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Non-terrestrial networks (NTNs), comprising unmanned aerial vehicles (UAVs) with varying battery and computational capacities,
are key technologies for implementing 5G and beyond (B5G) as well as 6G. However, the integration and orchestration of different
NTN layers remain underexplored. This paper investigates a two-layer NTN architecture, featuring a high-altitude platform (HAP)
with either satellites or high-performance UAVs, and low-altitude UAVs (LAUs) with limited capacity, tasked with collecting data
from terrestrial Internet-of-Things (IoT) nodes. We delve into the dynamics of the NTN, focusing on a framework where multiple
capacity-constrained LAUs are coordinated by a centralized HAP. The proposed research involves devising optimized trajectories for
these cooperative LAUs, under HAP guidance, to boost energy efficiency in data collection. The proposed work tackles this challenge
by developing two integer linear programming (ILP) optimization models and introducing a novel algorithm named collaborative
multi-agent energy-efficient trajectory design and data collection (CoMETD). The proposed CoMETD, operating within the HAP,
leverages a deep reinforcement learning (DRL)-based dueling double deep Q-learning network (D3QN) to dynamically plan multi-
LAU trajectories, eliminating the need for prior knowledge of IoT node locations. The effectiveness of the proposed algorithm is
validated through extensive simulations, where its performance is compared with contemporary state-of-the-art methods.

Index Terms—Deep reinforcement learning, UAVs, energy efficiency, data collection, trajectory planning, HAP, aerial computing

I. INTRODUCTION

HE integration of terrestrial networks (TNs) with non-

terrestrial networks (NTNs), forming a hierarchical
space-aerial-surface computing (SASC) architecture [1], has
emerged as a key enabler for efficiently provisioning both
legacy and on-demand mobile services, paving the way for
sixth-generation (6G) communications and services. NTNs,
consisting of high-altitude platforms (HAPs) and unmanned
aerial vehicles (UAVs), present significant potential for scal-
able and energy-efficient data collection, particularly in emer-
gency response scenarios where rapid deployment of on-
demand wireless networks is critical [2]. However, UAV
backhaul’s heavy reliance on terrestrial infrastructure poses
substantial challenges in scenarios lacking ground connec-
tivity. Furthermore, the limited battery capacity of UAVs
necessitates additional computational support. To address
these challenges, attention has shifted toward deploying high-
performance UAVs equipped with renewable energy sources
and advanced computational capabilities, forming HAPs that
assist capacity-constrained low-altitude UAVs (LAUs) in de-
livering cloud-like services. While the hierarchical SASC
architecture offers an efficient communication framework by
harnessing the computational capabilities of HAPs and the
flexibility of UAVs, optimizing the energy efficiency of UAV
trajectory planning in such dynamic and resource-constrained
environments remains an ongoing and critical challenge.

The SASC HAP typically operates at an altitude of around
20 km in the stratosphere and is capable of maintaining a
quasi-stationary position in the air, providing line-of-sight
(LoS) communications with a wide coverage radius that spans
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50 to 500 km [3]. Leveraging the advantages of HAP, such
as a wide coverage range, long-term solar power utilization,
and significant data storage and processing capabilities, and
combining these with the deployment flexibility and cost-
efficiency of LAUs [4], synthesizing HAP with LAUs to form
the hierarchical two layers of the NTN is crucial for maximiz-
ing the potential of SASC. Enhancing the efficiency of this
synthesis is a key research area, wherein the trajectory design
for LAUs (hereafter LAU and UAV are used interchangeably)
to facilitate energy efficiency through collaboration across
layers presents one of the key challenges.

Despite notable progress in UAV trajectory optimization,
current research has limitations [4] [5]. Conventional methods
often assume static network conditions and fail to account for
the dynamic and unpredictable nature of real-world NTNs.
This leads to reduced adaptability in scenarios involving
mobile IoT nodes, fluctuating wireless channels, and energy
constraints. Additionally, existing approaches frequently treat
HAPs and UAVs as separate entities, underutilizing their
collaborative potential to optimize system performance. Multi-
UAV collaboration introduces further complexity, which is
not effectively addressed by traditional decentralized methods,
resulting in suboptimal energy efficiency and coverage. These
limitations underscore the need for robust solutions capable
of addressing dynamic network conditions and coordinating
multiple UAVs under centralized control. To address these
challenges, we propose an innovative framework that leverages
centralized HAP control and advanced deep reinforcement
learning to enable efficient multi-UAV collaboration in real-
world NTNs.

To address these challenges, we propose the collabora-
tive multi-agent energy-efficient trajectory design and data
collection (CoMETD) framework, which uniquely integrates
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HAPs and UAVs within a hierarchical architecture. COMETD
employs a dueling double deep Q-network (D3QN) algorithm,
enabling centralized control via the HAP to dynamically
optimize UAV trajectories. Unlike existing methods, COMETD
eliminates the need for prior knowledge of IoT node locations,
adapting to dynamic environments through collaborative learn-
ing among UAVs. This approach not only enhances energy
efficiency but also ensures optimal data collection by maxi-
mizing the coverage of IoT nodes while adhering to energy
constraints.

By bridging these gaps, COMETD demonstrates significant
advancements in optimizing trajectory planning in NTNs. Its
practical applications extend to emergency response scenarios,
where rapid and energy-efficient deployment of UAVs is
critical, as well as large-scale IoT networks requiring robust
data collection solutions. Through extensive simulations, we
validate CoMETD’s superiority over counterpart methods in
terms of energy efficiency, coverage, and system scalability,
solidifying its relevance in the field of next-generation NTN
architectures.

