
JOURNAL OF NETWORKING AND NETWORK APPLICATIONS, VOLUME 4, ISSUE 4, DECEMBER 2024 145

A graph generating method based on local differential privacy for
preserving link relationships of social networks

Jun Yan1, Yijun Zhang2, Laifeng Lu2, Yi Tian3, and Yihui Zhou4

1School of Mathematics and Computer Applications, Shangluo College, Shangluo, Shaanxi, 72600, China
2School of Mathematics and Statistics, Shaanxi Normal University, Xiâan, Shaanxi, 710119, China
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With the widespread popularity of social networks, there are serious privacy issues related to the graph data of social networks. To
address these issues, many differential privacy based graph generating methods have been proposed. However, these methods mainly
focus on preserving the properties of the graph and ignore the preservation of node link relationships. To further preserve the link
relationship of each user in the distributed environment of Social Networks while providing effective data utility, a local differential
privacy graph generating method is proposed, in which the randomized response is utilized to modify the link relationships of
nodes and all modified subgraphs of each node are merged to get a synthetic graph to preserve the link privacy of each node. In
addition, the 2-hop subgraph based node encoding of each node is adopted to reduce the disturbance caused by the local differential
privacy. The unbiased estimate of random response and the node similarity are applied to maintain data utility. Theoretical analysis
demonstrates that the designed method satisfies differential privacy while maintaining data utility. The experimental results indicate
the effectiveness of this method.

Index Terms—local differential privacy, link relationship, node coding, randomized response, unbiased estimate

I. INTRODUCTION

W ITH the rapid development of network technology,
various types of Internet have emerged, such as the

Internet of Vehicles[1], the Internet of Things[2] and Satellite
Internet[3]. Based on the underlying support of various types
of Internet, social networks have developed from a single
social platform to a social meta universe[4]. In addition, social
network-based application platforms utilize digital technology
to provide services for people’s lives and the entire society,
forming a digital social network application environment.
Therefore, social networks have played an increasingly im-
portant role in people’s lives and the entire society.

However, while social networks are widely used, they also
face enormous problems and challenges. In recent years, the
issue of data privacy has received increasing attention[5]. As
a platform for data applications, social networks can collect a
large amount of personal data. However, these personal data
contain sensitive information such as name, gender, date of
birth, education level, marital status, etc. If these sensitive
personal information are not properly protected, it can lead to
the leakage of personal privacy[6]. For example, Facebook’s
Cambridge scandal erupted in 2018, resulting in the leakage
of the personal information of 80 million users, which raised
public concerns about personal privacy[7]. TikTok was fined
$5.7 million by the Federal Trade Commission in February
2019 for violating the Children’s Online Privacy Protection
Act while collecting user video data[8]. These events indicate
serious privacy issues in social networks. Therefore, effective
measures must be taken to resolve these issues in time.

In particular, social networks contain not only tabular data
but also graph data that represents the characteristics of social
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networks[9]. Graph data consists of nodes and links, where
nodes represent users and links represent social relationships
between users[10]. On the one hand, the nodes of graph data
carry a large amount of sensitive personal information of users.
On the other hand, the topological structure of graph data
represents the structure of social networks in a meaningful
way, containing many network attributes information such as
degree distribution, shortest distance, and clustering coeffi-
cient[11]. The privacy risks of graph data in social networks
mainly include three aspects[12], namely identity leakage,
membership relationship leakage, and content leakage.

To preserve the privacy of graph data in social networks,
many methods based on perturbation have been proposed,
such as graph modification and differential privacy. Compared
with the graph modification methods, differential privacy
has significant advantages and is therefore widely used for
preserving graph structured data. Usually, differential privacy
mainly preserves the parameters and statistical values of graph
data during querying and publishing[13], including degree
distribution, count queries, and degree histograms. In addition,
differential privacy is also applied to generate a synthetic
graph, thereby preserving the information of the original
graph[14]. However, it should be noted that the scenario for
these differential privacy applications is that all data is stored
in the hands of trusted data collectors, who implement privacy
preservation. Therefore, differential privacy in this scenario
is called centralized differential privacy. However, in reality,
it is often difficult to find reliable data collectors. If data
collectors misuse user information, it can lead to personal
privacy breaches. For example, Facebook’s unauthorized sale
of insights and analysis based on users’ personal data has
raised public concerns about personal privacy issues[15].

In response to the shortcomings of central differential
privacy, local differential privacy is proposed to enhance the
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strength of data privacy preservation. For the graph data,
local differential privacy mainly preserves the parameters and
statistical values of graph data[16] or generates synthetic
graphs[17]. Compared to preserving only specific graph data
metrics, generating synthetic graphs provides a more general
paradigm that can effectively achieve data sharing and analy-
sis. To generate synthetic graphs, Qin et al.[18] presented the
LDPGen method. In [19], Wei et al. proposed the AsgLDP
method to generate attribute synthesis graphs. In addition,
Hou et al.[20] designed the first dynamic graph publishing
method based on local differential privacy: the PPDU method.
However, these local differential privacy methods only focus
on preserving the properties of the graph, which results in
resulting in insufficient preservation of node link relationships.
To preserve the link privacy of each node in the original
graph by local differential privacy, the following three key
issues need to be addressed. Firstly, how to achieve privacy
preservation for the original graph through perturbations of
each node is important. Secondly, because the perturbations of
nodes bring a large number of redundant edges to the original
graph, how to reduce the perturbations of redundant edges is
a difficult problem. Finally, it is necessary to improve the data
utility of the noised graph obtained through perturbations.

