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In the age of cybersecurity, visualization and interpretation of network traffic data is very crucial for real-time intrusion detection.
The proposed paper provides a data visualization driven approach for analyzing network intrusions using the CICIDS 2017 dataset.
The study also uses different preprocessing techniques, such as data cleaning, transformation, and feature selection, to make the
data set ready for analysis. Principal Component Analysis, or PCA, is used for reducing dimensionality, helping to optimize memory,
and clarifying visualizations. We will focus on the visualization of network attack patterns, model performance, and PCA results
that provides actionable insights. Python libraries are used in conjunction with Power BI to create a data visualization platform that
has interactive real-time visualizations for users to explore across attack types, feature importance, and model evaluation metrics.
The goal is to show how effective data visualization can improve the understanding of complex network traffic data and help make
better decisions in cybersecurity.
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I. INTRODUCTION

CYBERSECURITY is one of the biggest challenges facing
the digital world today. As the frequency and complexity

of cyber attacks continue to rise, organizations are more reliant
on Intrusion Detection Systems to identify malicious network
activities and secure their infrastructures. However, the high
volume and complexity of network traffic data pose quite a
few challenges to the effective detection and understanding
of such attacks. Traditional network traffic analysis methods,
based on raw statistics and numerical data sets, usually be-
come insufficient when dealing with complexities inherent in
high-dimensional data. In addition, although machine learning
techniques can efficiently classify network intrusions, model
interpretability and real-time decision-making capabilities are
still limited. This research proposes one such methodology
by combining strategies in data visualization with frameworks
in machine learning. The CICIDS 2017(Canadian Institute for
Cybersecurity Intrusion Detection System) dataset was chosen
because it is replete with network traffic information. This
study, therefore, uses Principal Component Analysis(PCA) for
the reduction of dimensionality so that real-time visualization
of network traffic can be achieved over platforms like Power
BI for comprehension, model evaluation, and proactive secu-
rity measures in detecting complex attack patterns.

A. Motivation

As network traffic is increasing in terms of volume and
sophistication with dynamic and evolving cyber attacks, tra-
ditional intrusion detection methods become more ineffective.
Standard Network Intrusion Detection Systems (NIDS) gener-
ate enormous amounts of data, which can be hard to inspect
and comprehend. Also, though machine learning algorithms
have improved intrusion detection significantly, the nature of
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such models is to be very opaque, making it challenging for
security professionals to identify which features are influenc-
ing predictions.

1) Limitations of existing technologies:
• Scalability Issues – As network traffic grows, traditional

NIDS cannot process high-dimensional data, leading to
performance bottlenecks.

• Lack of Interpretability – The majority of machine
learning models are black boxes, giving accurate predic-
tions but no insight into the decision-making process.

• Computational Costs – Analysing high-dimensional
data is computationally expensive, which makes real-time
intrusion detection difficult.

2) Overcoming Such Challenges:
This paper is driven by the need to improve interpretabil-

ity in cybersecurity via the application of data visualization
techniques. Visualization provides an intuitive platform for
exploring complex network data, revealing hidden patterns of
attacks, feature significance, and interdependencies not read-
ily apparent within raw datasets. Furthermore,dimensionality
reduction using Principal Component Analysis (PCA)[20]
makes processing more efficient without compromising useful
information.

3) Research Motivation and Goals:
The primary goal is to provide cybersecurity professionals

with actual and practical tools to improve their efficiency in
identifying, understanding and responding to network attacks.
By bringing together machine learning and visualization, this
study will bridge the model accuracy interpretability gap to of-
fer more understandable and actionable results, especially for
real-time intrusion detection systems where prompt decision-
making is crucial.

B. Contribution
This article contributes to the field of research in network

intrusion detection and data visualization by addressing funda-
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mental limitations of existing technologies: scalability issues,
lack of interpretability, and computationally costly.

The major contributions of this paper are as follows:
1) Enhancing Interpretability with Data Visualization:
We devise an innovative solution with the integration of

machine learning and data visualization to facilitate better
interpretability for network intrusion detection. This solu-
tion enables cybersecurity professionals to graphically explore
complex intrusion patterns, feature significance, and attack
trends, addressing the issue of machine learning models that
cannot be interpreted (Lack of Interpretability).

2) Successful Dimensionality Reduction with PCA:
The paper applies Principal Component Analysis

(PCA)citehowto:olive2017principal to the CICIDS 2017
datasetcitehowto:sharafaldin2018, reducing 85 features to
a more manageable number without sacrificing principal
variance. This enhances computational efficiency, making
real-time intrusion detection possible without compromising
model accuracy, thus mitigating high computational cost.

3) Real-Time Interactive Visualizations using Power BI:
We also extend the use of Power BI[21] for real-time visual-

ization of network traffic, enabling an interactive simulation of
network traffic, attack detection, and model predictions. This
addresses the scalability issue by facilitating large amounts
of intrusion detection data to be efficiently monitored in real
time.

4) Actionable Intelligence for Cybersecurity Decision-
Making:

The research showcases interactive dashboards that provide
insights into:Feature importance,Attack detection trends and
Model performance.These insights allow cybersecurity practi-
tioners to make decisions faster and more confidently, over-
coming the poor transparency of traditional machine learning
models.

5) Real-Time Attack Simulation for Proactive Defense:
We simulate real-time attack scenarios in Power BI to

demonstrate the effectiveness of machine learning-based intru-
sion detection. This provides a practical roadmap for dynamic
threat monitoring and response, which is necessary for real-
time cybersecurity applications.

C. Organization

The rest of the paper is organized as follows:
Section 2: Related Work
This section provides an overview of previous research, in-

cluding studies on network intrusion detection, the application
of machine learning for cybersecurity, and the role of dimen-
sionality reduction techniques, like PCA[20], in improving
model performance.