A. Literature review

Much of the existing pertinent work has overlooked the
capacity for optimizing UAV paths through the collaboration
across SASC layers. Most of these studies have focused on the
trajectory planning of either a single UAV or multiple UAVs,
without the collaboration of HAP, using either conventional
methods or machine learning (ML) approaches. For instance,
authors in [6] focused on maximizing minimum rates among
terrestrial IoT devices through path planning and IoT device
scheduling for a single UAV. [7] explored multiple UAVs
for data collection, emphasizing optimized trajectory design
through clustering and minimizing power consumption. In
[8], authors optimized the trajectories of multi-UAVs to min-
imize energy consumption. [9] proposed a map compression
technique and leveraged dynamic programming to efficiently
design the UAV trajectory. [10] explored the 3D deployment of
UAVs to maximize user coverage, addressing the optimization
by separately optimizing the horizontal and vertical locations
of the UAVs. ML techniques such as reinforcement learning
(RL) and deep reinforcement learning (DRL) have been widely
used for solving UAV trajectory planning. In [11], UAV data
transmission and hovering power minimization were addressed
through a DRL-solved energy-efficient path optimization prob-
lem. In [5], the authors proposed RL-based collaborative UAV's
to perform energy-efficient trajectories within minimal flying
time. However, these methods, whether conventional or ML-
driven, often struggle to adapt to the dynamic and unpre-
dictable nature of real-world network conditions, necessitating
more flexible and responsive approaches.

Recent research has begun to investigate the integration of
HAPs with LAUs to enhance service efficiency and reliability.
[12] devised a heuristic greedy algorithm to address power and
sub-carrier allocation issues within a fixed setup of HAPs and
UAVs. [13] introduced a content caching prediction method for
HAP-assisted multi-UAV networks, utilizing a deep regression
model within a UAV-HAP hierarchical federated learning (FL)

framework, incorporating the federated averaging algorithm.
In [14], authors proposed a DRL-based method for allocat-
ing coverage areas in a heterogeneous UAV network with
HAPs, aiming for maximum coverage while preserving energy
efficiency. [15] focused on joint trajectory optimization and
channel allocation, nonetheless, neglected the potential for
collaborative data collection and computational load division
between HAPs and LAUs.

In summary, most existing research has primarily focused on
UAVs and HAPs as distinct problems, without fully exploring
the potential advantages of their integration, particularly in
terms of UAV trajectory optimization. The under-utilization of
HAP capabilities limits the full potential of HAP-UAYV integra-
tion in real-world networks. This highlights the need for fur-
ther research exploring efficient UAV trajectory optimization
in a broader context, considering practical complexities, and
integrating multiple UAVs within SASC hierarchical network
architectures.

B. Motivation and Contributions

To bridge the research gap and driven by the advantages
of the collaborative network architecture of HAPs and UAVs,
this paper explores the integration of these two SASC enti-
ties to enhance the network coverage and energy efficiency
of the hierarchical SASC. This integration allows UAVs to
optimize their trajectories for maximum data collection from
IoT nodes, with the support of HAP positioned at higher
altitudes to centrally manage UAV trajectories. By leveraging
the strengths of both HAP and UAVs, this study proposes a
dynamic environment solution, namely dueling double deep
Q-network (D3QN)-based collaborative multi-UAV energy-
efficient trajectory design and data collection (CoMETD),
tailored for highly dynamic environments. The contribution
of this paper is summarized as follows:

o Unlike previous studies that primarily developed per-
formance metrics for NTNs, this research evaluates the
overall SASC performance, including both NTN and TN,
by accounting for the roles of both HAP and UAVs in
dynamic scenarios and considering the mobility of IoT
nodes across various environments.

o We formulate an optimization problem to address multi-
UAV trajectory planning under HAP guidance, dividing
it into two sub-problems: the first aims to maximize the
coverage of IoT nodes, which is used as the input for
the second subproblem that focuses on minimizing the
overall energy consumption of UAVs for data collection.
To bypass the computational complexity typical of tra-
ditional methods, we propose a D3QN-based CoMETD
algorithm, which is implemented within a streamlined on-
line framework, specifically designed to handle dynamic
multi-UAV environments, all under the purview of the
HAP.

« Extensive simulations are conducted to evaluate the per-
formance of the proposed CoOMETD algorithm, focusing
on criteria such as IoT node service, energy consumption,
and utilization rate. By comparing it with the state-of-
the-art DQN [15] and scenarios without HAP, the study



JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 3, DECEMBER 2024 120

highlights the significant impact of the centralized system
and the advantages of collaborative learning in enhancing
data collection efficiency. The results demonstrate the
D3QN-based CoMETD algorithm’s superior performance
in dynamic environments and under various wireless
channel conditions.

C. Organization

This paper proceeds as follows: Section II describes the
system model, including network architecture, energy con-
sumption, and communication models. Section III discusses
the optimization problem formulations. Section IV details the
D3QN-based CoMETD process for multi-UAV data collection
in the HAP scenario and explains the associated algorithm.
Section V presents the experimental results, and Section VI
concludes the paper.