In this work, a local differential privacy graph generating
method has been proposed to address the issues above. In
this method, local differential privacy is applied to enhance
the preservation of node link relationships. In addition, three
measures are presented to maintain the data utility. First, a
perturbation method based on node 2-hop subgraphs is pro-
posed. Secondly, in the 2-hop subgraph encoding sequence, the
frequency distribution of value 1 corresponds to the frequency
distribution of edges in the subgraph. To reduce the number
of redundant edges, a method of edge frequency correction is
adopted for the 2-hop subgraph encoding sequence with added
noise to improve the accuracy of the number of edges. Finally,
it is necessary to consider the structural connections between
nodes when generating a node subgraph, which is beneficial to
merge subgraphs to obtain a synthetic graph that is as similar
as possible to the original graph.

Our contributions of this paper are summarized as follows:
(1)We propose a local differential privacy graph generating

method, which can preserve the link privacy of each node
while maintaining data utility.

(2)We devise a node coding algorithm based on the 2-
hop subgraph of each node and make use of the randomized
response to modify the edges of each node. In addition, the
properties of unbiased estimate and the similarity between two
nodes are utilized to maintain data utility.

(3)We employ several kinds of real datasets to evaluate the
designed method in term of privacy preservation and data
utility, and the experiment results show that the method is
effective in practice.

The organization of this paper is as follows:
The graph modification methods and differential privacy

based methods are introduced in section 2. In section 3, Some
related definitions are described. Section 4 mainly shows how
an LDPGG method preserves the link privacy of graph data,
and the details and theoretical analysis of all algorithms are

illustrated in Section 5. Section 6 demonstrates the perfor-
mance of the LDPGG method in term of privacy preservation
and data utility. Finally, section 7 presents the conclusion and
the future work.

II. RELATEDWORK

To preserve the graph structure data in social networks,
many graph modification methods were first proposed, such as
edge and node modification methods, generalization methods,
and uncertain graph methods. After that, many differential
privacy based methods were also developed to provide stronger
privacy preservation.

In the existing edge and node modification methods,
X.Ying[21] presented two algorithms for preserving the graph
data while maintaining the spectral properties of original
graph unchanged as much as possible. In addition, the k-
anonymity method was adopted to constrain the perturbation
caused by edge modification[22]. Casas.R[23] used exhaustive
search and greedy algorithms to obtain anonymous degree
sequences which is similar to the original graph, and then
designed neighbor centrality and random edge selection meth-
ods. Finally, edge modifications were minimized to get a
anonymous graph. Mortazavi.R[24] developed a (k, l) graph
modification method based on k with edge addition, which
achieved the desired trade-off between data utility and privacy
preservation. Considering attacks from both graph structures
and vertex attributes, Ren in [25] presented a novel mechanism
to preserve graph privacy, in which the original graph was
divided into a so-called kt-safe graph, via k-anonymity and
t-closeness. Moreover, to preserve the large scale graph data,
[26] devised an anonymity framework, in which a k-anonymity
algorithm based on k-decomposition was presented.

In generalization methods, to minimize the structural infor-
mation loss in the generalization process, [27] used the GA
and PSO to devise several hybrid solutions form the super-
nodes of size at least k. In addition, a graph clustering method
based on structure entropy in [28] was proposed to preserve
graph data in SIoT, in which data mining was combined with
structural information theory.

In uncertain graph methods, Boldi first utilized the concept
of uncertainty to design a (k, ¦Å1)-obfuscation method, which
could generate an uncertain graph to preserve the original
graph[29]. In addition, Mittal in [30] proposed a Rand-Walk
method, which was able to provide stronger privacy preserving
than the (k, ¦Å1)-obfuscation method. Based on the work
mentioned above, Nguyen devised a generalized obfuscation
model, in which the uncertain adjacency matrices was adopted
to obtain an uncertain graph while keeping the degree of
nodes unchanged[31]. To resist link relationship attacks based
on background knowledge, [32] proposed an edge-differential
privacy based uncertain graph method, which further improved
the privacy preservation capability of the uncertain graph
method.