Section 3: Proposed Methodology
This section presents in detail the sequence of methodology

adopted for this work, starting from preprocessing, cleaning,
and transforming the data using the CICIDS 2017[1] Dataset.
Further, the section describes the reduction of dimensionality
by PCA[20] and feature selection techniques. Later, the section
debates machine learning models used in intrusion detection,

thereby analyzing accuracy, feature importance, and classi-
fication results. It also includes a table comparing the best
performing model resulting from this study with other studies
in the same domain.

Section 4: Data Visualization
This section shows the visual outputs of the study in terms

of how data insights and model results were represented.
Discussion will cover visualizations created through Python
and Power BI[21], real-time simulations, and interactive dash-
boards.

Section 5: Future Work
This section describes some possible future work: advanced

machine learning models could be used, other dimensionality
reduction techniques could be applied, the scalability for
larger datasets, and the development of better real-time data
visualization frameworks.

Section 6: Paper Highlights
It provides an overview of what was contributed and found

in this study, focused on the integration of machine learning
into data visualization as part of improving the effectiveness
of network intrusion detection.

Section 7: Conclusion
The paper concludes by summarizing the major insights

gained from the research. It highlights how combining dimen-
sionality reduction, machine learning, and data visualization
techniques can have a greater impact on enhancing the inter-
pretability and efficiency of cybersecurity systems.

II. RELATED WORK

IDS(Intrusion Detection System) and network traffic analy-
sis have gained much attention in the cybersecurity domain due
to their capability for the detection of malicious activities that
may affect the security of networks. Different works present
the use of preprocessing techniques, visualization tools, and
machine learning models in intrusion detection.

Preprocessing techniques play a very important role in the
dimensionality reduction of data, improvement of computa-
tional efficiency, and enhancing the performance of IDS mod-
els. Sharafaldin et al. (2018)[1] proposed the CICIDS 2017[1]
dataset, which has become the benchmark for intrusion de-
tection research by providing a complete characterization of
network traffic. Wang et al. (2020)[2] performed PCA[20] on
this dataset, which reduced the feature space while maintain-
ing the accuracy of detection. Similarly, Moustafa and Slay
(2015)[3] performed feature engineering on the UNSW-NB15
dataset by addressing challenges in class imbalance and noisy
data. Feature selection techniques such as information gain
have also been shown to further enhance anomaly detection
accuracy by Kurniabudi et al. (2020)[4].

Various visualization techniques have also been signifi-
cantly explored to uncover complex patterns and anomalies
in network traffic. Chen et al. (2021)[5] applied Tableau
to visualize network flows with the aim of detecting attack
patterns, although limitations on further drill down capabilities
into the detected anomalies were discussed. Ullah et al.
(2021)[6] extended ML models with Power BI[21] dashboards
and considerably improved interpretability of insights for a
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non-specialist user. These point out the necessity of having
an interactive and dynamic visualization framework in place
while analyzing network traffic.

Machine learning (ML) and deep learning(DL) models
have automated intrusion detection by identifying malicious
behavior. Sharafaldin et al. (2018)[1] investigated some classic
ML methods, including Random Forest[12] and SVM[16]
on the CICIDS 2017 dataset, which reported high detection
rates. Mondal and Sanchez (2021)[7] proposed a Docker
environment based on supervised ML for real-time detection,
with scalability still an issue.

Standardization ensures devices work appropriately with the
others. Deep learning approaches, such as LSTM networks
for anomaly detection in sequential traffic data (Ullah et
al., 2021)[6], achieved improved detection rates but lacked
interpretability. To address these challenges, ensemble learning
methods (Zhou et al., 2020)[8] and evolutionary deep learning
frameworks (Elmasry et al., 2020)[9] have been introduced.

Benchmark datasets like CICIDS 2017[1] and UNSW-
NB15 have played an important role in the advancement
of IDS research. These datasets encompass a wide variety
of attack types, offering robust testbeds for evaluating IDS
models. Sharafaldin et al. (2018)[1] mentioned that the high
dimensionality of CICIDS 2017 presents a challenge for real-
time processing. Feature selection techniques and transforma-
tions, such as logarithmic transformations, have been effective
in mitigating these challenges, as shown by Vinayakumar
et al. (2019)[10] and Gamage & Samarabandu (2020)[23].
Furthermore, Yulianto et al. (2019)[24] showed the utility of
enhancing AdaBoost-based IDS performance on the CICIDS
2017[1] dataset.

Coupled with these, the development of preprocessing,
feature visualization, and machine learning techniques, as well
as benchmark datasets, greatly enhanced IDS capabilities.
Nevertheless, research in this domain has been continuously
driven by challenges such as scalability, interpretability, and
real-time processing.

III. PROPOSED METHODOLOGY

Here, we discuss how the CICIDS 2017[1] dataset has
been preprocessed and what network attack type analysis
technique has been used. The main motivation behind this
approach is to utilize PCA[20] with minimum loss of infor-
mation such that the reduced representation might retain the
strength of accuracy in attack prediction. We try to achieve
quicker training times and lower memory usage using PCA[20]
without a significant loss of model accuracy. Besides, real-
time simulation and visualization are done with Power BI[21]
in order to monitor and assess the performance of the model
in dynamic conditions. Further, in the subsections, the pre-
processing of data, application of PCA[20], and development
of real-time visualizations for model evaluation are explained.

A. Dataset
1) Dataset Overview
The CICIDS 2017[1] dataset, released by the Canadian

Institute for Cybersecurity, includes tagged examples of var-
ious network attacks. It is a popular dataset for network

Fig. 1. Distribution of Attack Type in CICIDS 2017 Dataset

Fig. 2. Pre-Processing Steps

intrusion detection research, containing 85 features such as
flow statistics and network traffic patterns. These features
collect critical network traffic information such as source and
destination addresses, packet counts, and flow time, among
others.