II. SYSTEM MODEL
A. Network Model

In this study, we investigate uplink data transmission in an
area of interest (Aol), denoted as 1), where a HAP, designated
as h, controls the trajectories of a set of UAVs, denoted as
L = {1,2,...,L}. We assume that the Aol ¢ consists of
¢ x c equal-sized cells, with ¢ being a natural number, i.e.,
¢ € N. These UAVs travel at a uniform speed, denoted as v,
and their mission is to provide communication coverage to a
set of ground IoT nodes within the ¢ X c cell region, all without
relying on any terrestrial communication infrastructure. The
IoT nodes, denoted as M € {1,2,...,M}, are randomly
distributed and move with a random walk at a speed of
v, within the given Aol, as described in [16]. To maintain
generality, we position the UAVs above the Aol at an altitude
H;, where | € L, and their objective is to maximize the
number of served IoT nodes while adhering to a given energy
constraint, £**. It is important to note that the UAV's operate
without any prior knowledge of the IoT node locations.

As depicted in Fig. 1, UAVs initiate their trajectories within
the centralized system from random starting positions. Time
is divided into 7' equal-length discrete intervals, defined as
T ={0,1,2,...,T}. The 3D coordinates of UAV [ at time
step ¢ are represented as Z;(t) = (x;(t), yi(t), H;), where t €
T, and H; denotes the altitude of UAV [. Furthermore, the
designated resting position of the UAVs is indicated as Pfinal,
The HAP flies at an altitude of H; above the center of the
Aol, which is denoted as Z,(t) = (zn(t), yn(t), Hp).

In an unobserved environment, a HAP acts as the cen-
tralized system, controlling the trajectories of all UAVs to
ensure efficient performance. Within this centralized system,
the HAP computes relevant information that facilitates op-
timal decision-making for UAV coordination and trajectory
planning. To prevent collisions and ensure mission safety, the
HAP not only provides future navigation instructions to the
UAVs but also maintains a record of their current locations.
A collision is recognized when the distance between any
pair of UAVs falls below a predetermined safety threshold,
denoted as Dy,. Therefore, the system enforces a strict
threshold on the UAVs, limiting their movement if their mutual
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Figure 1: System architecture (HAU: high-altitude UAV).

Parameters Values

M Set of 10T nodes

L Set of UAVs

h HAP

P Area of interest

cxce Number of unit cells in an area of interest

T Set of time steps

Emax Maximum power of the UAV [ (W)

H,, Hy Flying altitude of UAV [ and HAP h (m)

pjinal Final position of UAVs

Zi(t), Zu(t) Coordinates of UAV [ and HAP h at time
t

&o Blade profile

&1 Induced power of UAV

Vo Rotor induced velocity (m/s)

fhtip Tip of the rotor blade (m/s)

20 Fuselage drag ratio (m?)

T Rotor solidity

K Air density (kg/m®)

A Rotor disc area (m?)

B Bandwidth

«a Path-loss exponent

o Noise variance

Ym, € {0,1} Binary variable, 1 if UAV [ can success-
fully serve IoT node m, and 0 otherwise

Doin Minimum distance between UAVs (m)

Table I: List of parameter notations.

distance breaches Dy,, as depicted in Fig. 2. This seamless
coordination between the HAP and UAVs enables efficient data
collection while ensuring safe and uninterrupted operations.
Moreover, the UAVs utilize the frequency division multiple
access (FDMA) technique to allocate distinct frequency bands,
enabling simultaneous communication with IoT nodes without
interference.

We assume that each UAV is equipped with a directional
antenna that can be adjusted to control the UAV’s beamwidth
for data collection from IoT nodes. For simplicity, we consider
that the UAV’s antenna has equal half-power in both azimuth
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and elevation angles, with both angles measured as 29 in ra-
dians, where 9 € (0, §) [17]. Additionally, the corresponding
antenna gain in the direction (6, ¢) is approximately modeled
as:

G
g~ 0, otherwise

where Gy = 302%00 X (ﬁ)2 ~ 2.2846, and 6 and ¢ represent
the azimuth and elevation angles, respectively, as defined in
[17]. Note that in practice, g satisfies the condition 0 < g <
%, and for simplicity, we assume g = 0. The beamwidth
angle is adjusted based on the number of detected IoT nodes.
At time step ¢, UAV [ detects a number of N;(¢) IoT nodes.
To strengthen the received signal, UAV [ adjusts the antenna
angle to narrow the lobe until at least NZT(O IoT nodes are

within its range.

B. UAV Energy Consumption Model

We consider HAP to be equipped with solar power, and
to operate at an altitude where cloud-free conditions prevail,
ensuring uninterrupted charging capabilities [18]. The energy
consumption of the UAVs can be divided into two primary
components: (i) propulsion energy and (ii) energy related
to communication. The latter, used when the UAVs trans-
mit, analyze, and receive signals, is negligible compared to
the propulsion energy. We assume the communication-related
power to be a constant, denoted as £ (t), for UAV [ € L
at time step ¢ € 7. The propulsion energy for UAV [ at time
step ¢, denoted as £ (t), is consumed during movement and
hovering, and is formulated as follows [19].

1

30?2 vl V2 ’
PTop (1) — 1 l 1 Y
& ®) P0<+M2>+P1< +4v§ 2115

tip
1 3
+ 3 ZoTK AV 2)

where Py and P; are constant parameters that denote blade
profile and induced power, respectively. While the UAV is in
its hovering state, (i, represents the tip of the rotor blade,
and vg represents the induced rotor velocity during hovering.
Furthermore, x, T, zg, and A are parameters that represent air
density, rotor disc area, rotor solidity, and fuselage drag ratio,
respectively.

