
Scenario B. The AUC for the feature set reaches as high as
0.9976, demonstrating that this feature set outperforms any
single feature in detecting anomalous data. We tested the
obtained feature set under Scenario C, with results depicted in
Fig 12(b). Although the detection performance of individual
features decreased, it still remained above 0.95, indicating that
the features proposed for anomaly detection possess a high
classification effectiveness. The AUC for the feature set was
still as high as 0.979. This proves that, even in an unsupervised
setting, the feature selection resulting from the execution of

Algorithm 2 maintains a high detection rate under targeted
attack scenarios.

The messages corresponding to the 8 identifiers proposed
in III-D, along with the messages of the 2 identifiers shared
between fuzzing and spoofing attacks in the Car-hacking
dataset, were tested across a total of 10 identifiers. The test
results are presented in Table III. The proposed detection
method achieves a detection rate of over 99.6% for attacks
under Scenario B and over 96.5% for attacks under Scenario
C. These findings clearly demonstrate the robustness and high
efficiency of the proposed detection method.

TABLE III
ANOMALY DETECTION TEST RESULTS UNDER DIFFERENT ATTACK

SCENARIOS

ID OTIDS OTIDS-X Car-hacking Car-hacking-X

0x164 100% 96.84%
0x220 99.76% 97.97%
0x4b0 100% 98.4%
0x153 100% 98.1%
0x1f1 99.87% 97.26%
0x5a0 99.79% 99.45%
0x5a1 100% 96.5%
0x4b1 99.89% 97.36%
0x43f 99.87% 99.32%
0x361 99.93% 98.7%

To further examine the robustness of the proposed method,
we designed an experiment where 70% of the non-attack data
was extracted to compute the corresponding detection param-
eters for each identifier’s CAN messages. The attack scenario
data was then fused with the remaining 30% of non-attack

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 10

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic for Different Features and Combined ROC

Feature: d26 (AUC = 1.00)
Feature: d5 (AUC = 0.99)
Feature: d23 (AUC = 0.99)
Feature: d27 (AUC = 0.99)
Combined ROC (AUC = 1.00)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic for Different Features and Combined ROC

Feature: d26 (AUC = 0.9641)
Feature: d5 (AUC = 0.9571)
Feature: d23 (AUC = 0.9668)
Feature: d27 (AUC = 0.9099)
Combined ROC (AUC = 0.9790)

(b)

Fig. 12. ROC Curve of Anomaly Detection for Data Frame with ID ’0220’.Figure a shows the detection analysis results in Scenario B, while Figure b shows
the detection analysis results in Scenario C. These figures are used to evaluate the anomaly detection performance of this data frame under different scenarios.

data to validate the datasets. As shown in Fig 13, the detection
model maintains a 0% false detection rate across all scenarios.
For forged messages in the OTIDS dataset and the Car-
hacking dataset, the detection rates are 99.63% and 99.38%,
respectively. In tampered attack scenarios, the targeted attack
detection rates are 97.34% and 96.63%, respectively. These
results further demonstrate the effectiveness and reliability of
the proposed method.

Normal Malicious
Target Class

No
rm

al
M

al
ici

ou
sOu

tp
ut

 C
la

ss

100.00 0.00

0.37 99.63

Confusion Matrix(%)

(a) OTIDS

Normal Malicious
Target Class

No
rm

al
M

al
ici

ou
sOu

tp
ut

 C
la

ss

100.00 0.00

2.66 97.34

Confusion Matrix(%)

(b) OTIDS-X

Normal Malicious
Target Class

No
rm

al
M

al
ici

ou
sOu

tp
ut

 C
la

ss

100.00 0.00

0.62 99.38

Confusion Matrix(%)

(c) Carhacking

Normal Malicious
Target Class

No
rm

al
M

al
ici

ou
sOu

tp
ut

 C
la

ss

100.00 0.00

3.37 96.63

Confusion Matrix(%)

(d) Carhacking-X

Fig. 13. Confusion Matrix of Detection Results.