The dataset is separated into attack types, such as DoS
(Denial of Service), DDoS (Distributed Denial of Service),
Brute Force, and SQL Injection and many more as shown in
Fig. 1 which allows for attack detection based classification.
For this study, we concentrate on preprocessing the dataset
to eliminate extraneous features and convert the data into
a format appropriate for machine learning analysis. In this
research, we use the CICIDS 2017[1] dataset to predict the
type of network assault, with a focus on improving model
performance through dimensionality reduction using PCA[20]
and presenting the findings in real time with Power BI[21].

2) Pre-Processing
As shown in Fig. 2, to create a consistent and high quality

dataset, we performed the following pre-processing steps:
a) Data Download and Merging: The CICIDS 2017[1]

dataset, containing daily logs from an experiment conducted
over six days (Monday to Sunday), was downloaded from the
official website as shown in Fig. 3. We then merged each CSV
file into one unified dataset to simplify the analysis.

b) Column Information and Data Types: For a well-
structured dataset, we verified for column names, data types,
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Fig. 3. Various CSV Files

Fig. 4. Distribution of Column Types

and unique values. Numerical values were dominant in the
majority of the columns, whereas the minority were non-
numerical in nature, i.e., Label, Flow ID, Timestamp, Source
IP, and Destination IP. Column type distribution is presented
in Fig. 4.

c) Handling Non-Numerical Data: The Label column
was categorical and consisted of different types of attacks and
benign traffic. We encoded these numerically using Label En-
coding, with each unique category being assigned an integer.

Feature Selection: We removed non-informative features
such as Flow ID, Source IP, and Destination IP.

These features were removed since: They contain special
identifiers that are not useful for learning patterns. Their
presence can lead to data leakage because an IP address can
uniquely determine the attack sources in the training set.

d) Null and Infinite Value Detection: The dataset was
examined for null values, particularly in the Flow Bytes/s
column, which contained missing data. We opted to impute
the missing values with the median of each label group, as the
median is more robust to outliers than the mean. Additionally,

we checked for infinite values in columns like Flow Bytes/s
and Packet, which were found and replaced with null values
to ensure consistency.

e) Outlier Detection: After cleaning the data, we
checked for outliers in the numerical columns but found none.
Given the nature of this dataset and its relevance for real-
time prediction, every piece of information was considered
important.

f) Data Splitting and Scaling: Data was split into 80-20
ratio for training and testing sets to ensure that the testing of
models was done on unseen data.

Standardization:
We employed Standard Scaling (Z-score normalization)

with StandardScaler() from sklearn.preprocessing to normalize
all the numerical features to the same scale. Scaling was
performed after splitting to prevent data leakage and ensure
that the test set was scaled based only on the training set
statistics.

This keeps features with large numeric values (e.g., Packet
Length Mean, Flow Duration) from overpowering features at
a smaller scale.

Data Preprocessing and Its Impact on Model Perfor-
mance: By downloading and merging the CICIDS 2017[1]
dataset, followed by a series of preprocessing steps including
handling non-numerical columns, addressing missing and in-
finite values, and applying feature selection, we ensured that
our dataset was clean and ready for analysis. In addition,
we standardized the data after splitting them into training
and testing sets, which improved the model’s ability to learn
effectively. This rigorous preprocessing ensured fewer dis-
crepancies during model training, leading to more efficient
learning. By carefully cleaning and preparing the dataset, we
improved the quality of the input data, resulting in a model
that could learn more generalized features and perform well
across a variety of attack types.

B. Machine Learning Models:
After preprocessing and scaling the dataset using Standard

Scaling (Step f in Preprocessing), we trained and tested
different supervised machine learning models for classifying
network traffic into attack and benign classes. Scaling was
required to ensure that all the features would have equal
influence on the model so that large numerical value features
would not disproportionately bias the prediction. We scaled
the dataset and then trained the following models:

• Decision Tree Classifier[11]: A tree model that partitions
data based on feature importance.
Strengths: Interpretable, good non-linearity handling.
Weaknesses: Overfits if not pruned.

• Random Forest Classifier[12]: An ensemble of decision
trees that generalizes through averaging over many trees.
Strengths: Less likely to overfit, handles imbalanced data
well.
Weaknesses: Computationally intensive for large data.

• XGBoost Classifier[13]: A gradient boosting algorithm
with an emphasis on speed and performance.
Strengths: High accuracy, handles missing values, effi-
cient on big data.
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Fig. 5. Accuracy of Different Model

Weaknesses: Requires careful hyperparameter tuning.
• Logistic Regression[14]: Statistical model predicting

probability of class membership.
Strengths: Simple, simple to understand, good default
classifier.
Weaknesses: Maintains a linear relationship assumption
between features and target variable.

• Gaussian Naı̈ve Bayes[15]: Probabilistic classifier accord-
ing to Bayes’ Theorem with Gaussian distributions.
Strengths: Good for small datasets, fast training.
Weaknesses: Assumes feature independence, potentially
broken in real data.

Hyperparameter Tuning: To achieve optimum performance,
we applied Grid Search hyperparameter optimization on Ran-
dom Forest and XGBoost, and tuned parameters such as:

1.max depth (tree depth)
2.n estimators (size of trees in ensemble methods)
3.learning rate (in case of XGBoost)
4.min samples split (number of samples needed to split a

node)
Model Comparison: After training the models, we com-

pared their performance and found that the XGBoost
model[13] produced the highest accuracy (as shown in Fig.
5), making it the best-performing model for this task. This
was confirmed by calculating the accuracy for each model
and evaluating it against the test dataset.