To calculate the energy consumed by UAV [ at time step ¢
during hovering, we set the speed of UAV [ as v; = 0 in Eq.
(2). Then, the hovering energy, denoted as 5[“’””(2?), can be
expressed as:

glhover (t) _ PO + Pl (3)

When a UAV collects data from an IoT node, it hovers above
the IoT nodes and consumes power related to communication.
Thus, the total power consumed during data collection by UAV
[ at time step ¢, denoted as EPC (¢), is as follows:

ngC(t) — glhover(t) + glcomm (t) (4)

:
§¢E Dinin 3§¢E
= NS

Figure 2: Safety distance to avoid collision between two UAVs.

Whereas, the total power consumed by UAV [ at time step
t, denoted as £/°*(t), can be calculated as:

EN) = EPC(t) + £ () (5)

During the mission, UAV [ follows a trajectory controlled
by HAP represented by a sequence of cells i' = [i}, 7}, ..., i),
where each cell corresponds to a visited location, and the index
71 indicates the last visited cell by UAV [. This trajectory
represents the path followed by the UAV to visit and serve IoT
nodes. At each step of the trajectory, the UAV can choose one
of four discrete directions: east, west, north, or south, to move
from its current position, as detailed in Section I'V-A. The total
energy consumption of UAV [ during the mission, defined
by the trajectory 2!, includes energy used for UAV flying,
hovering, and communication, as describ~ed in Eq. (5). This
total energy consumption is denoted as J (%l) and calculated
as follows:

3@ =D (EPC() + EF°P (L)) 6)

teT

C. Ground-Air-Space Communication Model

1) Ground-to-UAV channel model: A UAV operated at a
sufficiently high altitude tends to create line-of-sight
(LoS) links with the ground IoT nodes. However, it also
experiences small-scale fading caused by the presence
of rich scattering in the environment such as buildings
[20]. We utilize the probabilistic LoS channel model [21]
to simulate the environment, which accounts for a com-
bination of LoS and Non-LoS (NLoS) conditions. The
large-scale coefficients 3; ,,, of the IoT node m € M
and the UAV [ € L at time step ¢ € T channels can be
calculated by:

_ ) Body (),  LoS
p l”’L(t){nﬁod;g(t), NLoS @

where « is the path loss exponent that usually has a value
between 2 and 6 and [, is the average channel power
gain at the reference distance of dy = 1 m [19]. The
parameter x is the attenuation loss for NLoS scenario
[21]. dy,,; denotes the horizontal distance between UAV
[ € £ and IoT node m € M at height H; at time step
t, is given as:

Qo (£) =\ (22(8) = 20 (0)2 + (1) — g (£))2 + HP

(®)
where (2, ym) is the 2D location of IoT node m.
The probability of LoS link depends on the angle ¢; ,,
between the UAV [ and IoT node m at time step ¢ can
be evaluated as [21]:
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2)

1

PLOS((bl,m)(t) = a + exp (—b(gﬁl m a))

)

where a and b are the environment parameters. The
probability of NLoS can be calculated as:

PNLos(®1,m)(t) =1 — Pros(dim)(t)  (10)

The channel gain between UAV [ and IoT node m at
time step ¢ is expressed as:

gl,m(t) = PLoS(¢l,m)(t)ﬁ0dl_,gL(t)
+ PNLos(P1,m)(t)kBod 1 (t)  (11)

UAV [ detects N; IoT nodes for communication using
a directional antenna with a variable beamwidth. A data
connection link is formed after each of the /V; IoT nodes
has been detected, and UAV [ then starts collecting data
from IoT nodes. The achievable data transmission rate
between IoT node m and UAV [ at time step ¢, denoted
as Ky, (t), is calculated as follows:

Kim(t) = Bimlog (1 + pl”"(t)(igl’m(t)) (12)
where B ,, is the channel bandwidth of the link between
UAV [ and 10T node m, py ., (t) is the transmitted power
of the IoT node at time step ¢, G is the antenna power
gain of the IoT node to the flying UAV link, and o2 is
the noise variance. We define I" as M which
is signal-to-noise-ratio.

UAV-to-HAP channel model: UAVs fly at higher alti-
tudes, ensuring LoS conditions between UAVs and the
HAP for transferring their data. The distance between
UAV [ and HAP 1 at time step ¢, denoted as dj, ;(t), is:

dni(t) =

V(@n(t) — zi(£)2 + (yn(t) — w()2 + (Hp — Hy)?
(13)

Channel gain from UAV [ to HAP h at time step ¢,

denoted as gy, ;(t), uses the formula:
gna(t) = Bo x ¥ (¢) (14)

where [ is the average channel power gain. According

to [22], the achievable data transmission rate from UAV
l € £ to HAP h at time step ¢ is:

Ph,l(t)gh,l(t)é>

15
4r funse (15)

ICh,l(t) = Bh,l IOg (1 +

where By, ; represents the bandwidth of the communi-
cation link between UAV [ and HAP h, py,(t) is the
transmission power of UAV [, ¢ is the speed of light, and
f is the carrier frequency. p, denotes the system noise
temperature, and ¢p represents Boltzmann’s constant.
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III. PROBLEM FORMULATION