B. Verification of ECU Protection Mechanism

The validation process will utilize an STM32F407ZGT6
embedded development board to simulate the ECU, employing
three identical development boards, three CAN transceivers,

and several Dupont wires to simulate the CAN bus commu-
nication process. Fig 12 illustrates the connection setup for
the communication lines. The STM32F407ZGT6 has a built-in
CAN controller, and during communication, only an additional
CAN transceiver (TJA1050 used in this case) needs to be
connected. The STM32 configures the CAN communication-
related registers, clock, and pins using standard library func-
tions.

Deploying the detection system inside the ECU poses two
main challenges: 1) The ECU’s computing and storage re-
sources are limited, so the deployed IPS must be lightweight;
2) The number of receive mailboxes inside the ECU is
limited, so the anomaly detection process should be completed
as quickly as possible before the next data frame arrives.
Currently, the baud rate of most automotive internal buses is
500 kbps, meaning that transmitting one bit takes 2 ms. In the
worst-case scenario, multiple consecutive data frames with the
same identifier may be received. For non-extended frames, a
data frame consists of 108 bits, which means the IPS must
complete the detection within 216 ms to prevent data frame
buildup.

In IV-A of this paper, it has been verified that the detection
method achieves a high detection rate. In this subsection, the
experiment validates the feasibility of the ECU protection
mechanism by measuring the size of the detection program
deployed within the ECU and the time required for detection.
According to the description of Algorithm 3, the time com-
plexity of converting the Data field into an 8×8 matrix is O(8
× Rx Length), meaning that the maximum time complexity at
this stage is O(64). During the calculation of the eigenvalues,
the time complexity for parameter b is 2 × O(n²), where
n represents the dimension of the matrix. Thus, the time
complexity here is fixed at 2 × O(64). Through verification on
the development board, the execution time of Algorithm 3 was
found to be 0.58 ms, which is significantly lower in efficiency
compared to some existing methods. Subsequently, we opti-

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 11

(a) (b)

(c) (d)

Fig. 14. Simulated ECU Intrusion Detection Validation Diagram.ECU A is
responsible only for sending data frames, while ECU B and ECU C are
responsible for receiving data frames. Among them, ECU C is configured to
receive only data frames with the identifier ’0x220’. The diagram demonstrates
the response mechanisms of different ECUs when faced with forged messages.
The experimental results show that the system can effectively identify abnor-
mal frames and visually display the detection status through LEDs.

mized Algorithm 3 by replacing floating-point operations with
integer operations and shift operations. After optimization, the
processing time for a single data frame was reduced to just 64
µs. This result demonstrates that the optimized algorithm not
only meets real-time requirements but also effectively adapts
to the limited computing resources of the ECU.

The detection program designed using the method described
in III-A has a size of 3.03 KB. We experimented with different
ways of storing the inspection parameters. When using macro
definitions, the parameter size for a single identifier occupies
179 bytes. In contrast, when using structures, the structure
definition takes up 75 bytes, and the parameters corresponding
to the identifier occupy 119 bytes. This demonstrates that using
structures can significantly reduce memory usage when the
ECU masking field contains multiple identifiers. Storing the
inspection parameters of all 10 CAN data frame identifiers
mentioned in III-D using structures results in a total memory
usage of 1280 bytes, with the entire detection model totaling
4.28 KB in size. In conclusion, the detection method proposed
in this paper not only achieves a high detection rate but also
effectively utilizes the limited computing resources of the
ECU, making it fully suitable for scenarios requiring ECU-
level computing resources.