Confusion Matrix: To gain deeper insights into the per-
formance of each model, we analyzed the confusion matrix
for each. The confusion matrix is a valuable tool for under-
standing the types of errors each model made, especially in
distinguishing between different attack types. For each model,
we plotted the confusion matrix.

By carefully analyzing the confusion matrices presented
in Fig. 6, 7, 8, 9, and 10, we observed distinct patterns in
the classification performance of each model. Among all the
models, the Gaussian Naive Bayes classifier[15] demonstrated
the weakest performance, as evidenced by the poor values
along its diagonal, which correspond to correct predictions.

Fig. 6. Confusion Matrix of XGBoost Classifier

This indicates a higher rate of misclassification compared to
the other models, making it unsuitable for our analysis.

The Logistic Regression model[14] also exhibited limita-
tions, particularly with an elevated number of misclassified
instances concentrated in the first row of its confusion matrix.
This suggests a bias in its predictions, which compromises its
overall reliability when compared to tree-based models. Focus-
ing on the tree-based classifiers — Decision Tree[11], Random
Forest[12] , and XGBoost[13] — we evaluated their confusion
matrices based on the number of off-diagonal elements, which
represent misclassified samples. XGBoost[13] emerged as
the most robust model, with the fewest off-diagonal values,
implying the highest precision in its predictions. Additionally,
XGBoost’s[13] confusion matrix contained the largest propor-
tion of zero entries outside the diagonal, further supporting
its superior ability to accurately classify data across all cate-
gories. In summary, the confusion matrix analysis reinforces
our conclusion that the XGBoost classifier[13] significantly
outperforms the other models, not only in terms of accuracy
metrics but also in its ability to minimize misclassifications.
This finding aligns with and substantiates the results derived
from the accuracy metrics, solidifying XGBoost[13] as the
optimal choice for our dataset.

Feature Importance and Model Interpretability:
For the tree-based models (Decision Tree[11], Random

Forest[12], and XGBoost[13]), we plotted the feature impor-
tance, as shown in Fig. 11, 12, and 13, to analyze the relative
contribution of each feature to the model’s predictions. Feature
importance quantifies how much each feature influences the
model’s decision-making process, providing insights into the
underlying factors driving predictions. This analysis is critical
for understanding the model’s behavior and identifying the key
indicators of network traffic anomalies or attacks.

Similarly, for Logistic Regression[14], we analyzed the co-
efficients of the model as shown in Fig. 14, which indicate the
relationship between each feature and the model’s predictions.
Positive coefficients suggest that higher values of a feature
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Fig. 7. Confusion Matrix of Random Forest Classifier

Fig. 8. Confusion Matrix of Decision Tree Classifier

Fig. 9. Confusion Matrix of Logistic Regression

Fig. 10. Confusion Matrix of Gaussian Naive Bayes

Fig. 11. Feature Importance from XGBoost

increase the likelihood of an attack being classified, while
negative coefficients suggest the opposite. We visualized these
coefficients using bar plots for easier interpretation.

Bar plots were used to visualize the feature importance
for each tree-based model, making it easier to compare their
interpretations. From the feature importance plots, we ob-
served that Random Forest[12] emphasizes a broader range of
features, assigning importance to many of them. In contrast,
XGBoost[13] and Decision Tree classifiers[11] identify a
more focused subset of significant features. This suggests that
Random Forest[12] may overfit the dataset by relying on too
many features, which could reduce its generalization perfor-
mance. On the other hand, XGBoost[13] and Decision Tree
models[11] highlight fewer, more critical features, making
them more efficient for our analysis.

Comparing XGBoost[13] and Decision Tree[11],
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Fig. 12. Feature Importance from Random Forest

Fig. 13. Feature Importance from Decision Tree

XGBoost[13] provides a clearer and more distinct ranking
of feature importance, supporting its overall superior
performance in the accuracy metrics and confusion matrix
analysis. This alignment across multiple evaluation criteria
reinforces the conclusion that XGBoost[13] is the best
performing model for our dataset. Consequently, we have
chosen XGBoost[13] for further visualization and analysis in
this study.

While Logistic Regression[14] offers interpretable coef-
ficients that indicate the contribution of each feature, its
feature importance plot shows a less clear delineation of
significant predictors compared to tree-based models. Logistic
Regression[14] assumes a linear relationship between features
and the target variable, which may oversimplify the complex

Fig. 14. Feature Importance from Logistic Regression

patterns inherent in our dataset. Additionally, its performance,
as seen in the confusion matrix, is inferior to XGBoost[13],
Random Forest[12], and Decision Tree[11], particularly in
handling imbalanced classes. These limitations make Logistic
Regression[14] unsuitable for our objectives, and we prioritize
tree-based models, with XGBoost[13] being the most optimal
choice.

C. PCA(Principal Component Analysis)

a) PCA Overview: Principal Component Analysis
(PCA)[20] is a dimensionality reduction technique that trans-
forms the original feature space into a smaller set of un-
correlated features, known as principal components. These
components capture the maximum variance present in the
data, reducing the number of features while retaining the
most significant information. In the context of our project,
PCA[20] was applied after preprocessing to reduce the number
of features, helping to mitigate the risk of overfitting and
enhance computational efficiency.PCA[20] allows the model
to focus on the most important underlying patterns, which
enables faster training times and lower memory consumption,
while still allowing a high degree of accuracy.

As this classifier performed best, based on the observations
of the previous sections, we extend our analysis by taking
its performance from a different perspective. Instead of just
accuracy, we look into other metrics like time taken for
training the model and memory usage. These factors are very
crucial in practical applications, specially for real-time or
resource constrained environments.