In the context of optimal trajectory planning in a centralized
system, the given problem is formulated into two objective
functions to be achieved by the HAP. The first sub-problem
aims to maximize the total coverage of IoT nodes within the
flight time T" of all UAVs. For instance, for serving IoT node
m in a given coverage, UAV [ should collect its data D,,
entirely within a specified time constraint. We introduce the
binary variable Y, ; € [0,1], where m € M and | € L,
which equals 1 if UAV [ can successfully serve IoT node m
and O otherwise. The formulated optimization problem, with
the goal of maximizing the overall served IoT nodes shown
in Eq. (16a), is expressed as follows:

max Z Z Vil (16)
leL meM

st J@H < &gV e L,Ym e M (17)
S < Smaw, ¥Vm € M (18)
Zy =Pl vl e L (19)
Yimi € {0,1},Vme M,Vl € L (20)

> 1Zi(t) = Zv()|>Din, VI € LI£UVEET
LeL
2D
Constraint (17) ensures that the energy consumed by UAV
I when following trajectory 7' remains below the maximum
available energy of UAV [. Constraint (18) ensures that each
served IoT noc/l\e m uploads its data S,, within the specified
serving time, Spax. Constraint (19) specifies the desired final
location of UAV [. Constraint (20) guarantees that V), ; can
be either O or 1 at time ¢. Constraint (21) guarantees that the
absolute difference in positions between UAV [ and all other
UAVs " at time ¢ should be greater than the minimum distance
Dmin-
The second sub-problem, using the output of the first
sub-problem as its input, aims to minimize the total energy
consumed by UAVs, which is given as follows:

min Z Z EFL(t) (22)
leL teT
st (17),(20), (21)
S Y 2T (23)
leL meM
gty < g Nl e LYLET (24)

Constraint (23) guarantees that during its mission, the UAV [
must cover a minimum number of U; IoT nodes, and constraint
(24) ensures that the energy consumption of the UAV [ at time
t remains below the maximum power limit.

Solving these optimization problems using traditional meth-
ods leads to serious scalability issues and requires intensive
computation due to the dynamic nature of this large network
and the complexity of its dimensions. Fortunately, DRL has
the capability to explore a vast state space and achieve efficient
trajectory and energy management through its formidable data
processing capabilities.
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Figure 3: D3QN-based COMETD Framework.

IV. PROPOSED D3QN-BASED COMETD SCHEME

This section introduces the centralized collaborative trajec-
tory planning algorithm, COMETD, as previously mentioned.
The proposed CoMETD algorithm employs the powerful
D3QN at HAP to optimize UAV trajectories, ensuring effi-
cient data collection from terrestrial IoT nodes under energy
constraints. All UAVs collaborate and share information at the
HAP, storing state-action pair transitions to achieve globally
optimal solutions and enhanced system efficiency.

The proposed CoMETD framework leverages the dueling
double deep Q-network (D3QN) algorithm to address the
challenges inherent in dynamic, multi-agent environments like
NTNs. as shown in Fig. 3. D3QN combines the advantages
of dueling architecture and double Q-learning, making it
particularly effective for resource-constrained scenarios. The
dueling architecture separates the estimation of state values
and action advantages, allowing the algorithm to differentiate
the intrinsic importance of states from the effect of specific
actions. This results in more precise decision-making and
enhanced learning efficiency. Additionally, D3QN employs
two independent Q-networks: one for action selection and
the other for evaluation. This separation mitigates the Q-
value overestimation issue commonly associated with tra-
ditional DQN approaches, thereby improving stability and
value estimation accuracy. These features make D3QN well-
suited for applications requiring adaptive and robust learning
mechanisms, such as the optimization of UAV trajectories in
non-terrestrial networks [23], [24].

A. DRL-based Problem Formulation

In the proposed DRL-based formulation, the D3QN-based
CoMETD algorithm is executed within the HAP to allocate
trajectories that maximize user coverage while adhering to

energy constraints. We consider UAVs as agents that interact
with the system environment in a sequence of discrete time
instances. The HAP takes on the role of executing the D3QN
algorithm and storing the UAVs’ experiences. It communicates
with and controls the trajectories of all UAVs, ensuring effec-
tive coordination and optimization across the system.

The state and action of the proposed D3QN-based CoOMETD
problem are given as follows:

1) State Space: The coverage range of the UAVs can vary
based on their beamwidth parameters, enabling them
to encompass multiple cells. The state s(¢) at time
t is represented as a four-element tuple, i.e., s(t) =
(0, Zi(t), m(t), vi(t)), where @ is the grid in which
UAVs collect data and plan their trajectories, Z(t) is
the cell that UAV [ is located at time slot ¢, 1;(¢) is the
set of cells within the range of UAV [ at time ¢ that is
subject to the beamwidth parameters, and () is the
remaining energy of UAV [ at time ¢.

2) Action Space: An agent may take one of the five
moving actions at each state, denoted as A; =
{+z,+y, —z, —y, 0} to represent the action, where —v,
4y, —x, or +x indicates that UAV [ changes its state
by moving downwards, upwards, to the right, or to
the left, respectively. Meanwhile, 0’ represents UAV
! hovering in place for data collection. However, in a
centralized system, the HAP provides actions in an array
that includes all UAVs’ actions at time step ¢, denoted
as A(t) = {a1,a9,...,a;}, where [ € L.