V. CONCLUSION

This paper proposes an Intrusion Prevention System de-
ployed inside the ECU, aimed at addressing the vulnerability
of CAN networks to attacks and defending against potential
control disruptions caused by spoofing attacks. The system can
detect data frames within the ECU’s receive mailbox, thereby
preventing the execution of anomalous frames. Furthermore,
our detection method is based on unsupervised learning, ensur-
ing a false detection rate of 0% while maintaining a detection
rate of 96.5% against targeted attacks in both spoofing and

tampering attack scenarios on real datasets. The designed IPS
was deployed on an STM32F407ZGT6 development board
simulating ECU functionality, with a processing time of just
64 µs per single CAN data frame.

ACKNOWLEDGMENT

This paper was supported by the National Natural Science
Foundation of China (Project No. 62172141), Analysis and
optimization of network capacity under V2V/V2R hybrid
communication mode in Internet of Vehicles.

REFERENCES

[1] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno,
S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham et al., “Experimental security analysis of
a modern automobile,” in 2010 IEEE symposium on
security and privacy. IEEE, 2010, pp. 447–462.

[2] C. Miller and C. Valasek, “Remote exploitation of an
unaltered passenger vehicle,” Black Hat USA, vol. 2015,
no. S 91, pp. 1–91, 2015.

[3] L. L. Sen Nie and Y. Free-fall, “Hacking tesla from
wireless to can bus,” Black Hat USA, 2017.

[4] S. Nie, L. Liu, Y. Du, and W. Zhang, “Over-the-air:
How we remotely compromised the gateway, bcm, and
autopilot ecus of tesla cars,” Briefing, Black Hat USA,
vol. 91, pp. 1–19, 2018.

[5] A. Guzman and A. Gupta, IoT Penetration Testing Cook-
book: Identify vulnerabilities and secure your smart
devices. Packt Publishing Ltd, 2017.

[6] B. Groza and S. Murvay, “Efficient protocols for secure
broadcast in controller area networks,” IEEE Transac-
tions on Industrial Informatics, vol. 9, no. 4, pp. 2034–
2042, 2013.

[7] C.-W. Lin and A. Sangiovanni-Vincentelli, “Cyber-
security for the controller area network (can) commu-
nication protocol,” in 2012 International Conference on
Cyber Security. IEEE, 2012, pp. 1–7.

[8] B. Carnevale, F. Falaschi, L. Crocetti, H. Hunjan,
S. Bisase, and L. Fanucci, “An implementation of the
802.1 ae mac security standard for in-car networks,” in
2015 IEEE 2nd World Forum on Internet of Things (WF-
IoT). IEEE, 2015, pp. 24–28.

[9] M. Wolf and T. Gendrullis, “Design, implementation,
and evaluation of a vehicular hardware security module,”
in Information Security and Cryptology-ICISC 2011:
14th International Conference, Seoul, Korea, Novem-
ber 30-December 2, 2011. Revised Selected Papers 14.
Springer, 2012, pp. 302–318.

[10] J. Liu, S. Zhang, W. Sun, and Y. Shi, “In-vehicle network
attacks and countermeasures: Challenges and future di-
rections,” IEEE Network, vol. 31, no. 5, pp. 50–58, 2017.

[11] H. M. Song, H. R. Kim, and H. K. Kim, “Intrusion detec-
tion system based on the analysis of time intervals of can
messages for in-vehicle network,” in 2016 international
conference on information networking (ICOIN). IEEE,
2016, pp. 63–68.

JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 5, ISSUE 1, AUGUST 2025 12

[12] J. Ning and J. Liu, “An experimental study towards
attacker identification in automotive networks,” in 2019
IEEE Global Communications Conference (GLOBE-
COM). IEEE, 2019, pp. 1–6.

[13] Y. Zhao, Y. Xun, and J. Liu, “Clockids: A real-time
vehicle intrusion detection system based on clock skew,”
IEEE Internet of Things Journal, vol. 9, no. 17, pp.
15 593–15 606, 2022.

[14] H. Lee, S. H. Jeong, and H. K. Kim, “Otids: A novel
intrusion detection system for in-vehicle network by
using remote frame,” in 2017 15th Annual Conference
on Privacy, Security and Trust (PST). IEEE, 2017, pp.
57–5709.