As differential privacy could prevent any attacks based on
background knowledge and provide rigorous mathematical
proof[33], many differential privacy methods had been pro-
posed to preserve graph data. In many methods based on cen-
tral differential privacy, there were usually two applications:
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preserving specific sensitive statistics of graphs and publishing
private graphs. In [34], utilizing a heuristic truncation strategy
and a new privacy budget allocation strategy, Xing designed
a DP-gSpan method that mined frequent subgraphs under
differential privacy. When publishing the triangle counts under
node-differential privacy, [35] used a novel graph projection
method to get an upper bound for sensitivity in differential
privacy. Therefore, the designed mechanism attained better
accuracy for the triangle counts while satisfying differential
privacy.To release the degree histogram under node-DP, a
method was presented in [36], in which the mean filtering and
some techniques were introduced to further improve publish-
ing accuracy. To publish graphs under node-DP, [37] devised
two methods. One perturbed the original graph by randomly
inserting and removing nodes, while the other one modified the
input graph by randomly adding nodes and removing edges.
To prevent degree attacks while preserving graph structure,
[38] proposed a privacy preservation approach called PBCN,
which combined clustering and randomization algorithms. In
[39], V.Karwa used differential privacy to obtain a graphical
degree partition of a graph and used it to generate a synthetic
graph. Moreover,the DK-1 sequence and DK-3 sequence were
preserved by differential privacy to gain a synthetic graph,
which could also preserve the original graph[40].

Particularly, due to its stronger privacy protection capabili-
ties than central differential privacy, local differential privacy
was widely applied to preserve graph data. In [41], to publish
graph statistics including k-stars, triangles, and 4-cycles, a
one-round algorithm was designed to count k-stars by using
an optimal order. By far, another one-round algorithm based
on random response was proposed to preserve triangles. Fur-
thermore, a LDP-enabled graph metric estimation framework
for graph analysis was designed in [16]. In this framework, a
complete or parameterized algorithm was proposed to simplify
jobs in implementing LDP-related steps, and the privacy
budget between the two atomic was optimally allocated. To
generate a synthetic graph, Qin presented the LDPGen method
in [18], which was a novel multi-phase technique. In this
method, after the information from each user was injected
with noise according to LDP and reported to a collector,
all users with similar structures were clustered by using an
optimal parameter. Then, a social graph generation model
was employed to preserve the original social graph. In [19],
AsgLDP was developed to preserve an attribute graph. To
improve data utility, various graph properties were main-
tained by carefully injecting noise. Moreover, the LDP based
method for dynamic graph publication was designed in[20].
In this approach, a privacy-preference-specifying mechanism
was adopted to reduce noise injection.

III. PRELIMINARIES

In general, a graph G= (V, E) represents a social network,
where V is a node set in it and E represents link relationships
of nodes.

Definition 1 (Differential Privacy).

Given ε ≥ 0, for any two neighboring datasets D1 and
D2,that they differ in one record, and all S that is in the output
of a algorithm Z, the following holds:

Pr[Z(D1) ∈ S] ≤ exp(ε)Pr[Z(D2) ∈ S] (1)

where ε is a privacy budget.Thus, the algorithm Z satisfies ε-
differential privacy. For graph data, there are edge differential
privacy and node differential privacy.

Definition 2 (Local Differential Privacy).
Given ε ≥ 0, for any two inputs t and t

′
(t ,t

′⊆ Dom (Z)
), if the probability that the algorithm Z gets the same output
result t∗(t∗ ⊆ Ran(Z)) is

Pr[Z(t) = t∗] ≤ exp(ε)Pr[Z(t
′
) = t∗] (2)

where Ran(Z) and Dom (Z) are the input and output domains
of the algorithm Z, a randomized algorithm Z satisfies ε-
differential privacy.

If there is one different edge between two inputs t and t
′
,

the algorithm Z satisfies edge local differential privacy. If two
inputs t and t

′
differ by one node, the algorithm Z satisfies

node local differential privacy.
To achieve local differential privacy, the random response

mechanism is usually used. In addition, local differential pri-
vacy has post-processing and Parallel composition properties.

Definition 3 (Randomized Response ). The define of ran-
domized response is shown as follows:

P (yi = k|xi = j) = Pjk (3)

where xi represents an input that is j, Pjk denotes the
probability to get an output yi which is k.

When j and k is in {0,1},the 2-dimensional randomized
response is as follows:

Pm =

(
P00 P01

P10 P11

)
(4)

where Pm is the design matrix, in which the sum of
probabilities of each row equals 1.

Let {π1, π2} denote the proportions of respondents
′

true
values which fall in each of the input values in {0,1}. Let λ1,
λ2 be the empirical probabilities of the observed values.

Thus, there is (λ1, λ2)T = PT (π1, π2)T . In addition, an unbi-
ased estimator π̂ is π̂ = (PT )−1λ̂ , where λ̂=(λ1, λ2)represents
the vector of observed empirical probabilities.

Definition 4(Randomized Response satisfying ε-Differential
Privacy ).

Let ε ≥ 0, if max P00/P10, P00/P01, P01/P11, P10/P11 ≤
eε , the randomized response represented by Pm satisfies ε-
differential privacy.

Definition 5(Post-Processing).
For any one data set D,if a randomized algorithm Z satisfies

ε-differential privacy, D can be preserved by the algorithm
Z and D

′
is also obtained, which denotes the result of the

algorithm Z.
If N is an arbitrary randomized algorithm, when D” is

gained by using N on D
′
, the algorithm Z·N: D → D”

satisfies ε-differential privacy.
Definition 6 (Parallel composition properties).
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For n algorithms Z1, Z2, ..., Zn, in which each algorithm
Zi satisfies εi-differential privacy, if n disjoint subsets of
the input database D is preserved by each algorithms Zi

respectively, this process provides Max εi-differential privacy
for the data set D, which is the parallel composition properties
of differential privacy.