3) Reward Function: The main objective of the proposed
D3QN-based CoMETD problem is to maximize the
expected reward achieved by UAV [ when completing
a mission from its initial to the final position. The
trajectory reward, i.e., R1;(t), is given as:
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Algorithm 1: CoMETD algorithm

1 Input: Initialize environment; current network parameter;
replay memory D, epsilon probability € € [0,1], learning
rate o € [0,1], discount factor v € [0,1],0 and the target
network 6;

2 Initialize main network Q1(s(t), a(t),0) with weights 0 and
the target network Q2(s(t), a(t),d) with weights 6;

3 Output: The optimal policy

4 A <« sample_Action_Space();

5 while episode < Episodes do

6 Foreach UAV [
7 § < reset_Environment();
8 t <+ 05
9 while (2; # P/") do
10 o < random_Sample([0,1]);
11 s(t) <+ observe_State(d);
12 Select action:
a(t) + argmaxQ(s(t),a(t),d), if o >e
a(t) < random_Action(A),  Otherwise.

13 if UAV [ collects data from IoT node m then
14 | mark m as collected
15 end if
16 Ri(t) < obtain_Reward(a(t));
17 si(t + 1) < observe_NewState(a(t));
18 Checks safety distance dpin;
19 if |Z1(¢) - 21/ (t)| < Dmin then
20 | si(t+1) = s(t)
21 end if
22 Observe s(t) and adjust beamwidth;
23 Store the transition tuple

(s(t),a(t),r(t),s(t + 1)) in common D;
24 Sample mini batch of B,, tuples;
25 Calculate target;
2 Y(t) = R(t + 1) + yQ, 5(s(t +

1),argmax Q1,0(s(t + 1),a(t + 1))), Perform

a(t+1)

the gradient decent step to minimize loss function;
27 Calculate the loss

L(6) = E[(Qua(s(t), a(t))) — Y (D)r]:
28 Soft update of target parameters,
29 0 = (1 — Z)0 + x6 (update factor z = [0,1]);
30 episode = episode + 1
31 end while

32 end while

+x1, if Z=P
—X2, if Zl(t) — Zl/(t) <Din
—1,  otherwise

R1(t) = (25)

where reward x; is obtained when UAV [ successfully
reaches the final destination, while penalty xo is in-
curred for violating the safety distance. Additionally,
a negative penalty of -1 is assigned for each step
taken without completing the mission. By utilizing the
problems (16), (22), (12), and (25), we design a reward
function incorporating parameters ¢ and (, motivating
the agents to maximize their rewards within the range
[0, 1). This reward function motivates UAV's to maximize
their rewards by efficiently serving IoT nodes while
minimizing energy consumption. The overall reward for
UAV [ at time ¢, i.e., R;(t), is expressed as follows:

ym,l
EI0)
where V,,; and E£/°'(t) are defined based on the
problems (16) and (22), respectively. The total reward

achieved by UAV [ upon completion of the mission can
be formulated as follows:

Ri(t)y=¢ + Kim (t) + (R1(t) (26)

Ry :€%+KI+CR11 27
1

where ) = Zlﬁzl Zxﬂ Vmyi» & = ZtT:O (L),

Ki = Yo K®t)im and Rl; = Y21 R1(t). The

total reward of the episode including all UAVs can be

calculated as:

L
Rtotal = ZRl (28)
=1

B. Propose D3QN-based CoMETD Algorithm

We introduce the novel D3QN-based CoMETD algorithm
designed to address the DRL-based formulation within the
framework illustrated in Fig. 3. The algorithm is detailed in
Algorithm 1 and introduced in the following.

During the training phase, we first initialize the replay
memory D and set parameters such as learning rate «, discount
factor 7, and epsilon probability e. Then, we initialize the
evaluation and target networks, as well as other necessary
parameters (steps 1-2), and the output is the optimal policy
7* (step 3). In step 4, an action space is generated. During
each training episode, every UAV navigates within the Aol
to provide communication to the IoT nodes and reach the
final destination. Notably, the environment is reset at the
start of every episode (step 7). At each time step ¢, each
UAV independently observes the environment and, following
the e-greedy policy, either randomly selects an action with
a probability of ¢ or chooses the action with the maximum
Q-value, continuing this process until they reach their final
destination Plﬁ“al (as described in steps 8—12).

After executing the chosen action and collecting data from
the IoT node m, the UAV marks the IoT node m as collected
(steps 13-14). The UAV receives a reward R;(t) based on
Eq. (26) and observes the new state. If the UAV violates the
safety distance Dy, it will remain in the same state and get
a negative reward. It also adjusts the beamwidth according
to the section (II-A) (steps 15-22). In step 23, the transition
tuples (s(t), a(t), r(t), s(t+1)) are stored in a common replay
memory D in HAP. For training the evaluation network 6, a
mini-batch of tuples B,, is randomly sampled from the replay
memory D in step 24. The evaluation network @ is fed into the
optimizer, which calculates the loss function between the target
Y (t) and the estimated experiences (s(t), a(t),r(¢t), s(t + 1))
as shown in Fig. 3. Further, the optimizer minimizes the
loss function over the mini-batch B,, using an equation and
updates the parameters 6 of the online dueling DQN, thereby
training the network (as described in steps 25-30). Finally,
the episode concludes when all UAVs reach their destination.
Steps 7 to 30 are repeated for all episodes. Once the training
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Figure 4: Comparison of energy consumption under different
numbers of IoT nodes.
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Parameters Values