Further to investigate possible optimizations, we have ap-
plied PCA[20] in order to see its effect on these performance
metrics. PCA[20] is a technique for reducing the dimension-
ality of data to a lower dimensional space in such a manner
that most of the information (variance) can be preserved.
This helps in reducing computational complexity and memory
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requirements without affecting the predictive power of the
model significantly.

b) Implementation of PCA: This section considers the
influence of applying PCA[20] on model performance, taking
into account the variance threshold with accuracy, memory
usage, and training time. We applied PCA[20] using the built-
in Python library to reduce the dimensionality of the dataset,
retaining various proportions of variance of the dataset. A
threshold based on explained variance is another way of speci-
fying the amount of explained variance one wants to retain; the
higher the threshold, the more information is preserved, but at
greater computational cost. To understand the trade-offs, we
experimented with four different variance thresholds: 0.900,
0.950, 0.990, and 0.999, and evaluated their impact on three
important metrics.

Accuracy (%): The predictive performance of the model.
Memory Usage (GB): The memory consumed during train-

ing.
Time Taken to Train Model(s): The computational efficiency

of the model. The model used was the XGBClassifier.
Results and Observations:
The results, summarized in Table I, reveal that increasing

the variance threshold slightly improves accuracy. However,
this improvement comes at the cost of significantly higher
training time, while memory usage remains relatively stable
at higher thresholds (0.990 and 0.999). The model exhibits
faster training times for thresholds 0.900 and 0.950.

To provide a clearer understanding, Fig. 15 visually illus-
trates the relationship between variance thresholds and the
three performance metrics: Accuracy, Memory Usage, and
Time Taken to Train. Below is an analysis of the trends
observed in the graph:

1.Accuracy:
- Represented by the blue line, accuracy shows a gradual

increase as the variance threshold rises.
- A noticeable improvement is observed from 0.90 to 0.99.

However, beyond 0.99, the gains diminish, highlighting a point
of diminishing returns.

2.Memory Usage:
- Depicted by the orange line, memory usage remains stable

across higher thresholds (0.99 and 0.999).
- At lower thresholds (0.90 and 0.95), there is a minor

reduction, but the effect on overall resource efficiency is
minimal, suggesting that memory usage is not significantly
impacted by variance thresholds beyond a certain point.

3.Time Taken to Train:
- The green line indicates a steep rise in training time as

the threshold increases.
- Notably, the jump between thresholds 0.99 and 0.999

is substantial, demonstrating the trade-off between achieving
marginally better accuracy and the increased computational
cost.

The significant rise in training time between 0.99 and
0.999 emphasizes the inefficiency of extremely high variance
thresholds. Since the differences in accuracy between 0.99
and 0.999 are minimal, and the training time for 0.99 is
significantly lower (235 seconds compared to 272 seconds for
0.999), choosing 0.99 as the optimal variance threshold offers

Variance Threshold Accuracy
(%)

Memory Usage
(GB)

Time Taken to
Train Model(s)

0.900 99.745191 3.160116 160.895469
0.950 99.754102 3.026665 190.082128
0.990 99.806783 3.007600 235.115457
0.999 99.826480 3.007600 272.662835

TABLE I
PERFORMANCE METRICS FOR VARIANCE THRESHOLD

Fig. 15. Impact of Variance Threshold on Metrics

a practical balance. This threshold effectively retains sufficient
information while conserving computational resources, mak-
ing it a more efficient choice for further analysis.

Based on the selected variance threshold (0.99) and the
chosen model (XGBoost)[13], PCA[20] was applied to assess
its impact on key performance metrics. The results, summa-
rized in Table II and visually depicted in Fig. 16, compare the
model’s performance with and without PCA. The evaluated
metrics include Accuracy, Memory Usage, and Time Taken
for training.

To quantify the impact of PCA[20], a detailed percentage
based comparison is provided below, highlighting the trade-
offs in terms of accuracy reduction, memory savings, and
training time improvement. These insights help determine the
practical benefits of applying PCA[20] in the given context.

Observations and Calculations:
• Accuracy:

Difference = 99.989370− 99.806158 = 0.183212 (%)

PercentageReduction =
0.183212

99.989370
× 100 ≈ 0.18 (%)

• Memory Usage:

Difference = 24.395108−24.390344 = 0.004764 (MB)

Dataset Accuracy(%) Memory Usage (MB) Time Taken(s)
Without PCA 99.989370 24.395108 290.131819
With PCA 99.806158 24.390344 210.937284

TABLE II
COMPARISON OF METRICS WITH PCA AND WITHOUT PCA
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Fig. 16. Peformance Metrics Comparison with and without PCA

PercentageReduction =
0.004764

24.395108
× 100 ≈ 0.02 (%)

• Time Taken:

Difference = 290.131819−210.937284 = 79.194535 (s)

PercentageReduction =
79.194535

290.131819
×100 ≈ 27.29 (%)

Analysis:
From the above comparison, it is evident that applying

PCA[20] with a variance threshold of 0.99 provides a signifi-
cant reduction in training time while maintaining comparable
accuracy and memory usage. The minor accuracy drop of
0.18% is an acceptable trade-off for the 27.29% reduction
in training time, especially for scenarios where computational
efficiency is prioritized.

This comparison and the Fig. 16 highlights the practicality
of incorporating PCA[20] in the preprocessing pipeline, par-
ticularly for large datasets where reducing training time can
lead to faster iterations and model optimization.

D. Real Time Data Simulation in Power BI

a) Models and Tools Overview: Before diving into the
implementation, the following models and tools were finalized
for real-time data simulation and prediction:

• PCA Instance:Used for dimensionality reduction in
the PCA[20]based approach.Saved and loaded using the
joblib package.

• XGB Model:Two models were used:
1. XGB Model trained with PCA
2. XGB Model trained without PCA.
The built in save and load functions of XGBoost[13]
were used for these models to preserve model weights
and configurations.