IV. MODEL OF METHOD

A. Motivation

To preserve the link relationships of social networks, many
graph modification methods have been presented. However,
this kind of method can not resist attacks based on back knowl-
edge. Compared with the graph modification method, differen-
tial privacy methods can provide stronger privacy preservation.
Typically, there are two types of differential privacy: central
differential privacy and local differential privacy. Especially,
local differential privacy focuses on perturbing each user in
social networks during the data collection process and pos-
sesses stronger privacy preservation than central differential
privacy. In addition, the graph generation method provides a
universal paradigm that can preserve graph data during the
process of data collection and data release.

Thus, motivated by this, a local differential privacy graph
generation method is utilized to preserve the link relationships
of each user in a social network. In particular, the randomized
response is applied to preserve the link relationships of each
user. Additionally, the node encoding based on the 2-hop
subgraph, the property of unbiased estimate and the similarity
between two nodes are utilized to maintain data utility.

Ultimately, the proposed method can preserve the link
relationships of the original social network while providing
effective data utility.

B. Framework

Based on the above research ideas, a local differential
privacy graph generating method is designed. In Fig.1, the
entire framework possesses two parts: the client end and the
data collection end.

On the client side, in order to control the disturbance range
of nodes, the 2-hop subgraph of each node is selected as
the disturbance object. Then, edge local differential privacy
is applied for perturbing the nodes. In the specific implemen-
tation, the 2-hop subgraphs of each node are first encoded,
and then the randomized response is utilized for perturbation.
Ultimately, all users will send the perturbed data to the data
collection end.

On the data collection end, the data receiver synthesizes
the data of all users to obtain a noisy graph, and optimizes
each user’s data received to reconstruct the subgraph of each
node. After the edge frequency of each user’s data received is
estimated, the edge count of each node is optimized based on
the estimated value, and then the similarity between two nodes
and the 2-hop subgraph of each node are calculated based on
the noised graph. In accordance with the similarity size, each
node selects a series of nodes and adds edges between them.
The selected number of nodes is the optimized number of
node edges. Then each node generates a reconstructed 2-hop

subgraph, and all reconstructed 2-hop subgraphs are merged to
gain a synthetic graph, which can provide privacy preservation
for each node.

C. Work Process

The specific work process of the local differential privacy
graph generating method is demonstrated in Fig.2, which
mainly consists of three steps.

In step 1, each user extracts their own link relationships to
get their own 2-hop subgraph, and then obtains the encoding
sequence through the subgraph encoding. Then, Step 2 takes
advantage of the randomized response to perturb the encoding
sequence and send all noised sequences to an untrusted data
collector. In step 3, an unbiased estimate of the frequency
of the number of edges for each node is gained, which can
be used to obtain the optimal number of edges for each node.
Then, based on the similarity between nodes, each node selects
nodes from its 2-hop subgraph to link, resulting in a synthetic
subgraph. In the end, all synthetic subgraphs are merged to
generate a synthetic graph. Especially, due to the fact that
the disturbance revolves around a 2-hop subgraph of nodes,
the entire process effectively maintains the structure of the
original graph.

Therefore, the local differential privacy graph generation
method effectively protects the link privacy of each node and
provides effective data utility.

V. ALGORITHMS AND ANALYSIS

Based on the presented model, the LDPGG(local dif-
ferential privacy graph generating) algorithm is designed.
In the LDPGG algorithm, three algorithms are proposed:
NEHG(Node Encoding based on 2-Hop Sub-Graph) algorithm,
NSRR(Node Sequence Randomized Response) algorithm, and
SGG(Synthetic Graph Generation) algorithm.

A. Algorithms

1) LDPGG algorithm
The entire algorithm process is described as follows:

Algorithm 1 LDPGG algorithm
Input: an original graph G
Output: a synthetic graph Gs

1: a node set V ← an original graph G
2: a set of node encoding sequence SE ← NEHG
algorithm(V)
3: a set of noised node encoding sequence SEn ←
NSRR algorithm(SE)
4: a synthetic graph Gs ← SGG algorithm(SEn)
5: Return a synthetic graph Gs

First of all, assuming that each node obtains its 2-hop
subgraph through communication between its friends, each
node achieves its node encoding through the NEHG algorithm.
Then, after disturbing each node’s 2-hop subgraph encoding
sequence, the NSRR algorithm preserves the link relationships
of each node. Finally, the SGG algorithm obtains the syn-
thetic graph by merging all synthetic subgraphs of nodes.
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Fig. 1: The framework of the proposed method

Fig. 2: The process of the proposed method
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Among these algorithms, to reduce disturbance, the frequency
estimation property of random response is utilized for edge
frequency estimation, thereby obtaining an approximate value
of the number of edges. In addition, the similarity between
nodes is used to construct node subgraphs that are similar to
the original node subgraphs.