Number of UAVs 10, 20, 30
Number of HAP 1

Number of IoT nodes 100, 200, 300, 400, 500
v 25 m\s

B 1 MHz [19]

H, 150 m

Hy 20 KM [17]

Vo 7.2 [19]

Po,P1 799 W, 88.6 W
Utip 200 m/s [19]

20 0.3 m* [19]

T 0.05 [19]

K, 1.225 kg/m* [19]
A 0.79 m? [19]

¥ 80°- 140°

o1 0.8

a 0.01

€, €Emin, €decay 10, 001, 0.0005
Optimizer Adam
Mini-batch size 128

Replay memory size 5000

Table II: Simulation parameters

is completed, a policy is obtained with a well-trained DNN
that allows HAP to manage all UAVs to navigate in real-time
environments.

V. SIMULATION RESULTS

In the simulation environment, we consider 2000 x 2000
m?2 area size, and a set of IoT nodes are randomly distributed
and moving throughout the area. The simulation parameters
specified in Table II are employed to train the DRL models.
The experimental parameters for DRL-based approaches, such
as «, €, and v, are fine-tuned through an iterative process
of trial and error. Various parameter values are tested and
evaluated to determine the optimal settings. The proposed
D3QN-based CoOMETD includes dueling DQN by introducing
two separate neural networks: the online network and the target
network, which are presented in Fig. 3. We compare the pro-
posed D3QN-based CoMETD algorithm with the benchmark
algorithm as follows:

1) D3QN without HAP: To show the benefits of integrating
HAP in the proposed system, the D3QN without HAP
scheme is implemented and compared. This approach
solely utilizes UAVs for data collection and trajectory
design, excluding the involvement of HAP. The UAVs
work individually and optimize their trajectories using
the D3QN algorithms.

2) DQN [15]: In the DQN-based approach, both UAVs and
HAP are utilized to serve the IoT nodes as the proposed
framework. The trajectory of the UAVs is optimized
using the DQN technique.

3) DQN without HAP [5]: This scheme operates without
the use of HAP, relying solely on UAVs to serve the IoT
nodes. Each UAV works independently and optimizes its
trajectory using the DQN technique.

30 | mDQN-10 UAVs (w/o HAP)
mDQN-20 UAVs
® DQN-20 UAVs (w/o HAP)

w
8
3

Served loT Nodes

o
S
38

I
3

o

100 200 500

Number é?DIoT nodes
Figure 5: Successfully served IoT nodes with different num-
bers of IoT nodes.

Fig. 4 illustrates the impact of the number of IoT nodes and
the number of UAVs on the total consumed energy by UAVs to
complete the data collection mission. The graph reveals that
as the number of IoT nodes increases, energy consumption
also increases. This can be attributed to the fact that with
more [oT nodes, the UAVs need to collect data from a larger
number of nodes, resulting in higher energy consumption. The
proposed D3QN-based CoMETD with 20 UAVs algorithm
outperforms other benchmark algorithms. By increasing the
number of UAVs, the collaborative centralized system ex-
hibits improved performance due to the shared experiences
among the UAVs. On the contrary, the proposed D3QN-based
CoMETD approach without HAP (w/o HAP), specifically with
10 and 20 UAVs, demonstrates significantly higher energy con-
sumption. In contrast, the proposed D3QN-based CoMETD
approach without HAP, specifically with 10 and 20 UAVs,
demonstrates significantly higher energy consumption. This is
because they are learning independently without a centralized
system. Similarly, both the DQN-based approach with HAP
and the DQN-based approach without HAP consume at least
30% to 50% more energy when compared to our proposed
D3QN-based COMETD approach.

In Fig. 5, we examine the number of served IoT nodes in
relation to different numbers of IoT nodes on the ground.
The graph includes results from the D3QN-based CoMETD
(with and without HAP), and DQN (with and without HAP)
approaches with 10 UAVs and 20 UAVs. It is evident that
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Served Iot Nodes Energy Saved
10 UAVs 65 34.8
20 UAVs 93 42.7
30 UAVs 94.4 454

Table III: System utilization rate.

the proposed D3QN-based CoOMETD approach with 20 UAVs
outperforms the other approaches, demonstrating significantly
better results. However, D3QN-based COMETD (both with 10
and 20 UAVs) covered approximately 20% more IoT nodes
than the D3QN-based COMETD without HAP.

The experimental results in Table. III demonstrate the over-
all utilization of the system. The graph illustrates the resource
utilization when employing different numbers of UAVs. When
using 10 UAVs, approximately 35% of energy is saved while
serving 65% of the IoT nodes. Increasing the number of UAVs
to 20 results in serving 93% of the IoT nodes and saving
43% more energy compared to 10 UAVs. However, when
further increasing the number of UAVs to 30, there is no
significant difference in serving IoT nodes, but approximately
45% of energy is saved. Therefore, these findings lead to the
conclusion that using 20 UAVs in this scenario is an optimal
choice, as it achieves a high IoT node serving rate while also
saving a considerable amount of energy.