• Standard Scaler:A separate scaler instance was trained
for PCA-transformed data and the original dataset.Saved
and loaded using the joblib package.

• Label Encoder:Common for both approaches to encode
the predicted labels into human readable or categorical
formats. Saved and loaded using the joblib package.

This combination of tools and models ensures consistency,
efficiency, and accuracy throughout the workflow as shown in
Fig. 17.

Fig. 17. Flowchart of the Implementation
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b) Real-Time Data Simulation and Visualization
Flowchart:
1. Importing Necessary Packages

Start by importing essential Python libraries required for
preprocessing, scaling, encoding, modeling, and integration
with Power BI[21].

2. Taking User Input
Collect input from the user to determine the number of

samples to simulate for real-time prediction and visualization.
3. Deciding on the Approach
Based on the requirements, select one of the following

approaches:

• With PCA: Use the pre-trained PCA[20] model to trans-
form the dataset into its principal components.Apply the
Standard Scaler instance trained specifically for PCA[20]
transformed data to ensure consistent scaling.Use the
XGB Model trained with PCA[20] to predict the out-
come.

• Without PCA: Directly scale the sampled data using
the Standard Scaler instance trained on the original
dataset.Use the XGB Model trained without PCA to
predict the outcome.

4. Applying Label Encoder
Use the Label Encoder instance to convert the predicted

labels into human readable or categorical outputs as required
for Power BI[21] visualization.

5. Streaming Data to Power BI
Step 1: Enable the Power BI[21] service with the appropri-

ate workspace and dataset for streaming.
Step 2: Turn on the ‘Historic Data Analysis’ toggle for the

Power BI[21] dataset to allow visualization of both past and
real-time data.

Step 3: Create the schema for the streaming dataset, ensur-
ing it matches the structure of the predicted data.

6. Building Reports and Dashboards
Create a report in Power BI[21] that connects to the stream-

ing dataset. Design visualizations to represent predictions,
trends, and insights from the data. Publish a dashboard linked
to the report for live updates.

7. Sending Data to Power BI Using Python
Use the Power BI[21] API endpoint and Python’s requests

library to send real-time simulated data (in JSON format)
into Power BI[21]. Ensure proper authentication and test the
data pipeline to verify successful ingestion of data into Power
BI[21].

c) Discussion:Real-Time Data Simulation in Power BI:
The project integrates machine learning driven anomaly detec-
tion with real-time data streaming in Power BI. By simulating
network traffic data and running it through a predictive model,
we can show network anomalies in real-time, enhancing secu-
rity monitoring.

Implementation Details:
• Data Preprocessing: Load network traffic dataset and

drop unnecessary columns (Flow ID, Timestamp, IP Ad-
dresses).Standardize numerical features using pre-trained
scaler.

• Feature Transformation:For PCA-based models, do di-
mensionality reduction. Ensure the processed data format
matches the trained model input.

• Model Prediction: Load a pre-trained XGBoost classifier.
Predict attack types from network traffic data. Convert
numerical labels back to readable categories.

• Streaming to Power BI: Format the data into JSON. Push
data rows sequentially to Power BI’s REST API. Ensure
smooth transmission without exceeding API limits.

The pseudo code below implements the mentioned steps:

# Load dataset
data = read_csv("network_traffic.csv")

# Preprocess Data
processed_data = preprocess_data(data)

# Apply Feature Transformation
if use_pca:

transformed_data = apply_pca(processed_data)
else:

transformed_data = apply_scaling(processed_data)

# Load Model & Predict
model = load_trained_model("xgboost_model")
predictions = model.predict(transformed_data)

# Decode Predictions
decoded_labels = decode_labels(predictions)

# Stream to Power BI
for each row in transformed_data:

payload = format_to_json(row, decoded_labels)
send_to_power_bi(payload)

Technical Challenges:
• Managing API Rate Limits: Challenge: Power BI imple-

ments request limits, which will fail when data streams
too fast. Solution: Apply batch processing or implement
a time gap between API calls.

• Real-Time Performance: Challenge: The detection speed
may be affected by data latency. Solution: Maximize net-
work transmission and utilize multi-threading to execute
requests simultaneously.

• Data Security & Compliance: Challenge: Network traffic
data may contain sensitive information (IP addresses, user
logs). Solution: Anonymize the data before processing
and enable secure API authentication (e.g., OAuth to-
kens).

Model Deployment in a Real Network Environment:
To integrate this system into a production network, the

following are crucial considerations:

• Data Ingestion Pipeline: Use an real-time network packet
capture tool (i.e., Wireshark, Zeek).Use Apache Kafka or
AWS Kinesis for streaming at scale.

• Model Hosting & Inference: Deploy the trained model on
AWS SageMaker or Azure ML for real-time inference.
Set up a REST API with FastAPI or Flask to receive
network packets and make predictions.

• Integration with Power BI: Save logs in a database
(PostgreSQL, Snowflake, or Redshift) before streaming
into Power BI. Use Power BI Dataflows or DirectQuery
for dashboard refreshes in real-time.
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E. Methods Result Comparison

The summary of different models’ performance on intrusion
detection is presented in Table III. Among the deep learning
techniques, high accuracy was reported, first by Elmasry
et al.[9], at 99.91% with DBN; then Kurniabudi et al.[4]
presented an accuracy of 99.88% using J-48/C4.5. In ensemble
methods, 99.89% was attained by Yuyang Zhou et al.[8] with
C4.5+RF+Forest PA. Hybrid models like Zhang et al.[18]
combined LSTM and Random Forest for 95.8% accuracy,
showing the potential of combining techniques. Other machine
learning methods also did well, such as Random Forest by
Gamage et al.[23] with 99.86% and SVM by Wang et al.[2]
with 93.7%. Without PCA, XGBoost topped them all with the
highest accuracy of 99.99%, thereby showing the powers of
advanced gradient boosting models in intrusion detection.