2) NEHG algorithm
To preserve the link relationships of each node, the Ran-

domized Response is applied to disturb all nodes. Since the
Randomized Response usually deals with 0 or 1, 0 and 1 are
used to encode link relationships of nodes. In addition, to
reduce the disturbance caused by the Randomized Response,
the 2-hop subgraph of each node is exploited to get a node
encoding sequence.

In the NEHG algorithm, each node is encodeed from line 2
to line 11. Firstly, each node vi utilizes its link relationships to
generate its own 2-hop subgraph SGvi, through which a node
set Svi is obtained in line 3. Then, in accordance with the link
situation between node vi and node vj , each node vi can be
encodeed and a sequence of node encoding Snviis obtained
from line 5 to line 10. In particular, 1 is used to record that
node vi and node vj is connected while 0 denotes that node
vi does not link node vj . Therefore, a [0,1] sequence Snvi
describes the link relationships of node vi and represents the
node coding of node vi. After all node coding sequences are
added into a set node vi in line 11, finally, line 12 return a set
of node coding sequence Sec.

Algorithm 2 NEHG algorithm
Input: a node set V
Output: a set of node encoding sequence Sec

1: a set of node encoding sequence Sec = {}
2: for vi in V
3: 2-hop subgraph SGvi ← extracting link infor-
mation of vi
4: a node set Svi ← SGvi

5: a node sequence Snvi with | Svi | zeros ← Svi

6: for vj in Svi

7: if vi connecting vj
8: 1 ← the value of vj in Snvi

9: else
10: 0 ← the value of vj in Snvi

11: a set of node encoding sequence Sec

adding Snvi

12: Return a set of node encoding sequence Sec

3) NSRR algorithm
In the NSRR algorithm, to preserve the link privacy of each

node, the randomized response is used to perturb the node
encoding sequence of each node vi. At last, this algorithm
return a set of noised node encoding sequence Sen, which
achieves the privacy preservation for the each node. Line 3
obtains a node encoding sequence Sevi of the node vi from
a set of node encoding sequence Sec. Then, the randomized
response perturbs a node encoding sequence Sevi and a noised
encoding sequence Senvi is generated in line 4. After that, line
6 adds Senvi to the set Secn. Finally, a set of noised node
encoding sequenceSecn is obtained in line 6.

Algorithm 3 NSRR algorithm
Input: a set of node encoding sequence Sec

Output: a set of noised node encoding sequenceSecn

1: a set of noised node encoding sequence Secn = {}
2: for i in Sec

3: a node encoding sequence Sevi ← Sec[i]
4: Senvi ← RR disturbance(Sevi)
5: Secn addes Senvi

6: Return a set of noised node encoding sequence Secn

4) SGG algorithm
To reduce the disturbance brought by local differential

privacy, the unbiased estimate of randomized response and the
similarity between nodes are adopted to maintain data utility.
For a noised node encoding sequence Scnvi, the unbiased
estimate of the frequency distribution of number 1 in this
sequence is got through the unbiased estimate of randomized
response. Then, the approximate value of the number of edges
that the node links m can be obtained. After that, in each noised
subgraph of each node, after calculating the node similarity
between nodes, each node selects m nodes to link according
to the value of the node similarity. Afterwards, a modified node
encoding sequence is obtained and each noised subgraph of
each node is modified. Finally, all modified node subgraphs
are merged to generate a synthetic graph, which can preserve
the link relationships of each node in the original graph.

Algorithm 4 SGG algorithm
Input: a set of noised node encoding sequence Secn

Output: a synthetic graph Gs

1: a noised graph Gc ← Secn

2: a set of modified node encoding sequence Secm =
{ }
3: for i in Secn

4: a noised node encoding sequence Senvi , a node
vi ← emphSecn[i]
5: the number of 1 in Senvi ← Unbiased estima-
tion Senvi

6: m ← the number of 1 in Senvi

7: a node set Svi ← Senvi

8: for j in Svi

9: calculating the node similarity between
nodes vi and vj in Svi

10: selecting m nodes according to the similarity
11: Semvi ← correcting Senvi

12: a set of modified node encoding sequenceSem

adds Semvi

13: for n in Sem

14: a modified subgraph Gmsub ← generating
graph Sem[n]
15: a synthetic graph Gs ← merging all Gmsub

16: Return a synthetic graph Gs

In the SGG Algorithm, the noise graph Gc is firstly got
through a set of noised node encoding sequence Secn. Then,
from line 3 to line 12, each noised node encoding sequence
in SEcn is corrected to get a set of modified node encoding
sequence Secm. After the noised node encoding sequence
Senvi of node vi is obtained in line 4, line 5 gains the
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frequency estimation of value 1 in the sequence through
unbiased estimation. Based on the frequency estimation of
value 1, the approximate value m of the number of edges of
node vi is got in line 6. Afterwards, node vi calculates the node
similarity between itself and the nodes in Senvi, and selects
m similar nodes from high to low according to the value of
the node similarity. Then, line 11 corrects the Senvi and a
set of modified node encoding sequenceSem is gained in line
12. For each node, a modified subgraph Gmsub of each node
is generated through the modified node encoding sequence
Sem[n]. Finally, line 15 merges all modified subgraph Gmsub

to gain a synthetic graph Gs.