Fig. 6 presents the achieved data rate concerning the number
of episodes having 500 IoT nodes and 20 UAVs with adaptive
beamwidths in the environment setup. The data rate consis-
tently increases as the learning iteration progresses, indicating
the effectiveness of the learning algorithm as it learns to
serve more 10T nodes. The proposed D3QN-based COMETD
and DQN exhibited superior performance compared to the
versions of these algorithms that did not incorporate HAP in
terms of achieving data rate. However, the proposed D3QN-
based COMETD method exhibits greater robustness compared
to the other approaches considered. Moreover, it illustrates
the impact of the achieved data rate based on the adaptive
and fixed beamwidths utilized by UAVs. As the number
of episodes increases, it can be observed that the achieved
data rate also increases for both approaches. However, the
adaptive beamwidth approach consistently outperforms the
fixed beamwidth approach, demonstrating higher data rates
across all episode values. This can be attributed to the adaptive
beamwidths’ ability to dynamically adjust and optimize the
communication parameters based on the network conditions.
These findings highlight the significance of incorporating
adaptive beamwidth techniques for improving the data rate
in wireless communication systems.

Fig. 7 shows the efficacy of each scheme DQN (with and
without HAP) and proposed D3QN-based CoMETD (with
and without HAP) with 500 IoT nodes and 20 UAVs in the
environment setup. The graph illustrates the performance of
each scheme in terms of efficacy, which is measured as the
ratio of the number of IoT nodes served to the number of steps
taken by the respective scheme. It is evident that the pro-
posed D3QN-based CoMETD algorithm outperformed other
schemes in terms of efficacy, serving the highest percentage
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Figure 6: Achieved data rate versus number of episodes in a
scenario with 500 IoT nodes and 20 UAVs.
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D3QN (w/o HAP)
DQN

DQN (w/o HAP)

Schemes

Figure 7: Comparison of efficacy measured as the ratio of the
number of IoT nodes served to the number of steps taken by
the respective scheme in a scenario with 500 IoT nodes and
20 UAVs.

of IoT nodes per step taken.

Fig. 8 illustrates the average reward plotted against the num-
ber of episodes, providing an evaluation of the performance
of all the methods with 500 IoT nodes and 20 UAVs in the
environment setup. As the number of episodes increases, the
reward also increases, indicating improved performance, and
the proposed scheme converges faster, within 10,000 episodes,
outpacing other baseline methods. Notably, the D3QN-based
CoMETD algorithm outperforms the benchmark algorithms as
it combines the benefits of both the dueling and double DQN
architectures. This combination contributes to higher rewards
and enhanced performance when compared to the benchmark.
The average reward shown in Fig. 8 is computed as the
cumulative reward achieved by the UAVs during each episode.
To reduce noise and better visualize the learning trend, a
sliding average with a window size of 150 episodes was ap-
plied. The graph represents the smoothed reward progression,
highlighting the algorithm’s ability to learn and improve over
time.

In a simulated 16x16 grid with 25 IoT nodes and 3 UAVs,
Fig. 9 provides a visual representation. Fig. 9a shows trajecto-
ries generated using the DRL without the HAP approach. Here,
the UAVs navigate through numerous steps to complete their
trajectory, leaving roughly four IoT nodes isolated. This out-
come demonstrates the consequences of UAVs independently
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Nodes. red circles are IoT nodes and a purple square is the
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10x10 Cells 20x20 Cells

ILP Model 3419.22 4345.47

4045.75 4936.15

D3QN-based CoMETD

Table IV: Comparative analysis of energy consumption (W):
CoMETD versus ILP Scheme.

executing DRL, which require more steps to complete the mis-
sion. Conversely, Fig. 9b shows the proposed CoOMETD-based
DRL. This optimized trajectory requires fewer steps, resulting
in a marginal exclusion of only two IoT nodes. These figures
distinctly emphasize the superiority of the CoMETD-based
DRL method with a centralized system over the independent
operational approach.

In this study, an energy efficiency comparison was con-
ducted between our proposed CoMETD scheme and the ILP
model. Table. IV presents the outcomes derived from two
distinct scenarios within an area of 200 m?. The first sce-
nario entails the subdivision of the area into a 10 x 10 cell
configuration accommodating 60 IoT nodes, while the second
scenario involves a 20 x 20 cell configuration accommodating
110 IoT nodes. In the 10 x 10 cell scenario, the ILP model
exhibited an energy consumption of 3419.22 W, contrasting
with the COMETD scheme, which registered consumption of
424575 W. Similarly, in the 20 x 20 cell scenario, the ILP
model demonstrated an energy consumption of 4545.47 W,
whereas the CoMETD scheme exhibited a consumption of
4936.15 W. These results confirm that the COMETD scheme
exhibits a notable ability to approximate optimal performance,
as indicated by its close proximity to the energy consumption
levels achieved by the ILP model.

VI. CONCLUSIONS

In this paper, we introduced the collaborative multi-
agent energy-efficient trajectory design and data collection
(CoMETD) algorithm to solve the data collection problem
for multiple UAVs under the centralized control of a HAP.
The CoMETD algorithm utilized the D3QN architecture, en-
abling efficient real-time learning and decision-making without
prior knowledge of the network environment. By leveraging
a centralized system with shared memory at the HAP, the
CoMETD algorithm maximized energy efficiency and cover-
age of IoT nodes by the multiple UAVs through collaborative
learning. Extensive simulations proved the proposed D3QN-
based CoMETD algorithm’s superiority compared to its state-
of-the-art counterparts in terms of achieved data rate, coverage,
and energy efficiency. These findings highlighted the potential
of the CoMETD algorithm for optimizing trajectory and data
collection in centralized multi-UAV systems.
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