Method Technique Model Accuracy (%)
Sharafaldin
et al.[1]

Machine
Learning

Random
Forest 95.2

Ullah
et al.[6]

Deep
Learning LSTM 99.95

Chen
et al.[5]

Machine
Learning

Decision Tree
+ PCA 92.8

Wang
et al.[2]

Machine
Learning SVM 93.7

Ferrag
et al.[17]

Deep
Learning CNN 94.5

Mondal &
Sanchez[7]

Machine
Learning

Gradient
Boosted Trees 92.5

Zhang
et al.[18]

Hybrid
Approach

LSTM
+ Random
Forest

95.8

Subramaniam
et al.[19]

Deep
Learning 1D-CNN 95.6

Kurniabudi
et al.[4]

Machine
Learning J-48/C4.5 99.88

Gamage
et al.[23]

Machine
Learning Random Forest 99.86

Vinayakumar
et al.[10]

Deep
Learning DNN 95.6

Yuyang Zhou
et al.[8]

Ensemble
Machine
Learning

C4.5+RF
+Forest PA 99.89

Elmasry
et al.[9]

Deep
Learning DBN 99.91

Yulianto
et al.[24]

Machine
Learning

Adaboost+EFS
+SMOTE 81.83

Our
Approach

Machine
Learning XGBoost+W/O PCA 99.99

TABLE III
COMPARISON OF VARIOUS METHODS AND MODELS IN TERMS OF

ACCURACY

IV. DATA VISUALIZATION

Based on Fig. 18, we observe that the average flow duration
was highest on 5th July 2017 and lowest on 6th July 2017.
This could indicate that the experiments conducted on 5th
July generated longer-lasting flows, potentially focusing on
sustained traffic patterns. Conversely, the experiments on 6th
July may have emphasized shorter duration flows, or fewer
experiments might have been performed that day.

The box plot in Fig. 19 visualizes the flow duration across
various attack types. It shows that benign traffic, represented
by the orange box, has the shortest flow duration, suggesting

Fig. 18. Average Flow Duration for Each Day

regular traffic has brief interactions. Attack types like FTP-
Patator and SSH-Patator (yellow and green boxes) exhibit
similarly short flow durations, reflecting the repetitive nature of
these attacks, which involve quick, repeated login attempts. In
contrast, attacks such as DDoS and PortScan (light blue and
green boxes) demonstrate more variability in flow duration,
indicating differing attack behaviors. More persistent attacks
like Infiltration and DoS Slowloris (teal and blue boxes) show
higher median flow durations, with wider interquartile ranges,
suggesting longer attack durations. DoS Slowhttptest and DoS
Hulk (light purple and purple boxes) exhibit particularly high
median flow durations, indicating prolonged, intensive attacks.
DoS GoldenEye and Heartbleed (purple and pink boxes) have
the highest flow durations with significant outliers, reflecting
highly persistent attacks. These outliers, representing extreme
flow durations, are normalized during preprocessing to ensure
that the model is trained on the full spectrum of values,
preventing the outliers from disproportionately affecting the
model’s performance. This normalization helps in training the
model with all possible values, allowing it to generalize better
across different attack scenarios and network conditions.

The bar chart in Fig. 20 displays the average count of
various flags (FIN, SYN, RST, PSH, ACK, and URG) for
each attack type. The BENIGN label shows relatively low
values across all flags, indicating normal traffic with fewer
network control signals. In contrast, attack types like DDoS,
DoS GoldenEye, and DoS Hulk display significantly higher
counts, especially for the URG and PSH flags, suggesting
more intensive use of these flags in these attacks. Specifically,
DoS Slowhttptest and DoS Slowloris exhibit high SYN and
ACK flag counts, reflecting the slow and persistent nature of
these attacks. FTP-Patator and SSH-Patator show relatively
higher counts for the SYN and RST flags, which are typical
for attempts to establish or reset connections. Heartbleed,
Infiltration, PortScan, and SSH-Patator also have varying flag
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Fig. 19. Box Plot of Flow Duration for Various Attack Types

Fig. 20. Average of Various Flag Count for each Label

counts, but not as pronounced as the aforementioned attacks.
The graph highlights how different attack types manipulate
these flags differently to create malicious traffic, and this
behavior helps in distinguishing between attack types and
benign traffic.

From the Fig. 21 we can infer that the Protocol 6 (likely
TCP) dominates the dataset, reflecting its widespread use in
network traffic. This is consistent with TCP’s role in ensuring
reliable communication for many common applications such
as web browsing, file transfers, and email. Protocol 17 (likely
UDP) is the second most frequent protocol in the dataset.
UDP is typically used in applications where low latency and
speed are prioritized over reliability, such as video streaming,
gaming, and VoIP.In contrast, Protocol 0 is rarely observed in
the dataset, suggesting it corresponds to specific or uncommon

Fig. 21. Count of Protocol

Fig. 22. Count of Label across various Protocol

network events. Its infrequent use may indicate specialized
traffic or non-standard network communications, which are
not typically seen in regular network activity.

From the Fig. 22 we can infer that the ‘BENIGN’ label
predominantly utilizes Protocol 6, with significantly fewer
instances of other protocols such as Protocol 17 or Proto-
col 0. This indicates that benign network traffic primarily
consists of communication using TCP, while other protocols
are less frequently observed in normal traffic.On the other
hand, attack types like ‘PortScan’ and ‘DoS Hulk’ exhibit a
more diverse distribution across protocols. This suggests that
certain attack types are more closely associated with specific
protocol usage patterns. For instance, ‘PortScan’ may involve
multiple protocols to probe various network services, while
‘DoS Hulk’ could show a stronger correlation with a particular
protocol, reflecting the nature of the attack and its impact on
the network.