B. Analysis

To demonstrate the effectiveness of the LDPGG algorithm,
the algorithm analysis is presented. Firstly, it is proven that
the LDPGG algorithm satisfies differential privacy, which
indicates its privacy preservation capability. Then, the analysis
of data utility shows that the LDPGG algorithm can provide
effective data utility. Finally, the computational complexity of
the LDPGG algorithm is analyzed.

1) Privacy analysis
Theorem 1: The NSRR algorithm satisfies differential pri-

vacy.
Proof: Let R be a randomized response mechanism, Pr[x

→y] represents the probability that x ∈ {0,1} changes to y ∈
{0,1}.

Given q=1-p= eε/1+eε, when ε ≥ 0, q ≥ p. For each
node, a binary sequence based on the 2-hop subgraph of each
node can be obtained. Let two sequences Se1(e1,e2,...,en) and
Se2(e1

′
,e1

′
,...,en

′
) be neighbor sequences in which there is one

different element between them.
Without loss of generality, let M(m1,m2,...,mn) be any

output of R. Assuming e1 is not equal to e1
′
, there is the

following result.

Pr[R(Se1) = M]

Pr[R(Se2) = M]

=
Pr[e1 → m1] · ... · Pr[en → mn]

Pr[e1
′ → m1] · ... · Pr[en

′ → mn]

=
Pr[e1 → m1]

Pr[e1
′ → m1]

≤ q

p
= eε

Therefore, regardless of whether the input is Se1 or Se2, the
NSRR algorithm satisfies differential privacy.

Theorem 2: The LDPGG algorithm satisfies differential
privacy.

Proof: In this algorithm, each node is preserved by the ran-
domized response mechanism, achieving differential privacy
preservation for the node. According to parallel composition
property of local differential privacy, the process of protecting
all nodes in a graph satisfies differential privacy. Moreover,
in accordance with the post-processing rule, the process of
generating a synthetic graph by using a set of the noised
node encoding sequence also satisfies differential privacy.
Therefore, the LDPGG algorithm satisfies differential privacy.

2) Utility analysis

In the encoding sequence of the 2-hop subgraph of node
ni, assuming there are n nodes v1, v2,...,vn and each node
vi has a binary value xi ∈ Ω1, where Ω1 is a set {0,1}. In
addition, this value is considered as the sensitive attribute X
of each node vi. 1 indicates that node ni links node vi , while
0 shows that node ni is not connected to node vi. When the
randomized response perturbs the encoding sequence of the
2-hop subgraph of node ni, yi is a random value of the true
value xi of each node vi, where yi ∈ Ω2 and Ω2 is {0,1}.

Let π represent the true proportion of sensitivity value 1
in the set of subgraph nodes. The proportion of the observed
value ”1” in the data collected after randomized response is
λ. In addition, π̂ denotes an unbiased estimate of π.

Theorem 3: Given the transformation matrix of the random
response mechanism

P =

(
p 1− p

1− q q

)
, an unbiased estimate of π is

π̂ =
λ− (1− p)

p+ q − 1
.

Proof:

Let n represent the total number of nodes in the 2-hop
subgraph encoding sequence of node ni, and n1 be the total
number of nodes with attribute ”1”. If yi denotes the response
obtained from the i-th node, then

Pr(yi = 1) = qπ + (1− p)(1− π)

Pr(yi = 0) = (1− q)π + p(1− π)

Then the maximum likelihood function can be obtained as
follows:

L = [πq + (1− π)(1− p)]n1 [π(1− q) + (1− π)p]n−n1

From the above equation, it can be concluded that:

lnL = n1ln[(p + q − 1)π + (1− p)]

+(n− n1)ln[(1− p − q)π + p]

0 =
(p + q − 1)n1

(p + q − 1)π + (1− p)
+

(n− n1)(1− p − q)
(1− p − q)π + p

Simplifying the above equation yields the following result:

π̂ =
n1/n− (1− p)

p + q − 1
=

λ− (1− p)

p + q − 1

Next, it will be proven that the above estimates are unbiased.

In fact, it is easy to know that yi follows a Bernoulli
distribution, so the expectation of yi is

E(yi) = qπ + (1− p)(1− π)

Then
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E(π̂) = E(
n1/n− (1− p)

p + q − 1
)

=
E(
∑n

i=1 yi)/n− (1− p)

p + q − 1

=

∑n
i=1 E(yi)/n− (1− p)

p + q − 1

=
nE(yi)/n− (1− p)

p + q − 1

=
[πq + (1− π)(1− p)]− (1− p)

p + q − 1

= π

Therefore, the estimated expected value of π̂ is E(π̂)=π,
which is the unbiased estimate of π.

By replacing the true proportion π of sensitive value 1 in
the subgraph node set, an approximate value of the number of
nodes with attribute 1 in the node ni sequence can be obtained,
as well as an approximate value of the number of edges of
node ni.

In summary, after the 2-hop subgraph sequence of each node
ni is perturbed by the randomized response, to minimize the
disturbance on each node as much as possible, the unbiased
estimate is used to get an approximate value of the number of
edges of node ni. In addition, after obtaining the number of
node edges, node ni make use of the similarity between the
two nodes to select nodes for connection, so that the generated
synthetic graph can maintain the structure the original graph
as much as possible. Therefore, the data utility of the LDPGG
algorithm can be guaranteed.