[15] R. Islam, R. U. D. Refat, S. M. Yerram, and H. Malik,
“Graph-based intrusion detection system for controller
area networks,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 23, no. 3, pp. 1727–1736, 2020.

[16] M. Hassan, M. E. Haque, M. E. Tozal, V. Raghavan, and
R. Agrawal, “Intrusion detection using payload embed-
dings,” IEEE Access, vol. 10, pp. 4015–4030, 2021.

[17] S. B. H. Samir, M. Raissa, H. Touati, M. Hadded, and
H. Ghazzai, “Machine learning-based intrusion detection
for securing in-vehicle can bus communication,” SN
Computer Science, vol. 5, no. 8, p. 1082, 2024.

[18] A. Nisioti, A. Mylonas, P. D. Yoo, and V. Katos, “From
intrusion detection to attacker attribution: A comprehen-
sive survey of unsupervised methods,” IEEE Communi-
cations Surveys & Tutorials, vol. 20, no. 4, pp. 3369–
3388, 2018.

[19] H. Choi, M. Kim, G. Lee, and W. Kim, “Unsupervised
learning approach for network intrusion detection system
using autoencoders,” The Journal of Supercomputing,
vol. 75, pp. 5597–5621, 2019.

[20] Y. Wei, C. Cheng, and G. Xie, “Ofids: online learning-
enabled and fingerprint-based intrusion detection system
in controller area networks,” IEEE Transactions on De-
pendable and Secure Computing, vol. 20, no. 6, pp.
4607–4620, 2022.

[21] T. Matsumoto, M. Hata, M. Tanabe, K. Yoshioka, and
K. Oishi, “A method of preventing unauthorized data
transmission in controller area network,” in 2012 IEEE
75th Vehicular Technology Conference (VTC Spring).
IEEE, 2012, pp. 1–5.

[22] S. Longari, M. Penco, M. Carminati, and S. Zanero,
“Copycan: An error-handling protocol based intrusion
detection system for controller area network,” in Pro-
ceedings of the ACM Workshop on Cyber-Physical Sys-
tems Security & Privacy, 2019, pp. 39–50.

[23] K. Cheng, Y. Bai, Y. Zhou, Y. Tang, D. Sanan, and
Y. Liu, “Caneleon: Protecting can bus with frame id
chameleon,” IEEE Transactions on Vehicular technology,
vol. 69, no. 7, pp. 7116–7130, 2020.

[24] P. F. De Araujo-Filho, A. J. Pinheiro, G. Kaddoum,
D. R. Campelo, and F. L. Soares, “An efficient intrusion
prevention system for can: Hindering cyber-attacks with
a low-cost platform,” IEEE Access, vol. 9, pp. 166 855–
166 869, 2021.

[25] S. Longari, C. A. Pozzoli, A. Nichelini, M. Carmi-

nati, and S. Zanero, “Candito: Improving payload-based
detection of attacks on controller area networks,” in
International Symposium on Cyber Security, Cryptology,
and Machine Learning. Springer, 2023, pp. 135–150.

[26] E. Seo, H. M. Song, and H. K. Kim, “Gids: Gan based
intrusion detection system for in-vehicle network,” in
2018 16th annual conference on privacy, security and
trust (PST). IEEE, 2018, pp. 1–6.

[27] R. Kurachi, Y. Matsubara, H. Takada, N. Adachi,
Y. Miyashita, and S. Horihata, “Cacan-centralized au-
thentication system in can (controller area network),” in
14th Int. Conf. on Embedded Security in Cars (ESCAR
2014), 2014, p. 10.

[28] E. Kristianto, P.-C. Lin, and R.-H. Hwang, “Sustainable
and lightweight domain-based intrusion detection system
for in-vehicle network,” Sustainable Computing: Infor-
matics and Systems, vol. 41, p. 100936, 2024.