Based on the Fig. 23 we can infer that the relationships
between features like Flow Duration, Total Fwd Packets, and
Total Backward Packets reveal distinct clusters, potentially
aiding in label classification. Attack labels such as ‘DoS Hulk’
or ‘Port Scan’ tend to show dispersed values, distinguishing
them from BENIGN traffic, which is more clustered. Feature
Relationships: The diagonal histograms reveal that features
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Fig. 23. Pair Plot on Attributes such as Flow Duration, Total Fwd Packets,
Total Bwd Packets, Active and Idle Mean

like Flow Duration and Active Mean are heavily skewed,
showing a concentration of values near the lower end .Label
Separation: Certain attack types, such as ’DoS Hulk’ are
distinguishable in specific feature pairings (e.g., Flow Dura-
tion vs. Total Fwd Packets), showing potential for effective
classification.

V. FUTURE WORK

1. Advanced Dimensionality Reduction Techniques
Compare with other dimensionality reduction methods, in-

cluding t-SNE, UMAP, or LDA, in terms of effectiveness to
PCA[20] for both visualization and classification performance.
Look into nonlinear PCA[20] or kernel based methods that can
handle complex interactions between features.

2. Model Optimization
Carry out hyperparameter tuning by either grid search or

Bayesian optimization in order to further improve the per-
formance of the XGBoost model[13]. Try different ensemble
methods, such as Stacking or Boosting, with PCA[20] versus
non-PCA models to see which has better accuracy.

3. Scalability Analysis
This will test the performance of both XGBoost[13] with

and without PCA[20] on larger datasets, focusing on their
scalability in terms of computation time and memory. Integrate
distributed frameworks such as Apache Spark or Dask for
datasets larger than current hardware limitations.

4. Real-Time Analysis
Deploy the model in an actual live-streaming environment

using Apache Kafka or Flink, etc., to perform real-time
network traffic data analysis for intrusion detection. Build
a real-time dashboard to monitor predictions and visualize
critical metrics dynamically.

5. Comparison with Other Models
Observe performances of deep models (Auto-encoder,

LSTMs,.) used as dimensionality reducers or as state-of-
the art classifiers. Compare tree-based models against other

classifiers, like SVM[16], Neural Networks[22], or k-NN, in
order to decide upon the best approach for any given scenario.

6. Improved Visualization Techniques
Create more interactive visualizations in Power BI[21] or

Tableau that better illustrate the impact of PCA[20] on dif-
ferent metrics. Use 3D or multidimensional plots to show the
relationships between the PCA[20] components and classifi-
cation outcomes.

7. Tensor-Based Modeling for Complex Network Pat-
terns

Future work can advance the research in the application
of tensors in better describing multi-relational and high-
dimensional network traffic data. Techniques such as the
Tensor Levenberg-Marquardt Algorithm (TLMA) [26] and
the Tensor Extended Kalman Filter (TEKF) [25] enable the
description of input, output, and state variables in terms of
generic tensor structures. They are suited for identifying non-
linear temporal evolution and complex relations that happen in
real-world traffic and intrusion attack scenarios. These models
can be combined to significantly enhance predictive accuracy,
scalability, and robustness in network anomaly detection sys-
tems.

VI. PAPER HIGHLIGHTS

• Superior Performance of XGBoost: Among the five ma-
chine learning models evaluated, XGBoost[13] emerged
as the most accurate and effective in detecting cyber
attacks, demonstrating its robustness in handling complex
patterns and feature interactions.

• Feature Importance Analysis: Random
Forest[12]tended to assign importance to a wide
range of features, potentially leading to overfitting. In
contrast, XGBoost[13] and Decision Tree[11] focused on
a smaller, more critical subset of features, enhancing their
interpretability and efficiency. Logistic Regression[14],
while offering interpretable coefficients, struggled
to clearly identify distinct features due to its linear
assumptions, making it less suitable for the dataset’s
complexities.

• Impact of PCA on Model Efficiency: Implementing
Principal Component Analysis (PCA)[20] led to a neg-
ligible reduction in accuracy but significantly improved
computational efficiency and reduced training time. This
trade-off highlights the practicality of dimensionality
reduction techniques in handling large datasets without
compromising performance.

• Insights into Attack Detection: It was found that dif-
ferent types of cyber attacks manipulate flags differently
in the network. This will be a very good indicator that
will help in finding malicious traffic from benign traffic,
featuring engineering and domain specific knowledge
become important in detection.

VII. CONCLUSION

This paper emphasizes how important data visualization and
preprocessing have become in value addition to network traffic
analysis in cybersecurity. Our group processed, analyzed,
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and visualized the network traffic of the CICIDS 2017[1]
dataset based on this, showing visualized patterns in network
traffic and hence providing profound insight into cybersecurity
threats. To improve model performance, cleaning was done,
some features were transformed, and appropriate feature se-
lection was performed. It used dimensional reduction, gener-
ally by Principal Component Analysis (PCA)[20], to enable
computational efficiency enhancement with limited loss of
information and no real reduction in predictive accuracy. Of
the five models tested herein, such as XGBoost[13], Random
Forest[12], Decision Tree[11], Logistic Regression[14], and
Gaussian Naive Bayes[15], XGBoost[13] presented the best in
terms of high intrusion detection rate. We have also compared
the same with the work of other authors. We also made an
interactive platform in Python and PowerBI to simulate real-
time data for analyzing attack types, feature importance, and
performance metrics. Our visualizations depicted how different
cyberattacks manipulated network flags and this distinction
can be used to detect malicious traffic. Our findings point-
edly highlight how data analytics and visualization are very
paramount in cybersecurity infrastructure development and
intrusion detection.
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