3) Algorithm complexity analysis
Assuming there are n nodes, each node vi has ki neigh-

boring nodes in its 2-hop subgraph, and the maximum value
of ki in all nodes is kmax, which is much smaller than
n. The NESG algorithm encodes each node with a com-
plexity of O(nkmax). The NRR algorithm implements per-
turbations on each node, with an algorithm complexity of
O(nkmax). The GSG algorithm merges all sub-graphs to
obtain a synthetic graph, with an algorithm complexity of
O(nkmax+n). Therefore, the complexity of the LDPGG algo-
rithm is O(nkmax)+O(nkmax)+O(nkmax+n), which ultimately
can be reduced to O(nkmax).

VI. EXPERIMENTS

In this section, the experimental condition is first introduced.
Then, the performance of LDPGG algorithm is demonstrated
in terms of privacy preservation. Finally, the data utility
evaluation of the LDPGG algorithm is described in detail.

A. Experimental condition

In experiments, four real datasets are used to evaluate
the LDPGG algorithm. Blogs data sets records front-page
hyperlinks between blogs with 1,224 nodes and 19025 edges.
There are two types of Face-book data sets. One has 4039
nodes and another has 63731 nodes.Enron email network has
36692 nodes.

In order to evaluate the effectiveness of the LDPGG al-
gorithm, the LDPGG algorithm is compared with the graph
modification based on k-anonymity algorithm[23] and the
LDPGen algorithm[18]. To reduce the randomness caused by
disturbances, all data sets are executed 10 times by all methods
to get the average value.

All experiments are run on a HP computer with a 5.00GHz
Intel Core i7-8500 and 32GB memory. In addition, Python is
applied in programm on the Microsoft Windows 7 operating
system.

B. Privacy evaluation
1) Privacy measurement

In general, the edit distance between two graphs describes
the similarity between two graphs. To evaluate the LDPGG
algorithm, Euclidean Distance between two graphs is used
to measure the effectiveness of privacy preservation.Euclidean
Distance between two graphs is as follows:

ED(G,Gs) = ED(V,Vs) + ED(E,Es)

=

√√√√ n∑
i=1

(degreevi − degreevsi)2 +
n∑

i=1

(ei − esi)2

Where the first part of ED is the change of node degrees,
The latter part describes the number of different edges.

Clearly, the larger the ED, the more nodes and edges are
different, indicating the stronger privacy preservation.

2) Privacy analysis
As described in Table1, as ε descends from 2 to 0.2, the

ED of LDPGG algorithmin raises from 5297 to 6794. In other
three data sets, there are the same results. The results show
that the smaller the privacy budget, the stronger the privacy
preservation of the LDPGG algorithm. This indicates that the
privacy budget can regulate the privacy preservation level of
LDPGG algorithm. In addition, the ED value of LDPGG
algorithm is larger than the k-anonymity-GM algorithm in
all data sets.For example, in Enron dataset, when the privacy
budget ε is 2, the ED value of the LDPGG algorithm is 66881,
while the ED value of the k-anonymity-GM algorithm with
k=10 is 44646. However, in all data sets, compared with the
LDPGen algorithm, the ED value of the LDPGG algorithm is
smaller. Therefore, the LDPGG algorithm has stronger privacy
preservation strength than the k-anonymity-GM algorithm, but
is weaker than the LDPGen algorithm.

Fig.3 illustrates the comparison of ED values in three algo-
rithms on the Facebook data set. The result shows that the ED
value of the k-anonymity-GM algorithm is the smallest among
the three algorithms. As ε increases, the ED values of both
LDPGG and LDPGen algorithms decrease, with the ED values
of the LDPGG algorithm being smaller than those of LDPGen
algorithm. This indicates that the privacy preservation strength
of the LDPGG algorithm is lower than that of the LDPGen
algorithm, but stronger than the k-anonymity-GM algorithm.
Fig.4 shows a comparison of the ED values in three algorithms
on the Enron data set. The results show that the ED value of
the LDPGG algorithm is larger than that of the k-anonymity-
GM algorithm and smaller than that of the LDPGen algorithm.
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TABLE I: The value of ED in three algorithms

algorithms parameter Blogs1224 Facebook 4039 Enron36692 Facebook 63731
LDPGG ε=0.2 6786 32887 153523 278623
LDPGG ε=0.5 6332 28534 139812 246834
LDPGG ε=1 5857 24976 113112 215187
LDPGG ε=1.5 5513 22234 99179 194831
LDPGG ε=2 5297 20125 76881 189432
k-anonymity-GM k=3 3301 6932 32876 57742
k-anonymity-GM k=5 3467 7469 35915 58790
k-anonymity-GM k=7 3755 9277 39832 60467
k-anonymity-GM k=10 4147 12987 44723 62423
LDPGen ε=0.2 8189 43285 212863 472742
LDPGen ε=0.5 7654 39523 188903 411465
LDPGen ε=1 7265 35231 155613 379243
LDPGen ε=1.5 6934 33643 135462 338786
LDPGen ε=2 6752 31132 114327 318215

Fig. 3: The comparison of ED in three algorithms on Face-
Book4039

This indicates that the LDPGG algorithm achieved the same
conclusion on the Enron data set as on the Facebook data set.

To summarize, the privacy budget ε determines the strength
of privacy preservation for the LDPGG algorithm. Given
a privacy budget, the LDPGen algorithm provides stronger
privacy preservation than LDPGG. The reason is that the
LDPGen algorithm focuses on generating synthetic graphs
without paying attention to the link relationships of each node.
Therefore, the LDPGen algorithm adds a large amount of noise
to each node, causing significant perturbation to each node. In
the LDPGG algorithm, the perturbation of each node is limited
in 2-hop subgraph of each node. In addition, the properties
of unbiased estimate and the similarity between two nodes
are utilized to maintain the link relationship of each node. In
the end, the LDPGG algorithm provides privacy preservation
while maintaining data utility.

Fig. 4: The comparison of ED in three algorithms on En-
ron36692

C. Data utility evaluation

1) Data utility measurement
The Utility is usually applied to evaluate the data utility of

the algorithm, and it is defined as follows.

Utility = (1− (|PM − RM|)
RM

)× 100%

where PM represents one graph metric in a synthetic graph
generated by different algorithms, RV denotes one real metrics
in a original graph.

Note that the greater the Utility, the better the data utility
of this .

To measure the Utility of the algorithm, four graph metrics
are used, such as NE(the number of edges),AD(the average
degree of nodes), SDiam(the diameter of the graph) and
SAPD(the average shortest distance among nodes)
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2) Data utility analysis
As illustrate in Fig.5, in the Enron data set, the maximum

Utility of NE in LDPGG algorithm reaches 76% with ε being
2 while the minimum Utility of NE in LDPGG algorithm is
70% with ε being 0.2. Thus, the average Utility of NE is about
73%. As shown in Fig.6, in the Facebook4039 data set, the
maximum Utility of AD in LDPGG algorithm is 76%, the
minimum Utility of AD reaches 70%. Therefore, the average
Utility of AD is about 73%.

Fig. 5: the Utility of NE

Fig. 6: the Utility of AD

As illustrate in Fig.7, in the Enron email network data set,
as ε increases, the Utility of SDiam in LDPGG algorithm and
LDPGen algorithm simultaneously rises,while the Utility of
SDiam in k-anonymity-GM algorithm maintains unchanged.
The result indicates that the Utility of SDiam is determined by
ε. Compared with the LDPGen algorithm, the Utility of SDiam

in LDPGG algorithm is larger. However, the Utility of SDiam

in LDPGG algorithm is smaller than that in k-anonymity-GM
algorithm. Therefore, the utility of the LDPGG algorithm is
better than the LDPGen algorithm but is lower than the k-
anonymity-GM algorithm.

As shown in Fig.8, in the Facebook63731, as ε is 2,
the Utility of SASD in LDPGG algorithm almost reaches
70%, which is close to the Utility of SASD in k-anonymity-
GM algorithm. In addition, the Utility of SASD in LDPGG
algorithm is larger than that in LDPGen algorithm. According
to the result of comparison in three algorithms, although the
data utility of the LDPGG algorithm is weaker than the k-
anonymity-GM algorithm, but it is better than the LDPGen

algorithm. To sum up, the data utility of the LDPGG algorithm
is effective.

Fig. 7: The comparison of algorithms on SDiam

Fig. 8: The comparison of algorithms on SASD

To sum up, regardless of the privacy budget, the data utility
of the LDPGG algorithm is weaker than that of graph gener-
ation algorithms based on k-anonymity, indicating that local
differential privacy provides stronger privacy preservation than
graph modification. Compared with the LDPGen algorithm,
the LDPGG algorithm achieves better data utility due to
node encoding based on its 2-hop subgraph, the property
of unbiased estimate and the similarity between two nodes.
Therefore, the LDPGG algorithm maintains the data utility of
the synthetic graph while preserving the link privacy of nodes.

VII. CONCLUSION

In the privacy preservation of graph data in social networks,
generating synthetic graphs provides a universal protection
paradigm. A local differential privacy graph generating method
is proposed to address the link privacy in social networks.
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The entire method consists of two parts: the client end
and the data collection end. On the client side, each node
achieves link privacy protection by encoding 2-hop subgraphs
and randomly responding to perturb the node structure. The
data collection end corrects the perturbations of each node
and reconstructs the node subgraph, ultimately merging the
subgraphs to generate a synthetic graph. In the implementation
of the method, node encoding based on 2-hop sub-graph
algorithm, node sequence random response algorithm, and
synthetic graph generation algorithm were designed. In addi-
tion, theoretical analysis and experimental results indicate that
graph generation methods based on local differential privacy
not only achieve link privacy protection for each node, but
also have effective data utility.

In the future, it is important to achieve the tradeoff between
privacy preservation and data utility in local differential pri-
vacy. In addition, it is a great work to preserve more complex
networks through local differential privacy.
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